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Abstract

Residuality plays an essential role for learning finite au-
tomata. While residual deterministic and non-deterministic
automata have been understood quite well, fundamental ques-
tions concerning alternating automata (AFA) remain open.
Recently, Angluin, Eisenstat, and Fisman (2015) have initi-
ated a systematic study of residual AFAs and proposed an
algorithm called AL� – an extension of the popular L� al-
gorithm – to learn AFAs. Based on computer experiments
they have conjectured that AL� produces residual AFAs, but
have not been able to give a proof. In this paper we dis-
prove this conjecture by constructing a counterexample. As
our main positive result we design an efficient learning algo-
rithm, named AL��, and give a proof that it outputs residual
AFAs only. In addition, we investigate the succinctness of
these different FA types in more detail.

1 Introduction

Learning finite automata is an important issue in machine
learning and of great practical significance to solve substan-
tial learning problems like pattern recognition, robot’s nav-
igation, automated verification, and many others (see e. g.
the textbook (De la Higuera 2010)). Depending on applica-
tions, different types of automata might be required as desir-
able targets of learning. The ones of particular concern are
deterministic (DFA), non-deterministic (NFA), the dual of
NFAs – the universal finite automata (UFA), and their gen-
eralization – the alternating finite automata (AFA). Though
they are of the same expressive power, the automata have
different modeling capabilities and succinctness properties.
A minimal (w. r. t. the number of states) DFA might be ex-
ponentially larger than an NFA and double-exponentially
larger than an AFA. Thus, for many applications, e. g. in
automated verification, it is desirable to work directly with
AFAs rather than with the other types as the membership-
problem for AFAs is still efficiently solvable.

In the common exact learning framework for FA the
learner can ask membership queries to test if a word is ac-
cepted by the unknown target automaton and equivalence
queries to compare his current hypothesis and, if there is a
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mismatch to receive a counterexample. This model has been
introduced in (Angluin 1987) that launched a tremendous
amount of subsequent research yielding many effective al-
gorithms of relevance in machine learning and other areas.

Angluin (1987) has provided an algorithm, named L� that
learns a minimal DFA in polynomial time. The minimality
of the resulting DFA plays an important role here since this
condition makes it unique (up to naming of states). Thus, L�

learns precisely the target automaton if this is minimal.
Beside uniqueness, minimal DFAs have also another nice

property termed residuality. An automaton A accepting a
language L is residual if every state q of A can be associated
with a word wq such that the language accepted by Aq – the
automaton A that starts in q, is exactly the set of words v for
which wqv is in L. Thus, every state q of A corresponds to
the residual language of L determined by wq .

For many learning algorithms the residuality property
plays an essential role in inferring the target automaton.
Angluin’s L� algorithm makes heavy use of this concept:
The states of a hypothesized automaton are represented by a
prefix-closed set of strings such that for every state qs cor-
responding to a string s, the language accepted from qs is
residual with respect to s and the target language. Unfortu-
nately, non-deterministic automata, in general do not satisfy
the residuality property. Even worse, for an NFA A lan-
guages accepted by Aq , for states q of A, have no natural in-
terpretation and two minimal NFAs can be non-isomorphic.
The disadvantageous properties may lead to ambiguity prob-
lems and difficulties in learning automata. Moreover the
goal is to learn automata containing a certain structure, that
may be helpful for later use in specific applications, like e. g.
in model checking. Residuality is one such structural prop-
erty that allows to assign a natural semantic to the states of
a complex automaton. This allows a simpler analysis of the
(possibly) involved behaviour of the automaton.

Denis, Lemay, and Terlutte (2001) introduced the class of
residual NFA (RNFA). For every regular language L there is
a unique RNFA AL called canonical such that the number of
states is minimal, the number of transitions between states is
maximal, and for every state q of AL the language accepted
by AL

q is residual. In addition, AL can be exponentially more
succinct than the equivalent minimal DFA. Using the resid-
uality property, Bollig et al. (2009) proposed a sophisticated
extension of Angluin’s algorithm named NL� that learns a
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canonical RNFA with a polynomial number of membership
and equivalence queries.

Recently, Angluin, Eisenstat, and Fisman (2015) ex-
tended the definition of residual automata to universal and
alternating automata, and provided UL�, a learning algo-
rithm for UFAs, and AL�, a learning algorithm for AFAs.
To analyze the advantages and trade-offs among these al-
gorithms, the authors performed experiments and showed
that for randomly generated automata, AL� outperforms the
other algorithms w. r. t. the number of membership queries,
but w. r. t. the number of equivalence queries L� is the best,
followed by UL�, NL�, and AL� (which is justified due to
the succinctness obtained). However, as the authors write,
they have not been able to prove that AL� always outputs
residual AFAs. Based on the experiments they have con-
jectured that this property indeed holds, but left its proof as
future work.

In this paper we disprove their conjecture by providing a
counterexample that has been constructed with the help of
specially designed software tools for learning residual au-
tomata. Next, we continue the systematic study of resid-
ual AFAs and discuss several properties to get a better un-
derstanding of these machines. As our main positive result
we design an efficient learning algorithm, named AL��, and
give a proof that it outputs residual AFAs only. In addition,
we investigate the succinctness of these different FA types
in more detail.

2 Preliminaries

We denote the symmetric difference of sets by Δ, the
Boolean value “true” as � and the value “false” as ⊥. For a
set S we denote by F(S) all formulas over S that can be gen-
erated with the binary operators ∧ and ∨. For R ∈ {∧,∨},
the set FR(S) is the subset of F(S) of formulas that are
build form S and operator R. In order to help the reader
in understanding the complex behaviour of alternating finite
automata, we compare them to the well-known deterministic
and non-deterministic models.

2.1 Automata

An alternating finite automaton (AFA) – first introduced by
Chandra, Kozen, and Stockmeyer (1981) – with alphabet Σ
is a four-tuple (Q,Q0, F, δ), where Q is the set of states,
Q0 ∈ F(Q) is the initial configuration, F ⊆ Q are the
accepting states, and δ : Q × Σ → F(Q) is the transition
function. If Q0 and, for all q ∈ Q and all a ∈ Σ, the tran-
sition δ(q, a) consist of a single state, such an automaton
is called a deterministic automaton (DFA). If Q0 ∈ F∨(Q)
and δ(q, a) ∈ F∨(Q) for all q ∈ Q and all a ∈ Σ, it cor-
responds to non-deterministic finite automata (NFA). E. g. if
δ(q, a) = p1 ∨ p2, this describes a non-deterministic choice
between p1 or p2. If Q0 ∈ F∧(Q) and δ(q, a) ∈ F∧(Q)
for all q ∈ Q and all a ∈ Σ, the definition corresponds
to universal finite automata (UFA), where, e. g. a transition
δ(q, a) = p1 ∧ p2 leads to state p1 and state p2.

As usual, the function δ is extended to arbitrary formulas
and strings: If ϕ ∈ F(Q), assume w. l. o. g. ϕ is in disjunc-
tive normal form (DNF) with ϕ =

∨
i Mi and Mi =

∧
j qi,j ,

then we define δ(ϕ, a) =
∨

i

∧
j δ(qi,j , a) for a single sym-

bol a ∈ Σ and δ(ϕ, ε) = ϕ for the empty string ε. For a non-
empty string wa ∈ Σ∗, we define δ(ϕ,wa) = δ(δ(ϕ,w), a).
For an NFA, this definition simply reduces to δ(q ∨ p, a) =
δ(q, a) ∨ δ(q, b) as usual, if one interprets the formula q ∨ p
as set {q, p}.

For an AFA A = (Q,Q0, F, δ) and a formula ϕ ∈ F(Q),
we define the evaluation of ϕ, denoted as �ϕ�, recursively
as follows: for the empty set ∅ of states we let �∅� = ⊥,
for singletons we define �q� = � if q ∈ F , �q� = ⊥ if
q /∈ F , and finally �ϕRψ� = �ϕ�R�ψ� for R ∈ {∧,∨}. The
AFA A accepts a word w, if �δ(Q0, w)� = �. For an NFA,
�δ(Q0, w)� = � expresses the same as {q1, . . . , qk}∩F �= ∅
if δ(Q0, w) = q1 ∨ . . . ∨ qk (i. e. when starting with initial
configuration and reading the word w some accepting state
is reached) and for a UFA it is the same as {q1, . . . , qk} ⊆
F if δ(Q0, w) = q1 ∧ . . . ∧ qk (i. e. all states reached are
accepting). The language L(A) of the automaton A is the
set of all accepted strings.

For an AFA A = (Q,Q0, F, δ) and a state q ∈ Q, we
write Aq to indicate the automaton Aq = (Q, q, F, δ) that
starts with configuration q instead of Q0.

2.2 Residuality

Let L ⊆ Σ∗ be a regular language. For a word u ∈ Σ∗, we
define the residual language u−1L as {v ∈ Σ∗ | uv ∈ L}.
The set of all residual languages of L is denoted by RES(L).
A residual language u−1L is called ∪-prime, resp. ∩-prime
if u−1L cannot be defined as the union, resp. intersection of
other residual languages. We denote the subsets of RES(L)
by ∪-Primes(L), resp. ∩-Primes(L).

An automaton A with states Q is residual, if L(Aq) ∈
RES(L) for all q ∈ Q, i. e. if every state corresponds to a
prefix u and its residual language u−1L. Let RNFA, RUFA
and RAFA denote the appropriate residual restrictions.

2.3 Learning Algorithms

All of the learning algorithms xL� for automata (i. e. L�,
NL�, UL�, and AL�) and our AL�� follow a very simi-
lar pattern. Two sets U, V ⊆ Σ∗ are constructed, where
U is prefix-closed and V is suffix-closed. For all strings
uv ∈ UV or uav ∈ UΣV a membership query is per-
formed. The resulting matrix, indexed by U∪UΣ and V is
called a table. The rows indexed by U correspond to possi-
ble states. To minimize the number of states, a subset B of
rows (a base) is constructed such that all rows can be built
from the elements of B. The specific way to “build” a row
depends on the type of automaton. A hypothesized automa-
ton is constructed from this subset B. For a row ru indexed
by u ∈ U and a symbol a ∈ Σ, the transition δ(ru, a) equals
the formula that “builds” the row indexed by ua.

Formally – similar to Bollig et al. (2009) – for the prefix-
closed set U and the suffix-closed set V , we define a
|U∪UΣ| × |V | table T = (T, U, V ) with entries in {+,−}
determined by function T : Σ∗ → {+,−,⊥} specified be-
low. Let W (T ) denote the set (U∪UΣ)V , for short. We call
W (T ) the set of words described by T .
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Define T for w ∈ Σ∗ as

T (w) =

⎧⎨
⎩
⊥ if w �∈ W (T ),

+ if w ∈ W (T )∩L,
− if w ∈ W (T ) \ L.

The entry of T in row x and column y is equal to T (xy).
Note, that to define T we need only values T on W (T ). We
extend the domain of T to all words over Σ for the sake of
completeness. For an example for T and for the forthcoming
definitions concerning tables, see Fig. 1.

ε ab b
ε - + -
a - - +
b - - -

aa - - -
ab + - +

U

R

V

Figure 1: Table T = (T, U, V ) for the language L = ab+,
with U = {ε, a}, V = {ε, ab, b}, and R = UΣ \ U =
{b, aa, ab}. The entries of the table are determined by T : the
value in row x and column y is equal to T (xy). For example,
the value in row ab and column b is + since T (abb) = +,
as abb ∈ L and abb ∈ W (T ). An example row is e. g.
rε = (−+−). Furthermore, Rowshigh(T ) = {rε, ra}.

An automaton A and a table T are compatible, if for all
w ∈ W (T ), A accepts w iff T (w) = +.

For every u ∈ U∪UΣ, we associate a vector ru of length
|V | over {+,−} with ru[v] = T (uv) for v ∈ V . The vector
ru is called the row of u. The set of all rows is denoted by
Rows(T ). An important subset, denoted by Rowshigh(T ),
are those ru with u ∈ U .

Finally, we say that T = (T, U, V ) is consistent if for
every u, u′ ∈ U and a ∈ Σ, we have that ru = ru′ implies
rua = ru′a. If T is consistent then, to simplify the notation,
for any r ∈ Rowshigh(T ) and a ∈ Σ we write ra for the
vector rua s.t. u ∈ U is any string with ru = r.

3 Learning Residual Universal Automata
The classical result of Angluin (1987) that one can learn the
unique minimal DFA for a regular language L from mem-
bership and equivalence queries – the algorithm L� – has
been extended by Bollig et al. (2009) to NFAs. They have
designed an algorithm NL� that learns the unique residual
NFA with a minimal number of states and a maximal num-
ber of transitions between these states (the canonical RNFA)
accepting L. Angluin, Eisenstat, and Fisman (2015) pre-
sented a modification of NL� named UL� algorithm to learn
a residual UFA, but without a detailed analysis.

To better understand residual UFAs we introduce the fol-
lowing definition.
Definition 1 (Canonical RUFA). The canonical RUFA for
a regular language L is the tuple (Q,Q0, F, δ) where Q =
∩-Primes(L), Q0 = {L′ ∈ Q | L′ ⊆ L}, F = {L′ ∈ Q |
ε ∈ L′}, and δ(L1, a) = {L2 ∈ Q | a−1L1 ⊆ L2}.

The canonical RUFA has the minimal number of states
and the maximal number of transitions between these states,
which makes it unique. In the following we prove that UL�

always outputs such automata.
The order − ≤ + on the set {+,−} is extended to a par-

tial order on vectors by requiring ≤ to hold for each com-
ponent. The binary operators �,� on the set {+,−} are
defined by a � b = min{a, b} and a � b = max{a, b}. For
vectors, these operators are extended by performing the op-
eration componentwise.

We say that a row ru is �-composite if there are rows
ru1

, ru2
, . . . , ruk

∈ Rowshigh(T ), with rui
�= ru, such that

ru =
�k

i=1 rui
. For example, in Fig. 1, the row rb is com-

posite, as rb = rε � ra. Otherwise, ru is �-prime. Let
Primes�(T ) be the set of �-prime rows in Rowshigh(T ).
For the table T in Fig. 1, rε, ra, rab are �-prime, and
Primes�(T ) = {rε, ra}. To simplify the notation, for every
ru ∈ Rows(T ), let B�(ru) = {ru′ ∈ Rowshigh(T ) | ru ≤
ru′}.

A table T is �-closed if every row ru ∈ Rows(T ) can
be generated from a subset of rows in Primes�(T ) that are
combined with the � operator. A subset of rows that can
generate all rows of a table T using � is called a �-basis.
Thus, T is �-closed if Primes�(T ) is a �-basis for T . Note
that the table T in Fig. 1 is not �-closed, as the row rab ∈
Rows(T ) is not composable by rows of Rowshigh(T ).

Algorithm UL� constructs the RUFA in a way dual to
the nondeterministic case. For a consistent and �-closed
table T , let the UFA A(T ) = (Q,Q0, F, δ), with Q =
Primes�(T ), Q0 = B�(rε)∩Q, F = {r ∈ Q | r[ε] = +},
and for all r ∈ Q and a ∈ Σ, let δ(r, a) = B�(ra)∩Q.

Lemma 1. For all u, u′ ∈ U with ru, ru′ ∈ Q, v ∈ V and
r ∈ δ(Q0, u) it holds:

1. ru[v] = + ⇐⇒ δ(ru, v) ⊆ F ,
2. rε[v] = + ⇐⇒ δ(Q0, v) ⊆ F .

If T and A(T ) are compatible then additionally

3. ru ∈ δ(Q0, u) and ru ≤ r,
4. ru′ ≤ ru ⇐⇒ ∀w δ(ru, w) � F ⇒ δ(ru′ , w) � F .

Theorem 1. If T and A(T ) are compatible, then A(T ) is
the canonical RUFA.

Proof. We first show that the automaton is residual. Let
r ∈ Q. Thus, r ∈ δ(Q0, ur) and hence (ur)

−1L(A(T )) ⊆
L(Ar(T )). Furthermore, for all r′ ∈ δ(Q0, ur), we have
r ≤ r′ and thus L(Ar(T )) ⊆ L(Ar′(T )) by Lemma 1.
This implies L(Ar(T )) ⊆ (ur)

−1L(A(T )). Hence,
L(Ar(T )) = (ur)

−1L(A(T )). The language L(Ar(T )) is
also ∩-prime, as r is �-prime due to Lemma 1.

4 Learning Alternating Automata

This section contains the main results of our work. In (An-
gluin, Eisenstat, and Fisman 2015), the algorithm AL� to
learn alternating automata has been presented and its run-
ning time analyzed. As noted by Angluin, Eisenstat, and
Fisman, properties of the automata produced remain unclear.
We first prove several properties of AL� and disprove the
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conjecture of residuality. Then we present the modified al-
gorithm AL�� that guarantees residuality. Finally we discuss
how to find a provably good basis for AFAs (defined in the
next subsection).

4.1 Analysis of AL� Algorithm

Let us review the construction of the automata generated by
AL� and analyze the properties of these automata in detail.

Note that we use the basic version of the algorithm AL�

without the optimizations suggested by Angluin, Eisenstat,
and Fisman (2015), as some of these optimizations may lead
to a non-terminating behaviour of the algorithm.

For a formula ϕ ∈ F(Rows(T )) on the rows of a table,
we define the evaluation �ϕ� by �ru� = ru, �ϕ ∧ ψ� = �ϕ��
�ψ� and �ϕ ∨ ψ� = �ϕ� � �ψ� and extend this to a set B of
formulas by �B� = {�ϕ� | ϕ ∈ B}. For example,

�(+−+ ∧ −−+) ∨ −+−� = −++.

In the following P will always denote a subset of
Rowshigh(T ). P is a (�,�)-basis for T (in the following
simply called a basis) if Rows(T ) ⊆ �F(P )�. T is then
called P -closed. T is called P-minimal if P is a minimal
basis for T , i. e. for all p ∈ P , P \ {p} is not a basis.

For a P -closed table T and v ∈ V , let MP (v) be the
monomial defined by

MP (v) :=
∧

p∈P,p[v]=+

p ,

which is a maximal one over all monomials in F∧(P ) such
that

�
MP (v)

�
[v] = +. For a P -closed table T and r ∈

Rows(T ), let bP (r) ∈ F(P ) be the expression

bP (r) =
∨

v∈V,r[v]=+

MP (v)

representing r. Note that
�
bP (r)

�
= r.

Let M be a monomial and a ∈ Σ. We define Ma as the
monomial derived from M by replacing every row r ∈ P of
M by ra.

For a DNF-formula ϕ consisting of monomials Mi, we
use the notation Mi � ϕ and for a monomial M =

∧
j xj

the notation xj � Mi for its literals xj . For formulas
ϕ(x1, . . . , xk) and ψ(x1, . . . , xk) with literals x1, . . . , xk

that represent vectors r over {+,−}, we say that ϕ and ψ
are equivalent (in symbols ϕ ≡ ψ), if �ϕ(r1, r2, . . . , rk)� =�ψ(r1, . . . , rk)� for all vectors r1, . . . , rk of identical length.
For a formula ϕ, let ϕDNF denote a DNF-formula that is
equivalent to ϕ.

For a consistent and P -closed table T , let us define the
AFA AP (T ) = (Q,Q0, F, δ) as follows: Q = P , Q0 =
bP (rε), F = {r ∈ P | r[ε] = +}, and for all r ∈ Q let
δ(r, a) = bP (ra).

Note that δ(r, a) = bP (ra) is always a DNF-formula.
Lemma 2. For every ϕ ∈ F(Q) and every automaton
AP (T ) : �ϕ� = � iff �ϕ� [ε] = +.

In the following, fix a regular language L, a prefix-closed
set U , a suffix-closed set V , the corresponding table T and
a minimal basis P of Rowshigh(T ).

Lemma 3. r[v] = �δ(r, v)� [ε] for all r ∈ P and v ∈ V .

Lemma 4. �ϕ� [v] = �δ(ϕ, v)� [ε] for all ϕ ∈ F(P ) and
v ∈ V .

Lemma 5. If T and AP (T ) are compatible, then for every
u ∈ U with ru ∈ P it holds L(AP

ru(T )) ⊆ u−1L(AP (T )).

Proof. Assume L(AP
ru(T )) � u−1L(AP (T )), i. e. there

exists a string ω such that ω ∈ L(AP
ru(T )) and

ω /∈ u−1L(AP (T )). Since ω ∈ L(AP
ru(T )), we

have �δ(ru, ω)� [ε] = + by definition. Moreover,
ω /∈ u−1L(AP (T )) implies uω /∈ L(AP (T )) and thus
�δ(δ(Q0, u), ω)� [ε] = −.

We will now prove that such an ω cannot come from V or
ΣV by showing that ω /∈ (Σ∪{ε})V .

Assume that ω = av with a ∈ Σ∪{ε}, v ∈ V . By
Lemma 4, rua[v] = �δ(ru, a)� [v] = �δ(ru, ω)� [ε] = +.
This contradicts compatibility, as rua[v] = + implies that
uav = uω ∈ L(AP (T )).

Now, let δ(Q0, u)DNF = M1 ∨ M2 ∨ · · · ∨ Mk be the
formula that is reached in the automaton after reading u. The
fact ω /∈ (Σ∪{ε})V implies that this formula agrees with ru,
i. e. �M1 ∨ · · · ∨Mk� = ru.

Now let ω = aω̃. From the construction of δ, we know
that the row rua is not completely filled with −, since

�δ(ru, ω)� [ε] = �δ(ru, aω̃)� [ε] = �δ(δ(ru, a), ω̃)� [ε] =�
δ(bP (rua) , ω̃)

�
[ε] = −

would contradict compatibility. For every column v ∈
V with rua[v] = +, consider all monomials Mi with
�Mia� [v] = +. There must be at least one monomial, be-
cause otherwise uav /∈ L(AP (T )), which would contradict
the compatibility of T and AP (T ). We have MP (v) �
δ(ru, a) by the construction of δ(ru, a) = bP (rua). For
every row rũ � Mi, we have δ(rũ, a) = bP (rũa) =∨

ṽ∈V,rũa[ṽ]=+ MP (ṽ). Hence, MP (v) � δ(rũa). Thus,
MP (v) � δ(Mi, a)DNF and MP (v) � δ(M1 ∨ · · · ∨
Mk, a)DNF.

So, for every monomial MP (v) � δ(ru, a), we have
MP (v) � δ(M1 ∨ · · · ∨ Mk, a)DNF and thus MP (v) �
δ(Q0, u)DNF. Hence, if �δ(ru, aω̃)� [ε] = +, this di-
rectly implies �δ(M1 ∨ · · · ∨Mk, aω̃)� [ε] = +. But
�δ(M1 ∨ · · · ∨Mk, aω̃)� [ε] = �δ(δ(Q0, u), ω)� [ε] = −.
Hence, this is a contradiction and no such ω exists.

For NFAs and UFAs, the reverse inclusion between the
two languages in the statement of Lemma 5 holds in the case
of compatibility, too. Angluin, Eisenstat, and Fisman (2015)
have conjectured that this is also the case for AFAs since
extensive tests of their algorithm AL� never gave a non-
residual AFA. With the help of specially developed software
that simulates and visualizes the run of AL� interactively,
we have been able to construct a counterexample.

Lemma 6. There exists a regular language L for which
the algorithm AL� constructs a table T defining a compat-
ible AFA AP (T ), with L(AP (T )) = L, such that for some
r ∈ P and all ω ∈ Σ∗ the residual language ω−1L is not
contained in L(AP

r (T )).
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c1f

c1w
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w1 w2
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σc1f

σc2f

σc1w

σc2w

σw1

σw2

σnr
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γ1, σnr, ρc1f

γ2, σnr, ρc2f

γ1, ρc1w

γ2, ρc2w

ρnr

ω

ρw1 ω, ρw2
σnr

σnr

ω

Figure 2: A non-residual AFA constructed by AL�. The
initial configuration is Q0 = s and the set of accepting states
F = {f}. A filled square indicates a conjunction of its
successors.

Proof. It can be shown that the AFA in Fig. 2 is compatible
to a table T that can be constructed by AL� on a carefully
designed language L. The state labeled nr is not residual.

4.2 Learning Residual Alternating Automata

Let L be a given regular language. In order to construct
only residual AFAs for L we build on AL� and design a
new algorithm AL�� presented as Algorithm 1 that solves
this problem. The main obstacle that one encounters is the
test of residuality of the constructed automaton. We use the
power of the equivalence-oracle to incorporate this task into
AL� by reducing it to a single equivalence query of a larger
automaton.

Let Suffs(w) denote the set of all suffixes of a string w.
We start the analysis of AL�� with the following observation
which guarantees that the automata constructed successively
from tables T are well defined.
Lemma 7. In AL�� algorithm table T is always consistent.

The main difference between AL� and AL�� lies in the
construction of the automaton AP ′

(T ) in line 12. This mod-
ification of AL� allows us to guarantee the residuality of the
generated automaton. As shown in the previous section, the
reason for the possible non-residuality of the automaton pro-
duced by AL� is that the reverse statement of Lemma 5 does
not hold for AFAs. As we perform no basis reduction at the
construction of AP ′

(T ), compatibility of the table and the
automaton guarantees residuality of the automaton.

Lemma 8. If the AFA AP ′
(T ) constructed in line 12 is com-

patible with T then AP ′
(T ) is residual.

Proof. Consider some u ∈ U . As P ′ = Rowshigh(T ), we
have ru ∈ P ′ and thus L(AP ′

ru (T )) ⊆ u−1L(AP ′
(T )) by

1 U ← {ε}; V ← {ε};
2 initialize T = (T, U, V ) with |Σ|+ 1 membership queries;
3 while true do
4 P ← Rowshigh(T );
5 while T is not P -closed do
6 find a row rua ∈ Rows(T ) with rua /∈ �F(P )�;
7 add ua to U ;
8 complete T via membership queries;
9 P ← Rowshigh(T );

10 construct a minimal basis P and AP (T ) for P ;
11 if L(AP (T )) = L then

12 construct AP ′
(T ) with P ′ = Rowshigh(T );

13 if L(AP ′
(T )) = L then

14 return AP (T );
15 else

16 get counterexample w ∈ LΔL(AP ′
(T ));

17 set V ← V ∪ Suffs(w);
18 complete T via membership queries;

19 else

20 get counterexample w ∈ LΔL(AP (T ));
21 set V ← V ∪ Suffs(w);
22 complete T via membership queries;

Algorithm 1: AL�� for the target language L.

Lemma 5. It remains to prove the inclusion in the other di-
rection. Iterating over the length of u one can show that for
every configuration of the AFA δ(Q0, u) ≡ ru ∧Ru, where
Ru is some expression.

By construction, every monomial of Q0 = bP (rε) con-
tains rε. Therefore, Q0 ≡ rε ∧ Rε for some expression Rε.
Hence, δ(Q0, ε) = Q0 ≡ rε ∧Rε.

As U is prefix-closed, every prefix of u is also in U . If
u = u′a, every monomial of δ(u′, a) contains ru′a = ru ∈
P ′ by the induction hypothesis. Therefore, δ(u′, a) ≡ ru ∧
R′u, where R′u is an expression. We thus have δ(Q0, u) =
δ(δ(Q0, u

′), a) ≡ δ(ru′ ∧ Ru′ , a) ≡ (ru ∧ R′u) ∧ Ru′ ≡
ru ∧Ru for some expression Ru.

Therefore, L(AP ′
ru (T )) ⊇ u−1L(AP ′

(T )).

Computing the large residual automaton AP ′
(T ) in

line 12 upon the trivial basis P ′ allows us to test the smaller
automaton AP (T ) for residuality via the following lemma.
If AP ′

(T ) passes the equivalency test, it certificates the
residuality of AP (T ). Otherwise, our construction directly
gives us a counter-example that helps AP ′

(T ) to pass the
equivalence test the next time.

Lemma 9. If the two AFAs AP (T ) and AP ′
(T ) constructed

in line 10, resp. 12 satisfy L(AP (T )) = L = L(AP ′
(T ))

then AP (T ) is residual.

Proof. Assume L(AP (T )) = L = L(AP ′
(T )). Lemma 8

states that AP ′
(T ) is residual. Consider a state q = ru

of AP (T ) with corresponding state q′ of AP ′
(T ). As

ru ∈ P ⊆ Rowshigh(T ) = P ′, there is always such
a corresponding state. Let a ∈ Σ be any alphabet sym-
bol. For every monomial M ′ � δ(q′, a), there is a mono-
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mial M � δ(q, a) such that every literal of M is in M ′

(with the corresponding v we have M = MP (v) and
M ′ = MP ′

(v) and MP ′
(v) may consist of states not in

P ). Hence we have �δ(q, w)� ≥ �δ(q′, w)�. We know
u−1L = u−1L(AP ′

(T )) ⊆ L(AP ′
q′ (T )) from Lemma 8.

We also know L(AP
q (T )) ⊆ u−1L(AP (T )) = u−1L

from Lemma 5. So we have u−1L ⊆ L(AP ′
q′ (T )) ⊆

L(AP
q (T )) ⊆ u−1L. Thus, u−1L = u−1L(AP (T )) =

L(AP
q (T )). Thus, automaton AP (T ) is also residual.

For a language L the reverse of L contains all strings
a1 . . . a� ∈ Σ∗ such that a� . . . a1 is in L. Now we are ready
to give the main result of this section.
Theorem 2. For any given regular language L, the al-
gorithm AL�� always generates an RAFA AP such that
L(AP ) = L. Moreover, if the basis P constructed in the
run of AL�� is of minimal size, AP has the minimal number
of states over all RAFAs for L. The algorithm terminates
after at most κL equivalence queries and κLκ̂L(1 + |Σ|)�
membership queries, where κL and κ̂L denote the number of
states of the minimal DFA for L, resp. the reverse of L and
� is the size of the longest counterexample obtained from the
equivalence oracle.

4.3 Approximating the Minimum Basis

Assume T = (T, U, V ) is a table for a regular language.
Note that algorithm AL�� constructs a minimal basis P (of
Rowshigh(T )) because computing a minimum basis (i. e.
of minimal cardinality) is NP-hard, as shown by Angluin,
Eisenstat, and Fisman (2015). In order to guarantee that
the basis (and hence the set of states) used by the algo-
rithm is small enough, we give an approximation algorithm
for this problem. In the optimization problem MIN-SET-
COVER, one is given a groundset X and a set S of subsets
of X and searches the smallest S ⊆ S with

⋃
s∈S s = X

(see e. g. (Williamson and Shmoys 2011)). If MP :={�
MP (v)

�
| v ∈ V

}
for P ⊆ Rowshigh(T ), we obtain the

following lemma.

Lemma 10. For any P it is true that MRowshigh(T ) = MP ,
iff P is a basis of Rowshigh(T ).

We will now reduce the problem of finding a basis of
Rowshigh(T ) to the problem of finding a solution to a SET-
COVER instance.
Lemma 11. Let X = {(v, i) | v, i ∈ V ∧�
MRowshigh(T )(v)

�
[i] = −} be the groundset and S =

{mu | u ∈ U} with subsets mu = {(v, i) ∈ X | ru ≥�
MRowshigh(T )(v)

�
and ru[i] = −} be an instance of SET-

COVER. The set P is a basis of Rowshigh(T ), iff there exists
a feasible solution C of the set cover instance above such
that P = {ru | mu ∈ C}.

Proof. Every vector of MP can be composed by the vectors
of P by intersection, so requiring these compositions does
not increase P . Now we apply the lemma above.

We can now use the well known algorithm for the opti-
mization problem MIN-SET-COVER due to (Johnson 1974)

p1
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p2

q1

q2

x

Σa

Σa

Σb

Σb

a1

a1

a2

a2

Σn \ {b1}

Σn \ {b2}

b1

b2

Σn

Figure 3: The residual AFA for the language An of Theo-
rem 4 with n = 2. The corresponding alphabet is Σn =
Σa∪Σb with Σa = {a1, a2} and Σb = {b1, b2}, the initial
configuration is Q0 = p1∧p2, and the set of accepting states
is F = {q1, q2}.

that, on input (X ,S) produces a feasible solution S ⊆ S
with |S| ≤ (ln(|X |) + 1)|S∗| in polynomial time, where S∗

is an optimal solution to the instance. We get the following
result.
Theorem 3. There exists a polynomial time algorithm that
for a given table T = (T, U, V ) returns a basis P of
Rowshigh(T ) with |P | ≤ (2 ln(|V |)+1) · |P ∗|, where P ∗ is
a minimum basis of Rowshigh(T ).

5 On the Size of Residual AFAs

In (Angluin, Eisenstat, and Fisman 2015) it has been
shown that RAFAs may be exponentially more succinct than
RNFAs and RUFAs and double exponentially more suc-
cinct than DFAs. We strengthen these results by proving
that RAFAs may be exponentially more succinct than every
equivalent non-residual NFAs or UFAs. Furthermore, there
exists a RAFA that is double exponentially more succinct
than the minimal DFA and uses only 2 non-deterministic
(i. e. ∨) transitions and only a linear number of universal
(i. e. ∧) transitions. Thus, the restriction to residual au-
tomata still allows a very compact representation. On the
other hand, we give an example where the residuality of an
automata demands an exponentially larger state set.
Theorem 4. For every even n ∈ N, there exists a language
An that can be accepted by a residual AFA with 2n+1 states
and every NFA or UFA for An needs at least

(
n

n/2

)
states.

Proof Sketch. The alphabet Σn for An consists of disjoint
subsets Σa = {a1, a2, . . . , an} and Σb = {b1, b2, . . . , bn}.

An = {w1w2 | w1 ∈ Σ∗a, w2 ∈ Σ∗n,

w1 contains all symbols from Σa,

w2 does not contain all symbols from Σb}.
We construct a residual AFA with states {p1, . . . , pn,

q1, . . . , qn, x} that is sketched for n = 2 in Fig. 3. To prove
the second property we show that every NFA has to “remem-
ber” all

(
n

n/2

)
subsets of size n/2 of Σa, while UFAs need

to “remember” all
(

n
n/2

)
subsets of size n/2 of Σb.
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Figure 4: The (non-residual) AFA for the language Bn of
Theorem 5 with n = 2.

Theorem 5. For every n ∈ N there exists a language Bn

over a binary alphabet that can be accepted by a (non-
residual) AFA with 2n + 2 states, but every residual AFA
for Bn requires at least 2n states.

One can construct the succinct AFAs of Theorem 5 as fol-
lows. Let Σ = {a, b} and consider Bn = {w∗w′ | w ∈
Σn, w′ is a prefix of w} (based on the construction of (Vardi
1995)). For n = 2, the non-residual AFA A = (Q,Q0, δ, F )
for Bn is sketched in Fig. 4.

A closer look at the constructions of succinct automata
for Bn reveals that the resulting AFAs are in fact UFAs. Du-
ally, Bn = Σ∗ \ Bn can be accepted by an NFA with the
same number of states 2n + 2. Thus, we obtain families of
languages Bn and Bn, n = 1, 2, . . . , such that every resid-
ual AFA for Bn, resp. Bn, is exponentially larger than the
corresponding minimal UFA, resp. NFA.

As it was already noted in (Angluin, Eisenstat, and Fis-
man 2015), RAFAs may be double exponentially smaller
than the minimal DFAs. We give a more precise bound in-
spired by a language defined by Chandra, Kozen, and Stock-
meyer (1981).
Theorem 6. For every n ∈ N there exists a language Cn

such that the minimal DFA for Cn needs at least 22
n

states
and there is a residual AFA with 2n2 + 5n states for Cn.

The tables below summarize the results presented in this
section. Here

A1 A2

k1(n) k2(n)

has the following meaning: For every n there exists a lan-
guage Ln with k1(n) state automata of type A1 for Ln and
every automaton of type A2 for Ln needs at least k2(n)
states.

RAFA NFA/UFA
2n+ 1

(
n

n/2

) NFA/UFA RAFA
2n+ 2 2n

RAFA DFA
2n2 + 5n 22

n

6 Discussion

We have disproved the conjecture that the algorithm AL�

outputs residual AFAs only and designed a modified al-
gorithm AL�� that achieves this property. This algorithm
has almost the same complexity as AL�. In fact, as all
automata produced by AL� in the experiments in (An-
gluin, Eisenstat, and Fisman 2015) were residual, we expect
that our new algorithm AL�� only performs a single addi-
tional equivalence-query to verify the residuality compared

to AL�. Thus, based on the performance experiments re-
ported for randomly generated automata or regular expres-
sions AL�� outperforms the algorithms L� and NL� w. r. t.
the number of membership queries. Simultaneously AL��

infers an (approximately minimal) RAFA which is always
smaller than (or equal to) the corresponding minimal DFA
generated by L� and RNFA produced by NL�. Typically,
AL�� generates automata which are significantly more suc-
cinct than DFAs and RNFAs. Theoretical analysis shows
that residual AFAs can be exponentially smaller than NFAs
and even double exponentially more succinct than DFAs.
This makes RAFAs an attractive choice for language rep-
resentations in the design of learning algorithms.

While residual non-deterministic automata have been un-
derstood quite well (Denis, Lemay, and Terlutte 2001; 2004;
Bollig et al. 2009; Kasprzik 2010), fundamental questions
concerning residual alternating automata remain open. In
our paper we introduced a complementary notion to the
canonical RNFA – the canonical RUFA. Recently, we have
exhibited languages for which the canonical RNFA and
RUFA differ, but both automata are minimal AFAs. Thus,
a meaningful notion for canonical AFAs would be desirable,
but this seems to be a difficult problem, which we leave for
future work.
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