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Abstract

Independent Component Analysis (ICA) is the problem of
learning a square matrix A, given samples of X = AS, where
S is a random vector with independent coordinates. Most
existing algorithms are provably efficient only when each S;
has finite and moderately valued fourth moment. However,
there are practical applications where this assumption need
not be true, such as speech and finance. Algorithms have been
proposed for heavy-tailed ICA, but they are not practical, using
random walks and the full power of the ellipsoid algorithm
multiple times. The main contributions of this paper are:

(1) A practical algorithm for heavy-tailed ICA that we call
HTICA. We provide theoretical guarantees and show that it
outperforms other algorithms in some heavy-tailed regimes,
both on real and synthetic data. Like the current state-of-the-
art, the new algorithm is based on the centroid body (a first
moment analogue of the covariance matrix). Unlike the state-
of-the-art, our algorithm is practically efficient. To achieve
this, we use explicit analytic representations of the centroid
body, which bypasses the use of the ellipsoid method and
random walks.

(2) We study how heavy tails affect different ICA algorithms,
including HTICA. Somewhat surprisingly, we show that some
algorithms that use the covariance matrix or higher moments
can successfully solve a range of ICA instances with infinite
second moment. We study this theoretically and experimen-
tally, with both synthetic and real-world heavy-tailed data.

1 Introduction

Independent component analysis (ICA) is a computational
and statistical technique with applications in areas ranging
from signal processing to machine learning and more. For-
mally, if S is an n-dimensional random vector with inde-
pendent coordinates and A € R™*™ is invertible, then the
ICA problem is to estimate A given access to i.i.d. samples
of the mixed signals X = AS. We say that X is generated
by an ICA model X = AS. The recovery of A (the mix-
ing matrix) is possible only up to scaling and permutation
of the columns. Moreover, for the recovery to be possible,
the distributions of the random variables S; must not be
Gaussian (except possibly one of them). Since its inception
in the eighties (see (Comon and Jutten 2010) for historical
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remarks), ICA has been thoroughly studied and a vast lit-
erature exists (e.g. (Hyvarinen, Karhunen, and Oja 2001;
Comon and Jutten 2010)). The theory is well-developed and
practical algorithms—e.g., FastICA (Hyvarinen 1999), JADE
(Cardoso and Souloumiac 1993)—are now available along
with implementations, e.g. (Cichocki et al. ). However, to
our knowledge, rigorous complexity analyses of these as-
sume that the fourth moment of each component is finite:
E(S#) < oo. If at least one of the independent components
does not satisfy this assumption we will say that the input is
in the heavy-tailed regime. Many ICA algorithms first pre-
process the data to convert the given ICA model into another
one where the mixing matrix A has orthogonal columns;
this step is often called whitening. We will instead call it or-
thogonalization, as this describes more precisely the desired
outcome. Traditional whitening is a second order method
that may not make sense in the heavy-tailed regime. In this
regime, it is not clear how the existing algorithms would
perform, because they depend on empirical estimation of
various statistics of the data such as the covariance matrix
or the fourth cumulant tensor, which diverge in general for
heavy-tailed data. For example, for the covariance matrix in
the mean-0 case this is done by taking the empirical average
(1/N) Zfil 2(i)x(i)T where the {z(i)} are i.i.d. samples
of X. ICA in the heavy-tailed regime is of considerable in-
terest, directly (e.g., (Kidmose 2001b; 2001a; Shereshevski,
Yeredor, and Messer 2001; Chen and Bickel 2004; 2005;
Sahmoudi et al. 2005; Wang, Kuruoglu, and Zhang 2009;
J. Eriksson and Koivunen 2001; Clemencon and Slim 2007;
Bermond and Cardoso 1999)) and indirectly (e.g., (Bick-
son and Guestrin 2010; Gael, Teh, and Ghahramani 2009;
Welling, Osindero, and Hinton 2002)) and has applications
in speech and finance. We also mention an informal connec-
tion with robust statistics: Algorithms solving heavy-tailed
ICA might work by focusing on samples in a small (but high
probability) region to get reliable statistics about the data and
avoid the instability of the tail. Thus, if the data has outliers,
the outliers are less likely to affect such an algorithm.

Recent theoretical work (Anderson et al. 2015) proposed a
polynomial time algorithm for ICA that works in the regime
where each component .S; has finite (1 + -y)-moment for
~ > 0. This algorithm follows the two phases of several ICA
algorithms: (i) Orthogonalize the independent components.
The purpose of this step is to apply an affine transformation



to the samples from X so that the resulting samples corre-
spond to an ICA model where the unknown matrix A has
orthogonal columns. (ii) Learn the matrix with orthogonal
columns. Each of these two phases required new techniques:
(1) Orthogonalization via uniform distribution in the cen-
troid body. The input is assumed to be samples from an ICA
model X = AS where each S; is symmetrically distributed
(w.l.o.g, see Sec. 2) and has at least (1 + ~)-moments. The
goal is to construct an orthogonalization matrix B so that
B A has orthogonal columns. In (Anderson et al. 2015), the
inverse of the square root of the covariance matrix of the
uniform distribution in the centroid body is one such matrix.
(2) Gaussian damping. The previous step allows one to as-
sume that the mixing matrix A is orthogonal. The modified
second step is: If X has density px (t) for t € R™, then the
algorithm constructs another ICA model X = ASgr where
X g has pdf proportional to px (t) exp(—||t||§/R2), where
R > 0 is a parameter chosen by the algorithm. This explains
the term Gaussian damping. This achieves two goals: (1) All
moments of X and S are finite. (2) The product structure
of is retained. This follows from two facts: A has orthogo-
nal columns, and the Gaussian has independent components
in any orthonormal basis. Because of these properties, the
model can be solved by traditional ICA algorithms.

The algorithm in (Anderson et al. 2015) is theoretically
efficient but impractical. Their orthogonalization uses the
ellipsoid algorithm for linear programming, which is not
practical. It is not clear how to replace their use of the ellip-
soid algorithm by practical linear programming tools, as their
algorithm only has oracle access to a sort of dual and not an
explicit linear program. Moreover, their orthogonalization
technique uses samples uniformly distributed in the centroid
body, generated by a random walk. This is computationally
efficient in theory but, to the best of our knowledge, only
efficient in practice for moderately low dimension.

Our contributions. Our contributions are experimental
and theoretical. We provide a new and practical ICA algo-
rithm, HTICA, building upon the previous theoretical work
in (Anderson et al. 2015). HTICA works as follows: (1) Com-
pute an orthogonalization matrix B. (2) Pre-multiply samples
by B to get an orthogonal model. (3) Damp the data, run an
existing ICA algorithm. For step (1), we propose two theo-
retically sound and practically efficient ways below, orthogo-
nalization via centroid body scaling and orthogonalization
via covariance. Our algorithm is simpler and more efficient,
but needs a more technical justification than the method in
(Anderson et al. 2015). We demonstrate the effectiveness of
HTICA on both synthetic and real-world data.

Orthogonalization via centroid body scaling. We propose
a more practical orthogonalization matrix than the one from
(Anderson et al. 2015) (orthogonalization via the uniform
distribution in the centroid body, mentioned before). First,
consider the centroid body of random vector X, denoted
T'X (this is really a function of the distribution of X; formal
definition in Sec. 2). For intuition, it is helpful to think of the
centroid body as an ellipsoid whose axes are aligned with
the independent components of X. The centroid body is in
general not an ellipsoid, but it has certain symmetries aligned
with the independent components. Let random vector Y be
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a scaling of X along every ray so that points at infinity are
mapped to the boundary of I' X, the origin is mapped to itself
and the scaling interpolates smoothly. One such scaling is
obtained in the following way: It is helpful to consider how
far a point is in its ray with respect to the boundary of I' X.
This is given by the Minkoswki functional of I'X, denoted
p : R®™ — R, which maps the boundary of I'X to 1 and
interpolates linearly along every ray. We can then achieve the
desired scaling by first mapping a given point to the boundary
point on its ray (the mapping « — 2/p(x)) and then using the
function tanh, which maps [0, o) to [0, 1] with tanh(0) = 0
and lim,_, o, tanh(z) = 1 to determine the final scale along
the ray, namely, tanh p(z). More formally, our scaling is

the following: Let Y be %X. We show in Sec. 4.1

that B = Cov(Y')~'/2 is an orthogonalization matrix when
Cov(Y') is invertible. In order to make this practical, one
needs a practical estimator of the Minkowski functional of
I'’X from a sample of X. In Sec. 4.1 and 5, we describe such
an algorithm and provide a theoretical justification, including
finite sample estimates. The proposed algorithm is much
simpler and practical than the one described in (Anderson
et al. 2015). In particular, it avoids the use of the ellipsoid
algorithm by the use of a closed-form linear programming
representation of the centroid body (Prop. 4, Lemma 5) and
new approximation guarantees between the empirical (sample
estimate) and true centroid body of a heavy-tailed distribution.
In Sec. 4.1, we discuss our practical implementation and show
results where orthogonalization via centroid body scaling
produces results with smaller error.

Orthogonalization via covariance. Previously, (e.g., in
(Chen and Bickel 2004)), the empirical covariance matrix
was used for whitening in the heavy-tailed regime and, sur-
prisingly, worked well in some situations. Unfortunately, the
understanding of this was quite limited . We give a theoretical
explanation for this phenomenon in a fairly general heavy-
tailed regime: Covariance-based orthogonalization works
well when each component S; has finite (1 + )-moment,
where v > 0. We also study this algorithm in experimental
settings. As we will see, while orthogonalization via covari-
ance improves over previous algorithms, in general orthogo-
nalization via centroid body has better performance because
it has better numerical stability; but there are some situations
where orthogonalization via covariance matrix is better.

Empirical Study. We perform experiments on both syn-
thetic and real data to see the effect of heavy-tails on ICA.

In the synthetic data setting, we generate samples from a
fixed heavy-tailed distribution and study how well the algo-
rithm can recover a random mixing matrix (Sec. 3).

To study the algorithm with real data, we use recordings
of human speech provided by (Donohue 2009). This involves
a room with different arrangements of microphones, and six
humans speaking independently. The speakers are recorded
individually, so we can artificially mix them and have access
to a ground truth. We study the statistical properties of the
data, observing that it does indeed behave as if the underlying
processes are heavy-tailed. The performance of our algorithm
shows improvement over using FastICA on its own.

See supplementary material for proofs and extra detail.



2 Preliminaries

Heavy-tailed distributions arise in a wide range of applica-
tions (e.g., (Nolan 2015)). They are characterized by the slow
decay of their tails. Examples of heavy-tailed distributions
include the Pareto and log-normal distributions.

We denote the pdf of random variable Z by pz. We will
assume that our distributions are symmetric, that is p(z) =
p(—z) for x € R. As observed in (Anderson et al. 2015), this
is without loss of generality for our purposes. This follows
from the fact that if X = AS is an ICA model, and if we
let X’ = AS’ be an i.i.d. copy of the same model, then
X — X' = A(S — 5’) is an ICA model with components of
S — S’ having symmetric pdfs. One further needs to check
that if the components of S are away from Gaussians then
the same holds for S — S’; see (Anderson et al. 2015). We
formulate our algorithms for the symmetric case; the general
case immediately reduces to the symmetric case.

For K C R", K. denotes the set of points that are at
distance at most € from K. The set K_. is all points for
which an e-ball around them is still contained in K.

An important related family of distributions is that of stable
distributions (e.g., (Nolan 2015)). In general, the density of
a stable distribution has no closed form, but is fully defined
by four real-valued parameters. Some stable distributions
do admit a closed form, such as the Cauchy and Gaussian
distributions. For us the most important parameter is o €
(0, 2], known as the stability parameter; we will think of the
other three parameters as being fixed to constants.

We use the notation poly(-) to indicate a function which
is asymptotically upper bounded by a polynomial expression
of the given variables.

Definition 1 (Centroid body). Let X € R" be a random
vector with finite first moment, that is, for all u € R™ we
have E(|(u, X)|) < oco. The centroid body of X is the com-
pact convex set, denoted I'X, whose support function is
hrx(u) = E(|{u, X)|). For a probability measure P, we
define I'P, the centroid body of P, as the centroid body of any
random vector distributed according to P.

Note that for the centroid body to be well-defined, the
mean of the data must be finite. This excludes, for instance,
the Cauchy distribution from consideration in the present
work.

3 HTICA and experiments

In this section, we show experimentally that heavy-tailed data
poses a significant challenge for current ICA algorithms, and
compare them with HTICA in different settings. We observe
some clear situations where heavy-tails seriously affect the
standard ICA algorithms, and that these problems are fre-
quently avoided by using the heavy-tailed ICA framework.
In some cases, HTICA does not help much, but maintains the
same performance of plain FastICA.

To generate the synthetic data, we create a simple heavy-
tailed density function f,(x) proportional to (|| + 1.5)7",
which is symmetric, and for n > 1, f, is the density of a
distribution which has finite ¥ < 1 — 1 moment. The sig-
nal S is generated with each .S; independently distributed
from f;,,. The mixing matrix A € R™*" is generated with
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each coordinate i.i.d. (0, 1), columns normalized to unit
length. To compare the quality of recovery, the columns of
the estimated mixing matrix, A are permuted to align with the
closest matching column of A, via the Hungarian algorithm.
We use the Frobenius norm to measure the error, but all ex-
periments were also performed using the well-known Amari
index (Amari et al. 1996); the results have similar behavior
and are not presented here.

3.1 Heavy-tailed ICA when A is orthogonal:
Gaussian damping and experiments

Focusing on the third step above, where the mixing matrix
already has orthogonal columns, ICA algorithms already suf-
fer dramatically from the presence of heavy-tailed data. As
proposed in (Anderson et al. 2015), Gaussian damping is
a preprocessing technique that converts data from an ICA
model X = AS, where A is unitary (columns are orthog-
onal with unit /5-norm) to data from a related ICA model
Xpr = ASg, where R > 0 is a parameter to be chosen. The
independent components of S have finite moments of all
orders and so the existing algorithms can estimate A.

Using samples of X, we construct the damped random
variable X, with pdf px,(z) x px(z)exp(—|z|*/R2).
To normalize the right hand side, we can estimate

Kx, =Eexp(—|X|*/R?)
so that
pxn(®) = px(z) exp(—||z||*/R?) /K x,.

If x is a realization of Xp, then s = A~ 'z is a realization
of the random variable Sk and we have that Si has pdf
psr(8) = pxp(z). To generate samples from this distribu-
tion, we use rejection sampling on samples from px. When
performing the damping, we binary search over R so that
about 25% of the samples are rejected. For more details about
the technical requirements for choosing R, see (Anderson et
al. 2015).

Figure 1 shows that, when A is already a perfectly orthog-
onal matrix, but where S may have heavy-tailed coordinates,
several standard ICA algorithms perform better after damp-
ing the data. In fact, without damping, some do not appear
to converge to a correct solution. We compare ICA with and
without damping in this case: (1) FastICA using the fourth
cumulant (“FastICA - pow3”), (2) FastICA using log cosh
(“FastICA - tanh”), (3) JADE, and (4) Second Order Joint
Diagonalization as in, e.g., (Cardoso 1989) .

3.2 Experiments on synthetic heavy-tailed data

We now present the results of HTICA using different orthog-
onalization techniques: (1) Orthogonalization via covariance
(Section 4.2 (2) Orthogonalization via the centroid body (Sec-
tion 4.1) (3) the ground truth, directly inverting the mixing
matrix (oracle), and (4) No orthogonalization, and also no
damping (for comparison with plain FastICA) (identity).
The “mixed” regime in the left and middle of Figure 2
(where some signals are not heavy-tailed) demonstrates a very
dramatic contrast between different orthogonalization meth-
ods, even when only two heavy-tailed signals are present.
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Figure 1: (Left, middle): The error of ICA with and without damping (solid lines and dashed lines, resp.), with unitary mixing
matrix. The error is averaged over ten trials, in 3 and 10 dimensions where n = (6,6,2.1) and n = (6,...,6,2.1,2.1), resp.
(Right): The difference between the errors of FastICA with and without damping in 2 dimensions, averaged over 40 trials. For a
single cell, the parameters are given by the coordinates, 7 = (4, j). Red indicates that FastICA without damping does better than
FastICA with damping, white indicates that the error difference is 0 and the blue indicates that FastICA with damping performs
better than without damping. Black indicates that FastICA without damping failed (did not return two independent components).
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Figure 2: The Frobenius error of the recovered mixing matrix with the ‘pow3’ and ‘tanh’ contrast functions, on 10-dimensional
data, averaged over ten trials. The mixing matrix A is random with unit norm columns, not orthogonal. In the left and middle
figures, the distribution has ) = (6, ..., 6,2.1,2.1) while in the right figure, n = (2.1, ...,2.1) (see Section 3.2 for a discussion).

In the experiment with different methods of orthogonaliza-
tion it was observed that when all exponents are the same or
very close, orthogonalization via covariance performs better
than orthogonalization via centroid and the true mixing ma-
trix as seen in Figure 2. A partial explanation is that, given
the results in Figure 1, we know that equal exponents favor
FastICA without damping and orthogonalization (identity in
Figure 2). The line showing the performance with no orthog-
onalization and no damping (“identity”’) behaves somewhat
erratically, most likely due the presence of the heavy-tailed
samples. Additionally, damping and the choice of parameter
R is sensitive to scaling. A scaled-up distribution will be
somewhat hurt because fewer samples will survive damping.

3.3 ICA on speech data

While the above study on synthetic data provides interesting
situations where heavy-tails can cause problems for ICA, we
provide some results here which use real-world data, specifi-
cally human speech. To study the performance of HTICA on
voice data, we first examine whether the data is heavy-tailed.
The motivation to use speech data comes from observations
by the signal processing community (e.g. (Kidmose 2000))
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that speech data can be modeled by a-stable distributions.
For an a-stable distribution, with « € (0, 2), only the mo-
ments of order less than « will be finite. We present here
some results on a data set of human speech according to the
standard cocktail party model, from (Donohue 2009).

To estimate whether the data is heavy-tailed, as in (Kid-
mose 2000), we estimate parameter « of a best-fit a-stable
distribution. This estimate is in Figure 3 for one of the data
sets collected. We can see that the estimated « is clearly in
the heavy-tailed regime for some signals.

Using data from (Donohue 2009), we perform the same ex-
periment as in Section 3.2: generate a random mixing matrix
with unit length columns, mix the data, and try to recover the
mixing matrix. Although the mixing is synthetic, the setting
makes the resulting mixed signals same as real. Specifically,
the experiment was conducted in a room with chairs, carpet,
plasterboard walls, and windows on one side. There was nat-
ural noise including vents, computers, florescent lights, and
traffic noise through the windows.

Figure 3 demonstrates that HTICA (orthogonalizing with
centroid body scaling, Section 4.1) applied to speech data
yields some noticeable improvement in the recovery of the
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Figure 3: (Left): Error of estimated mixing matrix on the “perimeterreg” data, averaged over ten trials. HTICA is more robust
than FastICA. (Middle): Stability parameter « estimates of each component in the “perimeterreg” data. Values below 2 are in the
heavy-tailed regime. (Right): Smallest singular value and condition number of the orthogonalization matrix BA computed via
the centroid body and the covariance. The data was sampled with parameter 1) = (6, 6,6,6,6,6,6,6,2.1,2.1).

mixing matrix, primarily in that it is less susceptible to data
that causes FastICA to have large error “spikes.” Moreover,
in many cases, running only FastICA on the mixed data
failed to even recover all of the speech signals, while HTICA
succeeded. In these cases, we had to re-start FastICA until it
recovered all the signals.

4 New approach to orthogonalization and a
new analysis of empirical covariance

As noted above, the technique in (Anderson et al. 2015),
while being provably efficient and correct, suffers from prac-
tical implementation issues. Here we discuss two alternatives:
orthogonalization by centroid body scaling and orthogonal-
ization by using the empirical covariance. The former, or-
thogonalization via centroid body scaling, uses the samples
already present in the algorithm rather than relying on a ran-
dom walk to draw samples which are approximately uniform
in the algorithm’s approximation of the centroid body (as
is done in (Anderson et al. 2015)). This removes the depen-
dence on random walks and the ellipsoid algorithm; instead,
we use samples that are distributed according to the origi-
nal heavy-tailed distribution but non-linearly scaled to lie
inside the centroid body. We prove in Lemma 2 that the co-
variance of this subset of samples is enough to orthogonalize
the mixing matrix A. Secondly, we prove that one can, in
fact, “forget” that the data is heavy tailed and orthogonalize
by using the empirical covariance of the data, even though it
diverges, and that this is enough to orthogonalize the mixing
matrix A. However, as observed in experimental results, in
general this has a downside compared to orthogonalization
via centroid body in that it could cause numerical instability
during the “second” phase of ICA as the data obtained is less
well-conditioned. This is illustrated directly in the table in
Figure 3 containing the singular value and condition number
of the mixing matrix BA in the approximately orthogonal
ICA model.

4.1 Orthogonalization via centroid body scaling

In (Anderson et al. 2015), another orthogonalization proce-
dure, namely orthogonalization via the uniform distribution
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in the centroid body is theoretically proven to work. Their
procedure does not suffer from the numerical instabilities and
composes well with the second phase of ICA algorithms. An
impractical aspect of that procedure is that it needs samples
from the uniform distribution in the centroid body.

We described orthogonalization via centroid body in Sec-
tion 1, except for the estimation of p(z), the Minkowski
functional of the centroid body. The complete procedure is
stated in Subroutine 1.

We now explain how to estimate the Minkowski functional.
The Minkowski functional was informally described in Sec-
tion 1. The Minkowski functional of I' X is formally defined
by p(x) := inf{t > 0 : € tI'X}. Our estimation of p(x)
is based on an explicit linear program (LP) (2) that gives the
Minkowski functional of the centroid body of a finite sam-
ple of X exactly and then arguing that a sample estimate is
close to the actual value for I' X. For clarity of exposition, we
only analyze formally a special case of LP (2) that decides
membership in the centroid body of a finite sample of X (LP
(1)) and approximate membership in I'X. This analysis is in
Section 5. Accuracy guarantees for the approximation of the
Minkowski functional follow from this analysis.

Subroutine 1 Orthogonalization via centroid body scaling

Input: Samples (X ()N | of ICA model X = AS so each
S; is symmetric with (1 + ) moments.
Output: Matrix B approximate orthogonalizer of A
1: fori=1: N do,
2: Let A* be the optimal value of (2) with g = X (). Let
di =1/\. LetY() = %{?dix(i).
end for '
CLetC =+ YN vOYOT Ouput B = 172,

s w

Lemma 2. Let X be a random vector drawn from an ICA
model X = AS such that for all i we have E|S;| = 1 and

S; is symmetrically distributed. Let Y = %X’ where

p(X) is the Minkoswki functional of T X. Then Cov(Y)~1/2
is an orthogonalizer of X.



4.2 Orthogonalization via covariance

Here we show the somewhat surprising fact that orthogo-
nalization of heavy-tailed signals is sometimes possible by
using the “standard” approach: inverting the empirical covari-
ance matrix. The advantage here, is that it is computationally
very simple, specifically that having heavy-tailed data incurs
very little computational penalty on the process of orthogo-
nalization alone. It’s standard to use covariance matrix for
whitening when the second moments of all independent com-
ponents exist (Hyvarinen, Karhunen, and Oja 2001): Given
samples from the ICA model X = AS, we compute the
empirical covariance matrix 3 which tends to the true covari-
ance matrix as we take more samples and set B = $1/2,
Then one can show that BA is a rotation matrix, and thus
by pre-multiplying the data by B we obtain an ICA model
Y = BX = (BA)S, where the mixing matrix BA is a ro-
tation matrix, and this model is then amenable to various
algorithms. In the heavy-tailed regime where the second mo-
ment does not exist for some of the components, there is no
true covariance matrix and the empirical covariance diverges
as we take more samples. However, for any fixed number
of samples one can still compute the empirical covariance
matrix. In previous work (e.g., (Chen and Bickel 2004)), the
empirical covariance matrix was used for whitening in the
heavy-tailed regime with good empirical performance; (Chen
and Bickel 2004) also provided some theoretical analysis
to explain this surprising performance. However, their work
(both experimental and theoretical) was limited to some very
special cases (e.g., only one of the components is heavy-
tailed, or there are only two components both with stable
distributions without finite second moment).

We will show that the above procedure (namely pre-
multiplying the data by B := £~1/2) “works” under consid-
erably more general conditions, namely if (1 4 +)-moment
exists for v > 0 for each independent component .S;. By
“works” we mean that instead of whitening the data (that is
BA is rotation matrix) it does something slightly weaker but
still just as good for the purpose of applying ICA algorithms
in the next phase. It orthogonalizes the data, that is now BA
is close to a matrix whose columns are orthogonal. In other
words, (BA)T(BA) is close to a diagonal matrix (in a sense
made precise in Theorem 3).

Theorem 3 (Orthogonalization via covariance matrix). Let
X be given by ICA model X = AS. Assume that there exist
t,p, M > 0and~ € (0,1) such that for all i we have

(@) E(|S;|'T7) < M < o0,

(b) (normalization) E|S;| = 1, and

(c) Pr(|S;| > t) > p. Let 2V, ..., x™N) be i.i.d. samples

according to X. Let ¥ = (1/N) chvzl 2®z®T and B =

=12, Then for any ¢,6 € (0,1), |(BA)TBA —D||, < ¢
for a diagonal matrix D with diagonal entries dy,...,d,
satisfying 0 < d;,1/d; < max{2/pt*, N*} for all i with
probability 1 — § when N > poly(n, M,1/p,1/t,1/¢,1/0).

In Theorem 3, the diagonal entries are lower bounded,
which avoids some degeneracy, but they could still grow
quite large because of the heavy tails. This is a real drawback
of orthogonalization via covariance. HTICA, using the more
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sophisticated orthogonalization via centroid body scaling
does not have this problem. We can see this in the right table
of Figure 3, where the condition number of “centroid” is
much smaller than the condition number of “covariance.”

5 Membership oracle for the centroid body

We will now describe and theoretically justify a new and prac-
tically efficient e-weak membership oracle for I' X, which is a
black-box that can answer approximate membership queries
in I'X. The formal definition and argument are in the sup-
plementary material. We give an informal description of the
algorithm and its correctness.

The algorithm implementing the oracle (Subroutine 2) is
the following: Let ¢ € R™ be a query point. Let X1, ..., Xy
be a sample of random vector X. Given the sample, let Y’
be uniformly distributed in {X1, ..., Xx}. Output YES if
q € T'Y, else output NO.

Idea of the correctness of the algorithm: If ¢ is not in
(T'X)e, then there is a hyperplane separating g from (I'X)..
Let {z : a”x = b} be the hyperplane, satisfying ||a|| = 1,
a’q > band aTz < b for every z € (I'X).. Thus, we have
hrx).(a) < band hrx(a) < b— €. We have

N

hry(a) = E(Ja"Y () = (1/N) ) _|a" X,].

i=1
By (Anderson et al. 2015, Lemma 14), (1/N) Zfil laT X
is within € of E|a” X| = hrx(a) < b — ¢ when N is
large enough with probability at least 1 — § over the sam-
ple X1,..., Xy. In particular, hry (a) < b, which implies
g ¢ TY and the algorithm outputs NO, with probability at
least 1 — 4.

Ifgisin (TX)_.,lety =q+e¢j €T'X.

Claim: For p € I' X, for large enough N and with proba-
bility at least 1 — § there is z € I'Y so that ||z — p|| < €/10.

This claim applied to p = y to get z, convexity of I'Y
and the fact that T'Y" contains B ~ oin(A)BY imply that
q € conv(B U {z}) C T'Y and the algorithm outputs YES.

We conclude with the main formal claims of the argument
and a precise description of the oracle below:

Proposition 4 (Dual characterization of centroid body). Let
X be a n-dimensional random vector with finite first moment,
that is, for all u € R™ we have E(|(u, X)|) < oo. Then
X = {E(A(X)X) : \: R™ — [—1, 1] is measurable}.
Lemma 5 (LP). Let X be a random vector uniformly dis-
tributed in {x W}, C R™. Let ¢ € R™. Then:

LTX =250 [z 20,

2. Point ¢ € TX iff there is a solution A\ € RN to the
following linear feasibility problem:

N

1 )

¥ > Azt =g, -1< N <1 Vi (1)
=1

3. Let \* be the optimal value of (always feasible) linear
program

N
1 ,
* (1) o N
A" = max )\, s.t. N E_l iz =Xg, A € [-1,1]" (2)



with \* = oo if the linear program is unbounded. Then
the Minkowski functional of TX at q is 1/\*.

Subroutine 2 Weak Membership Oracle for I' X

Input: Query point ¢ € R"”, samples from symmetric [CA
model X AS, bounds sy > omax(4), sm <
Omin(A), closeness parameter ¢, failure probability 0.

Output: (e, §)-weak membership decision for ¢ € T'X.

1: Let N = poly(n, M,1/sp,, sa, 1/€,1/9).

2: Let ()X, be an i.i.d. sample of X.

3: Check the feasibility of linear program (1). If feasible,
output YES, otherwise output NO.

Proposition 6 (Correctness of Subroutine 2). Let X = AS
be given by an ICA model such that for all i we have
E(|S;|17) < M < oo, S; is symmetrically distributed and
normalized so that E|S;| = 1. Then, given a query point
gER™ €>0,6>0, spr > Omax(A), and sy < omin(A),
Subroutine 2 is an e-weak membership oracle for ¢ and I' X
with probability 1 — § using time and sample complexity
poly(n, M, 1/8m, sp,1/€,1/0).
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