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Abstract

Multiple kernel clustering (MKC) algorithms optimally com-
bine a group of pre-specified base kernels to improve clus-
tering performance. However, existing MKC algorithms can-
not efficiently address the situation where some rows and
columns of base kernels are absent. This paper proposes a
simple while effective algorithm to address this issue. Differ-
ent from existing approaches where incomplete kernels are
firstly imputed and a standard MKC algorithm is applied to
the imputed kernels, our algorithm integrates imputation and
clustering into a unified learning procedure. Specifically, we
perform multiple kernel clustering directly with the presence
of incomplete kernels, which are treated as auxiliary variables
to be jointly optimized. Our algorithm does not require that
there be at least one complete base kernel over all the sam-
ples. Also, it adaptively imputes incomplete kernels and com-
bines them to best serve clustering. A three-step iterative al-
gorithm with proved convergence is designed to solve the re-
sultant optimization problem. Extensive experiments are con-
ducted on four benchmark data sets to compare the proposed
algorithm with existing imputation-based methods. Our algo-
rithm consistently achieves superior performance and the im-
provement becomes more significant with increasing missing
ratio, verifying the effectiveness and advantages of the pro-
posed joint imputation and clustering.

Introduction

The recent years have seen many effort devoted to design-
ing effective and efficient multiple kernel clustering (MKC)
algorithms (Zhao, Kwok, and Zhang 2009; Yu et al. 2012;
Gönen and Margolin 2014; Du et al. 2015; Liu et al. 2016;
Li et al. 2016; Cao et al. 2015a; Zhang et al. 2015; Cao et al.
2015b; Zhang et al. 2016). They aim to optimally combine
a group of pre-specified base kernels to perform data clus-
tering. For example, the work in (Zhao, Kwok, and Zhang
2009) proposes to find the maximum margin hyperplane, the
best cluster labeling, and the optimal kernel simultaneously.
A novel optimized kernel k-means algorithm is presented
in (Yu et al. 2012) to combine multiple data sources for
clustering analysis. In (Gönen and Margolin 2014), the ker-
nel combination weights are allowed to adaptively change
to capture the characteristics of individual samples. Replac-
ing the squared error in k-means with an �2,1-norm based
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one, the work in (Du et al. 2015) develops a robust mul-
tiple kernel k-means (MKKM) algorithm that simultane-
ously finds the best clustering labels and the optimal com-
bination of kernels. Observing that existing MKKM algo-
rithms do not sufficiently consider the correlation among
base kernels, the work in (Liu et al. 2016) designs a matrix-
induced regularization to reduce the redundancy and en-
hance the diversity of the selected kernels. These algo-
rithms have been applied to various applications and demon-
strated attractive clustering performance (Yu et al. 2012;
Gönen and Margolin 2014).

One underlying assumption commonly adopted by the
above-mentioned MKC algorithms is that all of the base ker-
nels are complete, i.e., none of the rows or columns of any
base kernel shall be absent. In some practical applications
such as Alzheimer’s disease prediction (Xiang et al. 2013)
and cardiac disease discrimination (Kumar et al. 2013), how-
ever, it is not uncommon to see that some views of a sam-
ple are missing, and this causes the corresponding rows and
columns of related base kernels unfilled. The presence of in-
complete base kernels makes it difficult to utilize the infor-
mation of all views for clustering. A straightforward rem-
edy may firstly impute incomplete kernels with a filling al-
gorithm and then perform a standard MKC algorithm with
the imputed kernels. Some widely used filling algorithms
include zero-filling, mean value filling, k-nearest-neighbor
filling and expectation-maximization (EM) filling (Ghahra-
mani and Jordan 1993). Recently, more advanced imputa-
tion algorithms have been developed (Trivedi et al. 2010;
Xu, Tao, and Xu 2015; Bhadra, Kaski, and Rousu 2016;
Shao, He, and Yu 2015; Liu et al. 2014; 2015). The work
in (Trivedi et al. 2010) constructs a full kernel matrix for an
incomplete view with the help of the other complete view (or
equally, base kernel). By exploiting the connections of mul-
tiple views, the work in (Xu, Tao, and Xu 2015) proposes
an algorithm to accomplish multi-view learning with incom-
plete views, where different views are assumed to be gener-
ated from a shared subspace. In (Shao, He, and Yu 2015),
a multi-incomplete-view clustering algorithm is proposed. It
learns latent feature matrices for all the views and generates
a consensus matrix so that the difference between each view
and the consensus is minimized. In addition, by modelling
both within-view and between-view relationships among
kernel values, an approach is proposed in (Bhadra, Kaski,
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and Rousu 2016) to predict missing rows and columns of
a base kernel. Though demonstrating promising clustering
performance in various applications, the above “two-stage”
algorithms share a drawback that they disconnect the pro-
cesses of imputation and clustering, and this prevents the
two learning processes from negotiating with each other to
achieve the optimal clustering. Can we design a clustering-
oriented imputation algorithm to enhance a kernel for clus-
tering?

To address this issue, we propose an absent multiple ker-
nel k-means algorithm that integrates imputation and clus-
tering into a single optimization procedure. In our algorithm,
the clustering result at the last iteration guides the impu-
tation of absent kernel elements, and the latter is in turn
used to conduct the subsequent clustering. These two pro-
cedures are alternately performed until convergence. By this
way, the imputation and clustering processes are seamlessly
connected, with the aim to achieve better clustering perfor-
mance. The optimization objective of the proposed absent
multiple kernel clustering algorithm is carefully designed
and an efficient algorithm with proved convergence is de-
veloped to solve the resultant optimization problem. Exten-
sive experimental study is carried out on four multiple kernel
learning (MKL) benchmark data sets to evaluate the cluster-
ing performance of the proposed algorithm. As indicated,
our algorithm significantly outperforms existing two-stage
imputation methods, and the improvement is particularly
significant at high missing ratios, which is desirable. It is
expected that the simplicity and effectiveness of this cluster-
ing algorithm will make it a good option to be considered
for practical applications where incomplete views or kernels
are encountered.

Related Work

Kernel k-means clustering (KKM)

Let {xi}ni=1 ⊆ X be a collection of n samples, and φ(·) :
x ∈ X �→ H be a feature mapping that maps x onto a re-
producing kernel Hilbert space H. The objective of kernel
k-means clustering is to minimize the sum-of-squares loss
over the cluster assignment matrix Z ∈ {0, 1}n×k, which
can be formulated as the following optimization problem,

minZ∈{0,1}n×k

∑n,k

i=1,c=1
Zic‖φ(xi)− μc‖22

s.t.
∑k

c=1
Zic = 1,

(1)

where nc =
∑n

i=1 Zic and μc =
1
nc

∑n
i=1 Zicφ(xi) are the

size and centroid of the c-th cluster.
The optimization problem in Eq.(1) can be rewritten as

the following matrix-vector form,

minZ∈{0,1}n×k Tr(K)− Tr(L
1
2Z�KZL

1
2 ) s.t. Z1k = 1n,

(2)
where K is a kernel matrix with Kij = φ(xi)

�φ(xj), L =

diag([n−1
1 , n−1

2 , · · · , n−1
k ]) and 1� ∈ R

� is a column vector
with all elements being 1.

The variable Z in Eq.(2) is discrete, and this makes the
optimization problem difficult to solve. A common approach
is to relax Z to take real values. Specifically, by defining

H = ZL
1
2 and letting H take real values, a relaxed version

of the above problem can be obtained as

min H Tr
(
K(In −HH�)

)
s.t. H ∈ R

n×k, H�H = Ik,

(3)
where Ik is an identity matrix with size k × k. The optimal
H for Eq.(3) can be obtained by taking the k eigenvectors
having the larger eigenvalues of K (Jegelka et al. 2009).

Multiple kernel k-means clustering (MKKM)

In a multiple kernel setting, each sample has multiple fea-
ture representations defined by a group of feature map-
pings {φp(·)}mp=1. Specifically, each sample is represented
as φβ(x) = [β1φ1(x)

�, · · · , βmφm(x)�]�, where β =
[β1, · · · , βm]� consists of the coefficients of the m base ker-
nels. These coefficients will be optimized during learning.
Based on the definition of φβ(x), a kernel function can be
expressed as

κβ(xi,xj) = φβ(xi)
�φβ(xj) =

∑m

p=1
β2
pκp(xi,xj). (4)

By replacing the kernel matrix K in Eq.(3) with Kβ com-
puted via Eq.(4), the objective of MKKM can be written as

min H,β Tr
(
Kβ(In −HH�)

)
s.t. H ∈ R

n×k, H�H = Ik, β
�1m = 1, βp ≥ 0, ∀p.

(5)
This problem can be solved by alternately updating H and
β: i) Optimizing H given β. With the kernel coefficients β
fixed, H can be obtained by solving a kernel k-means clus-
tering optimization problem shown in Eq.(3); ii) Optimiz-
ing β given H. With H fixed, β can be optimized via solv-
ing the following quadratic programming with linear con-
straints,
minβ

∑m

p=1
β
2
pTr

(
Kp(In − HH

�
)
)

s.t. β
�
1m = 1, βp ≥ 0, ∀p. (6)

As noted in (Yu et al. 2012; Gönen and Margolin 2014),
using a convex combination of kernels

∑m
p=1 βpKp to re-

place Kβ in Eq.(5) is not a viable option, because this could
make only one single kernel be activated and all the oth-
ers assigned with zero weights. Other recent work using �2-
norm combination can be found in (Kloft et al. 2011; 2009;
Cortes, Mohri, and Rostamizadeh 2009; Liu et al. 2013).

The Proposed Algorithm

Formulation

Let sp (1 ≤ p ≤ m) denote the sample indices for which
the p-th view is present and K

(cc)
p be used to denote the ker-

nel sub-matrix computed with these samples. Note that this
setting is consistent with the literature, and it is even more
general since it does not require that there be at least one
complete view across all the samples, as assumed in (Trivedi
et al. 2010).

The absence of rows and columns from base ker-
nels makes clustering challenging. Existing two-stage ap-
proaches first impute these base kernels and then apply a
conventional clustering algorithm with them. We have the
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following two arguments. Firstly, although such imputation
is sound from the perspective of “general-purpose”, it may
not be an optimal option when it has been known that the
imputed kernels are used for clustering. This is because
for most, if not all, practical tasks a belief holds that these
pre-selected base kernels or views (when in their complete
form) shall, more or less, be able to serve clustering. How-
ever, such a belief was not exploited by these two-stage ap-
proaches as prior knowledge to guide the imputation pro-
cess. Secondly, from the perspective that the ultimate goal is
to appropriately cluster data, we shall try to directly pursue
the clustering result, by treating the absent kernel elements
as auxiliary unknowns during this course. In other words,
imputed kernels could be merely viewed as the by-products
of clustering.

These two arguments motivate us to seek a more natural
and reasonable manner to deal with the absence in multiple
kernel clustering. That is to perform imputation and cluster-
ing in a joint way: 1) impute the absent kernels under the
guidance of clustering; and 2) update the clustering with
the imputed kernels. By this way, the above two learning
processes can be seamlessly coupled and they are allowed
to negotiate with each other to achieve better clustering. In
specific, we propose the multiple kernel k-means algorithm
with incomplete kernels as follows,
minH, β, {Kp}mp=1

Tr
(
Kβ(In −HH�)

)
s.t. H ∈ R

n×k, H�H = Ik, β�1m = 1, βp ≥ 0,

Kp(sp, sp) = K
(cc)
p , Kp � 0, ∀p,

(7)
The only difference between the objective function in Eq.(7)
and that of traditional MKKM in Eq.(5) lies at the incor-
poration of optimizing {Kp}mp=1. Note that the constraint

Kp(sp, sp) = K
(cc)
p is imposed to ensure that Kp maintains

the known entries during the course. Though the model in
Eq.(7) is simple, it admits the following advantages: 1) Our
objective function is more direct and well targets the ulti-
mate goal, i.e., clustering, by integrating kernel completion
and clustering into one unified learning framework, where
the kernel imputation is treated as a by-product; 2) Our al-
gorithm works in a MKL scenario (Rakotomamonjy et al.
2008), which is able to naturally deal with a large num-
ber of base kernels and adaptively combine them for clus-
tering; 3) Our algorithm does not require any base kernel
to be completely observed, which is however necessary for
some of the existing imputation algorithms such as (Trivedi
et al. 2010). Besides, our algorithm is parameter-free once
the number of clusters to form is specified.

Alternate optimization

Although Eq.(7) is not difficult to understand, the positive
semi-definite (PSD) constraints on {Kp}mp=1 make it dif-
ficult to optimize. In the following, we design an efficient
algorithm to solve it. In specific, we design a three-step al-
gorithm to solve this problem in an alternate manner:

i) Optimizing H with fixed β and {Kp}mp=1. Given β
and {Kp}mp=1, the optimization in Eq.(7) for H reduces to a
standard kernel k-means problem, which can be efficiently
solved as Eq.(3);

Algorithm 1 Proposed Multiple Kernel k-means with In-
complete Kernels

1: Input: {K(cc)
p }mp=1, {sp}mp=1 and ε0.

2: Output: H, β and {Kp}mp=1.
3: Initialize β(0) = 1m/m, {K(0)

p }mp=1 and t = 1.
4: repeat

5: K
(t)
β =

∑m
p=1

(
β
(t−1)
p

)2

K
(t−1)
p .

6: Update H(t) by solving Eq.(3) with K
(t)
β .

7: Update {K(t)
p }mp=1 with H(t) by Eq.(12).

8: Update β(t) by solving Eq.(6) with H(t) and {K(t)
p }mp=1.

9: t = t+ 1.
10: until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

ii) Optimizing {Kp}mp=1 with fixed β and H. Given β
and H, the optimization in Eq.(7) with respect to {Kp}mp=1
is equivalent to the following optimization problem,

min{Kp}mp=1

∑m

p=1
β2
pTr

(
Kp(In −HH�)

)
s.t. Kp(sp, sp) = K(cc)

p , Kp � 0, ∀p.
(8)

Directly solving the optimization problem in Eq.(8) appears
to be computationally intractable because it involves multi-
ple kernel matrices. Looking into this optimization problem,
we can find that the constraints are separately defined on
each Kp and that the objective function is a sum over each
Kp. Therefore, we can equivalently rewrite the problem in
Eq.(8) as m independent sub-problems, as stated in Eq.(9),

minKp Tr (KpU) s.t. Kp(sp, sp) = K(cc)
p , Kp � 0,

(9)
where U = In −HH� and p = 1, · · · ,m.

Considering that Kp is PSD, we can decompose Kp as
ApA

�
p . Inspired by the work in (Trivedi et al. 2010), we

write Ap = [A
(c)
p ;A

(m)
p ] with A

(c)
p A

(c)
p

�
= K

(cc)
p . In this

way, the optimization problem in Eq.(9) can be rewritten as

min
A

(m)
p

Tr

([
A

(c)
p ;A

(m)
p

]� [
U(cc) U(cm)

U(cm)� U(mm)

] [
A

(c)
p ;A

(m)
p

])
,

(10)

where the matrix U is expressed in a blocked form as[
U(cc) U(cm)

U(cm)� U(mm)

]
.

By taking the derivative of Eq.(10) with respect to A
(m)
p

and letting it vanish, we can obtain an analytical solution to
the optimal A(m)

p as

A(m)
p =

(
U(mm)

)−1

U(cm)�A(c)
p . (11)

Correspondingly, we have a closed-form expression for the
optimal Kp in Eq.(9):[

K
(cc)
p −K

(cc)
p U(cm)(U(mm))−1

−(U(mm))−1U(cm)�K(cc)
p (U(mm))−1U(cm)�K(cc)

p U(cm)(U(mm))−1

]
.

(12)
iii) Optimizing β with fixed H and {Kp}mp=1. Given H

and {Kp}mp=1, the optimization in Eq.(7) for β is a quadratic
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programming with linear constraints, which can be effi-
ciently solved as in Eq.(6).

In sum, our algorithm for solving Eq.(7) is outlined in Al-
gorithm 1, where the absent elements of {K(0)

p }mp=1 are ini-
tially imputed with zeros and obj(t) denotes the objective
value at the t-th iteration. It is worth pointing out that the
objective of Algorithm 1 is guaranteed to be monotonically
decreased when optimizing one variable with others fixed
at each iteration. At the same time, the objective is lower-
bounded by zero. As a result, our algorithm is guaranteed to
converge. Also, as shown in the experimental study, it usu-
ally converges in less than 30 iterations. As MKKM, our
algorithm solves an eigen-decomposition and a QP problem
per iteration, which brings no much extra computation since
imputation is done analytically in Eq.(12).

Experimental Result

Experimental settings

The proposed algorithm is experimentally evaluated on four
widely used MKL benchmark data sets shown in Table 1.
They are Oxford Flower171, Oxford Flower1022, Columbia
Consumer Video (CCV)3 and Caltech1024. For Flower17,
Flower102 and Caltech102 data sets, all kernel matrices are
pre-computed and can be publicly downloaded from the
above websites. For Caltech102, we use its first ten base ker-
nels for evaluation. For CCV data set, we generate six base
kernels by applying both a linear kernel and a Gaussian ker-
nel on its SIFT, STIP and MFCC features, where the widths
of the three Gaussian kernels are set as the mean of all pair-
wise sample distances, respectively.

Table 1: Datasets used in our experiments.
Dataset #Samples #Kernels #Classes

Flower17 1360 7 17
Flower102 8189 4 102
Caltech102 3060 10 102
CCV 6773 6 20

We compare the proposed algorithm with several com-
monly used imputation methods, including zero filling (ZF),
mean filling (MF), k-nearest-neighbor filling (KNN) and the
alignment-maximization filling (AF) proposed in (Trivedi
et al. 2010). The algorithms in (Xu, Tao, and Xu 2015;
Shao, He, and Yu 2015; Zhao, Liu, and Fu 2016) are
not incorporated into our experimental comparison since
they only consider the absence of input features while
not the rows/columns of base kernels. Compared with
(Bhadra, Kaski, and Rousu 2016), the imputation algo-
rithm in (Trivedi et al. 2010) is much simpler and more
computationally efficient. Therefore, we choose (Trivedi et
al. 2010) as a representative algorithm to demonstrate the

1http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/
2http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
3http://www.ee.columbia.edu/ln/dvmm/CCV/
4http://files.is.tue.mpg.de/pgehler/projects/iccv09/

advantages and effectiveness of joint optimization on im-
putation and clustering. The widely used MKKM (Gönen
and Margolin 2014) is applied with these imputed base
kernels. These two-stage methods are termed ZF+MKKM,
MF+MKKM, KNN+MKKM and AF+MKKM in this ex-
periment, respectively. We do not include the EM-based
imputation algorithm due to its high computational cost,
even for small-sized samples. The Matlab codes of ker-
nel k-means and MKKM are publicly downloaded from
https://github.com/mehmetgonen/lmkkmeans.

Following the literature (Cortes, Mohri, and Ros-
tamizadeh 2012), all base kernels are centered and scaled
so that we have κp(xi,xi) = 1 for all i and p. For all
data sets, it is assumed that the true number of clusters is
known and it is set as the true number of classes. To gener-
ate incomplete kernels, we create the index vectors {sp}mp=1

as follows. We first randomly select round(ε ∗ n) samples,
where round(·) denotes a rounding function. For each se-
lected sample, a random vector v = (v1, · · · , vm) ∈ [0, 1]m

and a scalar v0 (v0 ∈ [0, 1]) are then generated, respectively.
The p-th view will be present for this sample if vp ≥ v0 is
satisfied. In case none of v1, · · · , vm can satisfy this con-
dition, we will generate a new v to ensure that at least one
view is available for a sample. Note that this does not mean
that we require a complete view across all the samples. Af-
ter the above step, we will be able to obtain the index vec-
tor sp listing the samples whose p-th view is present. The
parameter ε, termed missing ratio in this experiment, con-
trols the percentage of samples that have absent views, and
it affects the performance of the algorithms in comparison.
Intuitively, the larger the value of ε is, the poorer the cluster-
ing performance that an algorithm can achieve. In order to
show this point in depth, we compare these algorithms with
respect to ε. Specifically, ε on all the four data sets is set as
[0.1 : 0.1 : 0.9].

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to eval-
uate the clustering performance. For all algorithms, we re-
peat each experiment for 50 times with random initializa-
tion to reduce the affect of randomness caused by k-means,
and report the best result. Meanwhile, we randomly gen-
erate the “incomplete” patterns for 30 times in the above-
mentioned way and report the statistical results. The aggre-
gated ACC, NMI and purity are used to evaluate the good-
ness of the algorithms in comparison. Taking the aggregated
ACC for example, it is obtained by averaging the averaged
ACC achieved by an algorithm over different ε.

Experimental results

Figure 1 presents the ACC, NMI and purity comparison of
the above algorithms with different missing ratios on the
four data sets. To help understand the performance achieved
by our algorithm, we also provide MKKM as a reference.
Note that there is not any absence in the base kernels
of MKKM. As observed: 1) The proposed algorithm (in
red) consistently demonstrates the overall best performance
among the MKKM methods with absent kernels in all the
sub-figures; 2) The improvement of our algorithm is more
significant with the increase of missing ratio. For example, it
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Figure 1: Clustering accuracy, NMI and purity comparison with the variation of missing ratios on four data sets. Note that
MKKM (in green) is provided as a reference. There is not any absence in its base kernels.

Table 2: Aggregated ACC, NMI and purity comparison (mean±std) of different clustering algorithms on four data sets.
Datasets ZF+MKKM MF+MKKM KNNF+MKKM AF+MKKM (Trivedi et al. 2010) Proposed

ACC
Flower17 37.09± 0.42 36.93± 0.48 37.88± 0.62 42.46± 0.59 44.56± 0.61
Flower102 17.95± 0.15 17.92± 0.16 18.26± 0.14 19.09± 0.17 21.40± 0.18
Caltech102 23.10± 0.26 23.15± 0.24 23.87± 0.26 26.56± 0.22 28.22± 0.27

CCV 14.80± 0.16 15.03± 0.16 14.73± 0.19 16.51± 0.25 19.91± 0.32

NMI

Flower17 37.40± 0.35 37.38± 0.40 38.36± 0.46 41.85± 0.42 43.50± 0.42
Flower102 37.39± 0.08 37.39± 0.08 37.83± 0.09 38.32± 0.11 39.55± 0.10
Caltech102 44.90± 0.15 44.94± 0.14 45.67± 0.18 47.74± 0.14 49.10± 0.18

CCV 10.11± 0.13 10.23± 0.13 10.25± 0.16 11.76± 0.19 14.80± 0.20

Purity

Flower17 38.61± 0.40 38.49± 0.48 39.38± 0.56 43.96± 0.54 45.92± 0.53
Flower102 22.44± 0.12 22.43± 0.11 22.82± 0.14 23.63± 0.15 25.95± 0.14
Caltech102 24.62± 0.25 24.66± 0.26 25.44± 0.27 28.15± 0.22 29.87± 0.25

CCV 18.26± 0.15 18.48± 0.16 18.33± 0.20 19.83± 0.26 23.79± 0.28

improves the second best algorithm (AF+MKKM) by nearly
five percentage points on Flower102 in terms of clustering
accuracy when the missing ratio is 0.9 (see Figure 1(c)); 3)
The variation of our algorithm with respect to the missing
ratio is relatively smaller when compared with other algo-

rithms, demonstrating its stability in the case of intensive ab-
sence; and 4) The performance of our algorithm is the clos-
est one to or even better than the performance of MKKM (in
green) in multiple cases.

We attribute the superiority of our algorithm to its joint
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Figure 2: Kernel alignment between the original kernels and the imputed kernels by different algorithms under different missing
ratios.

Table 3: Aggregated alignment between the original kernels and the imputed kernels (mean±std) on four data sets.
Datasets ZF+MKKM MF+MKKM KNNF+MKKM AF+MKKM (Trivedi et al. 2010) Proposed

Flower17 80.07± 0.08 80.05± 0.08 81.45± 0.06 86.50± 0.08 88.70± 0.12
Flower102 75.55± 0.05 75.55± 0.05 73.35± 0.04 76.71± 0.05 79.20± 0.06
Caltech102 74.40± 0.05 74.43± 0.05 83.32± 0.05 80.00± 0.05 95.99± 0.03

CCV 75.03± 0.07 76.60± 0.07 79.15± 0.06 77.10± 0.07 85.11± 0.24

optimization on imputation and clustering. On one hand, the
imputation is guided by the clustering results, which makes
the imputation more directly targeted at the ultimate goal.
On the other hand, this meaningful imputation is benefi-
cial to refine the clustering results. These two learning pro-
cesses negotiate with each other, leading to improved clus-
tering performance. In contrast, ZF+MKKM, MF+MKKM,
KNN+MKKM and AF+MKKM algorithms do not fully take
advantage of the connection between the imputation and
clustering procedures. This could produce imputation that
does not well serve the subsequent clustering as originally
expected, affecting the clustering performance. The aggre-
gated ACC, NMI and purity, and the standard deviation
are reported in Table 2, where the one with the highest
performance is shown in bold. Again, we observe that the
proposed algorithm significantly outperforms ZF+MKKM,
MF+MKKM, KNN+MKKM and AF+MKKM algorithms,
which is consistent with our observations in Figure 1.

Besides comparing the above-mentioned algorithms in
terms of clustering performance, we would like to gain more
insight on how close the imputed base kernels (as a by-
product of our algorithm) are to the ground-truth, i.e., the
original, complete base kernels. To do this, we calculate
the alignment between the ground-truth kernels and the im-
puted ones. The kernel alignment, a widely used criterion
to measure the similarity of two kernel matrices, is used to
serve this purpose (Cortes, Mohri, and Rostamizadeh 2012).
We compare the alignment resulted from our algorithm with
those from existing imputation algorithms. The results under
various missing ratios are shown in Figure 2. As observed,
the kernels imputed by our algorithm align with the ground-
truth kernels much better than those obtained by the exist-
ing imputation algorithms. In particular, our algorithm wins
the second best one (KNN+MKKM) by more than 22 per-
centage points on Caltech102 when the missing ratio is 0.9.
The aggregated alignment and the standard deviation are re-
ported in Table 3. We once again observe the significant su-
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Figure 3: Evolution of the objective value in our algorithm.

periority of our algorithm to the compared ones. These re-
sults indicate that our algorithm can not only achieve better
clustering performance, but is also able to produce better im-
putation result by exploiting the prior knowledge of “serve
clustering”.

From the above experiments, we conclude that the pro-
posed algorithm: 1) effectively addresses the issue of
row/columns absence in multiple kernel clustering; 2) con-
sistently achieves performance superior to the comparable
ones, especially in the presence of intensive absence; and
3) can better recover the incomplete base kernels by taking
into account the goal of clustering. In short, our algorithm
well utilizes the connection between imputation and cluster-
ing procedures, bringing forth significant improvements on
clustering performance. In addition, our algorithm is theoret-
ically guaranteed to converge to a local minimum according
to (Bezdek and Hathaway 2003). In the above experiments,
we observe that the objective value of our algorithm does
monotonically decrease at each iteration and that it usually
converges in less than 30 iterations. Two examples of the
evolution of the objective value on Flower17 and Flower102
are demonstrated in Figure 3.

Conclusion

While MKC algorithms have recently demonstrated promis-
ing performance in various applications, they are not able
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to effectively handle the scenario where base kernels are
incomplete. This paper proposes to jointly optimize the
kernel imputation and clustering to address this issue. It
makes these two learning procedures seamlessly integrated
to achieve better clustering. The proposed algorithm ef-
fectively solves the resultant optimization problem, and
it demonstrates well improved clustering performance via
extensive experiments on benchmark data sets, especially
when the missing ratio is high. In the future, we plan to
further improve the clustering performance by considering
the correlations of different base kernels (Bhadra, Kaski, and
Rousu 2016).
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