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Abstract

Binary embedding transforms vectors in Euclidean space into
the vertices of Hamming space such that Hamming distance
between binary codes reflects a particular distance metric. In
machine learning, the similarity metrics induced by Mercer
kernels are frequently used, leading to the development of
binary embedding with Mercer kernels (BE-MK) where the
approximate nearest neighbor search is performed in a re-
producing kernel Hilbert space (RKHS). Kernelized locality-
sensitive hashing (KLSH), which is one of the representa-
tive BE-MK, uses kernel PCA to embed data points into a
Euclidean space, followed by the random hyperplane binary
embedding. In general, it works well when the query and
data points in the database follow the same probability dis-
tribution. The streaming data environment, however, contin-
uously requires KLSH to update the leading eigenvectors of
the Gram matrix, which can be costly or hard to carry out in
practice. In this paper we present a completely randomized
binary embedding to work with a family of additive homo-
geneous kernels, referred to as BE-AHK. The proposed algo-
rithm is easy to implement, built on Vedaldi and Zisserman’s
work on explicit feature maps for additive homogeneous ker-
nels. We show that our BE-AHK is able to preserve kernel
values by developing an upper- and lower-bound on its Ham-
ming distance, which guarantees to solve approximate nearest
neighbor search efficiently. Numerical experiments demon-
strate that BE-AHK actually yields similarity-preserving bi-
nary codes in terms of additive homogeneous kernels and is
superior to existing methods in case that training data and
queries are generated from different distributions. Moreover,
in cases where a large code size is allowed, the performance
of BE-AHK is comparable to that of KLSH in general cases.

Introduction

Binary embedding (BE) refers to the methods that trans-
form examples in R? into the vertices of Hamming space,
ie, {0,1}*, in which the normalized Hamming dis-
tance between binary codes preserves a particular distance
measure, including angular distance (Charikar 2002) and
kernel-induced distance (Kulis and Grauman 2009) (Li,
Samorodnitsky, and Hopcroft 2012) (Raginsky and Lazeb-
nik 2009). Most notably, random hyperplane binary embed-
ding (Charikar 2002) involves random projection followed
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by binary quantization, which aims to preserve angular dis-
tance between two vectors.

Randomized binary embedding (RBE) seeks to develop
an embedding function without requiring any training data
points. Contrary to RBE, data-dependent binary embedding
(DBE) makes use of a training set to construct compact bi-
nary codes (Weiss, Torralba, and Fergus 2008), (Gong and
Lazebnik 2011), (Li et al. 2014). We observe that DBE per-
forms poorly in the case that the query and training data
points are generated from different distributions. Recently,
online DBE (Huang, Yang, and Zhang 2013) (Leng et al.
2015) sequentially learns an embedding function for large-
scale or streaming data. However, it still incurs overhead to
re-compute all binary codes as a new point arrives. There-
fore, it is necessary to develop RBE with different types
of streaming data. For example, x? and intersection ker-
nels have been frequently used as a distance metric for his-
tograms, which makes it necessary to develop RBE with
such kernels.

Binary embedding with Mercer kernels (BE-MK) (Kulis
and Grauman 2009) (Raginsky and Lazebnik 2009) (Mu et
al. 2014) (Jiang, Que, and Kulis 2015) employs feature maps
(kernel PCA or Nystrom approximation) followed by RBE,
such that the normalized Hamming distance between codes
preserves Mercer kernels. Since it requires training exam-
ples to build the feature map, we observe that it might not
be adequate for streaming environment. For example, ker-
nelized locality-sensitive hashing (KLSH) (Jiang, Que, and
Kulis 2015), which is one of the representative example of
BE-MK, employs KPCA for the feature map, which requires
a set of training data points to compute the leading eigen-
vector of Gram matrix. If the data distribution changes over
time, the performance of KLSH is steadily degraded over
time.

In this paper, we propose a completely randomized binary
embedding with additive homogeneous kernels, referred to
as RBE-AHK, where data points are embedded onto R™ by
the explicit feature map for additive homogeneous kernels
(Vedaldi and Zisserman 2012) and then are transformed into
the vertices of Hamming space by the random hyperplane
binary embedding. The contribution of this paper is summa-
rized below.

e We propose a RBE algorithm for additive homogeneous
kernels and conduct the numerical experiments to show



that the proposed algorithm is superior to existing BE-MK
methods in case that training data and queries are gener-
ated from different distributions.

e We present the lower and upper bounds on Hamming dis-
tance between binary codes generated by the proposed al-
gorithm, which guarantees to solve approximate nearest
neighbor search problem and large-scale machine learn-
ing efficiently.

Background

In this section, we briefly review some prerequisites to de-
scribe the proposed algorithm.

Random Hyperplane Binary Embedding

Random hyperplane binary embedding (Charikar 2002), re-
ferred to as RHBE, involves a random projection followed
by binary quantization, whose an embedding function is for-
mally defined as h(xz) £ sgn(w'x), where w € R? is
a random vector sampled on a unit d-sphere and sgn(-) is
the sign function which returns 1 whenever the input is non-
negative and -1 otherwise. It was shown in (Charikar 2002)
that RHBE naturally gives an unbiased estimator of angular
distance such that the expectation of Hamming distance is
the angle between two vectors, i.e.,

B[z £hw)]] = 2,

ey

where Z[-] is an indicator function which returns 1 whenever
the input argument is true and 0 otherwise, and fz; 4y denotes
the angle between two vectors. It is easy to verify that RHBE
is (r,r(14+¢€),1—-%,1~ @)—sensitive locality-sensitive
hashing family (Indyk and Motwani 1998), (Gionis, Indyk,
and Motawani 1999), leading to a O(n”) time complexity
algorithm to solve an approximate nearest neighbor search

log(lfﬁ)

problem, where p = Toe(l_ Iy
og(l————

Binary Embedding with Mercer Kernels

Binary embedding with Mercer kernels (BE-MK) (Kulis and
Grauman 2009) (Mu et al. 2014) (Jiang, Que, and Kulis
2015) employs feature maps followed by RBE, which is de-
fined as follows:

h(z) = sgn (w' ¢(x)), )

where ¢(+) is a feature map (kernel PCA or Nystrom approx-
imation) for a particular Mercer kernel and w is a random
vector in R™. For example, kernelized locality-sensitive
hashing (KLSH) (Kulis and Grauman 2009) (Jiang, Que,
and Kulis 2015) for a kernel &(-,-) involves the following
feature mapping:

d(x) 2 U, [k(z], @); - )], 3)

where Uy, is the k leading eigenvectors of the Gram ma-
trix. Instead of such data-dependent embedding, a fully ran-
domized binary embedding is developed to preserve Mercer
kernels, which includes X2 kernel (Li, Samorodnitsky, and
Hopcroft 2012) and shift-invariant kernels (Raginsky and
Lazebnik 2009).

sk(x)

m?
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Table 1: Additive homogeneous kernels with closed-form
feature maps.

kernel | k(z,y) | Py ()
Hellinger’s \/TY VT
% 2% etw 1°gx\/xsech(7rw)
intersection | min{x,y} | ewle® \/ 273: 1+411w2

For existing algorithms, we observe the following limita-
tions:

e It requires a training dataset for data-dependent binary
embedding to construct feature maps, resulting in the poor
performance when the query and training data are gener-
ated from very different distributions.

e Up to our knowledge, there does not exist a completely
randomized algorithm to work with a large family of ker-
nels. For example, additive homogeneous kernels, which
includes very common kernels (e.x. X2 kernels, intersec-
tion kernels, etc.), are not be considered in RBE.

Explicit Feature Maps for Additive Homogeneous
Kernels
Additive homogeneous kernels are said to be a family of
Mercer kernels K : Ri X R‘j_ — R, which is defined as
follows:

d
Zk(xmyz)v V($,y) GRi XRia
i=1

K(z,y)

where k(- -) is a homogeneous kernel and z; is the ith ele-
ment of x. There exist many popular kernels in the family,
including Hellinger’s, X29 and intersection kernels, which
have been frequently used for distance measures between
histograms. For the sake of simplicity, kernels are always
meant to be additive homogeneous kernels in this paper.

According to (Vedaldi and Zisserman 2012), homoge-
neous kernels can be represented by the explicit feature map
®,,(+) such that

e = [

where k(z,y) is a homogeneous kernel and the feature
maps associated with homogeneous kernels are described in
Table 1. To approximate it in a finite-dimensional vector,
(Vedaldi and Zisserman %\012) constructs m-dimensional
feature maps denoted as ®,,(-) by proposing an efficient
technique to sample w in Eq. 4. For example, if m samples
are used, the kernel is approximated by 2m + 1-dimensional
feature maps. Therefore, in case of additive homogeneous
kernel, the kernel is approximated by d(2m+1)-dimensional
features, where d is the data dimension.

Dy (x)*q)w (y)dw7 4)

Proposed Method

In this section, we propose a randomized binary embedding
with additive homogeneous kernels, which is referred to as
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Figure 1: Scatter plots of the normalized Hamming distance
versus X2 kernel values on the two-dimensional synthetic
dataset. The left panel is the case where the landmarks are
selected from a limited domain, in which the one of dimen-
sion is limited to [0.8, 1]. The right panel is the case where
the landmarks are randomly selected from the entire domain.

BE-AHK. Before describing the details of the proposed al-
gorithm, we describe the main motivation of this algorithm.

Motivation

Kernelized LSH (KLSH), along with other data-dependent
binary embedding with Mercer kernels, requires a set of
training points, which results in performance degradation in
the case that queries are generated from the different distri-
bution of the training points. The degradation is caused by
the inaccurate estimation of the kernel values between the
query and data points if landmark points are not sufficiently
selected to cover the data distribution.

Figure 1 represents the scatter plot of the normalized
Hamming distance versus 2 kernel values on the two-
dimensional synthetic dataset, in which all data points
are the absolute values of random samples from a two-
dimensional normal distribution with zero mean and unit
variance. The points are transformed into 1K bits by KLSH.
As observed in Figure 1, if the landmark points are biased
(i.e. not sufficient to cover the whole dataset), KLSH fails to
preserve kernel values. Since the data distribution steadily
changes in a streaming environment, it is necessary to de-
velop a completely randomized binary embedding algorithm
for additive homogeneous kernels.

Algorithm

The proposed algorithm, BE-AHK, is composed of the
following steps: (1) data points are embedded onto a m-
dimensional space by explicit feature maps (Vedaldi and
Zisserman 2012), and (2) the embedded points are trans-
formed into binary codes by random hyperplane binary em-
bedding. Specifically, given an example = € RY, an embed-
ding function is defined by

~

h(zx) £ sgn (wT{)m(a:)) , 5)
where </I\>m(:c) is a m-dimensional feature map described in
Eq. 4 and w € R™ drawn from N(0, I). It is worth noting

that the length of feature map ®,, () cannot be larger than
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1 and always the same regardless of input vectors, which is
formally described in the next section.

Even though BE-AHK is easy to implement, it yields
the similarity-preserving binary codes in terms of additive
homogeneous kernels, which can be used for approximate
nearest neighbor search by addressing the following ques-
tions:

e Can BE-AHK approximate the kernel values up to small
distortion? According to (Vedaldi and Zisserman 2012),
the explicit feature map leads to small approximation er-
ror between K (, y) and ®,,,(x) T ®,, (). However, due
to the presence of sign function, it is not clear how such
error is related to binary embedding.

e Can BE-AHK provide an efficient solution to approx-
imate nearest neighbor search problem or large-scale
machine learning? For example, if BE-AHK yields
similarity-preserving binary codes, it naturally leads to a
sub-linear running time algorithm for retrieving nearest
neighbors.

Theoretical Analysis

In this subsection, we analyze BE-AHK to prove that it
preserves additive homogeneous kernels. First, we present
Corollary 1 to show that the length of explicit feature maps
cannot be larger than 1.

Corollary 1. Given d-dimensional histograms x and y, let

</I\>m(w) be the explicit feature map to approximate additive
homogeneous kernels. Suppose that the feature map is ob-
tained by the uniform window and a period A larger than

27. Then, for any x € R%, i)m(ac)—r(/l\)m(:c) <1

Proof. According to Eq. 20 (Vedaldi and Zisserman 2012),

+oo

Bo(@) B(x) < D Ky
j=—00
+oo
2 2w

j=—00
where k; 2 25k(j27) and k(-) is the spectrum of an ad-
ditive homogeneous kernel. Since fj;; k(x)dx = 1, it is
trivial to show that ®,, (z) T ®,,(z) < 1. O

Moreover, it is easy to show that the length of feature map
should be always the same regardless of input vectors, be-
cause the spectrum of kernel is invariant under the inputs.
Therefore, Corollary 1 says that all data points transformed
by feature maps lie on a sphere, which makes it reasonable
to apply RHBE into the transformed points.

We present Corollary 2 to show how many samples for
the feature map are needed to approximate kernels up to J-
distortion.

Corollary 2. Let K(x,y) be a smooth additive homoge-
neous kernel (i.e. x? or JS kernel) for any d-dimensional
histograms x and y. Given 6 € (0,1), there exists



O (d log? %)-dimensional feature map :I\)m() to approxi-
mate the kernels up to §-distortion such that
|K(1L'7y) - (im(w)-r@m(y)' <.

Proof. The proof is a simple consequence of Lemma 3 in
(Vedaldi and Zisserman 2012). O

Corollary 2 shows that the dimension of feature map

grows logarithmically to approximate smooth kernels ! up
to d-distortion, which makes it possible to drive the tight up-
per and lower bounds on Hamming distance.
Theorem 1. Given § € (0, 1), suppose that the feature map
®,,.(-) approximates the kernel K (-,-) up to §-distortion.
Then, the lower and upper bounds on Hamming distance
induced by Eq. 5 are summarized as

f(K(@.y) <E[Z[h@) # h(y)]| < g(K(@.y). ©
where f(-) and g(-) are defined as

3 (z+0\° x+0 1
) = 57r(1—(5> itz O
B _(x—é)g_x—é 1
g(z) = o - 5 ®)

Proof. According to Eq. 1,

O~ —
P,.(x), P (Y)
™
Pn(z) 20m(y)

1 cos™ ! < = =
i || B (@)][[|8m (y)l
According to Corollary 1 and 2, it is trivial to show that

E[Zn() # h(y)]]

) |

N

Koy 5 < Pu@ Buly) Ky +s
|| @ ()| P ()] 1-9

D, (x) D,.(y)

1L ()11 L (W)
bounded from [0, 1]. Then, we obtain the following inequal-
ities:

-1 K(may)+§
COS (71—6

Moreover, Corollary 1 also says that

cos ! (K (z,y) — 6)

* <|&>m(w>||<i>m(y>||>'

First, we derive the lower bound on Hamming distance.
Considering the lower bound on the inverse cosine function,

3
cos ™ !(x) > —ga??’ -+ E, forx €

2 [0’ 1]7

we obtain

5w 1-4 3

3 (K(m,y)+5)3_K(a(c7y);)—6 1
(1 — 2
< E[Z[h(@)# h(y)]]-

"For non-smooth kernels including an intersection kernel,

1 . :
O(dé™ ==1)-dimensional feature maps should be used to approxi-
mate the kernel up to §-distortion, where ¢ > 1 is a constant.
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Figure 2: Plots of the upper and lower bounds on Hamming
distance in case of § = 0.01. The blue (red) dotted line
shows the upper (lower) bound and the black circles mean
the normalized Hamming distance on the synthetic dataset,
in which two-dimensional 10K data points sampled from 2
distribution (with one degree of freedom) are transformed
into 10K bits.

Second, we derive the upper bound on Hamming distance.
According to Taylor expansion of cos ™! (+),

cos ! (&) = 5 = > Oln) (@),
n=0
where C(n) = (*")/(4"(2n + 1)). Then,
cos ™! (z) < —%x?’ —x+ g

Therefore, we can derive the lower bound on the collision
probability:

E[Z[h(@) # h(y)]

(K(z,y)—0)°
6

As shown in Figure 2, Theorem 1 roughly says that the
normalized Hamming distance between binary codes is re-
lated to their kernel value in case that an explicit feature map
approximates a kernel up to small distortion. According to
(Indyk and Motwani 1998), (Gionis, Indyk, and Motawani
1999), it is trivial to show that BE-AHK can be used as LSH
to retrieve approximate nearest neighbors in sub-linear time
complexity 2, because it yields similarity-preserving binary
codes. Due to the page limit, we omit the details of LSH
construction and its analysis.

Numerical Experiments

In this section, we conducted numerical experiments to val-
idate the benefits of BE-AHK compared to existing meth-
ods, which includes of KLLSH (Jiang, Que, and Kulis 2015),

2A better version of LSH in terms of query time (Andoni et al.
2014) (Andoni and Razenshteyn 2015) has been recently proposed,
which works well when all data points lie on a sphere. However,
they do not consider a kernel-induce distance metric.



RHBE(Charikar 2002), and sign Cauchy random projection
(Li, Samorodnitsky, and Hopcroft 2012). Specifically, BE-
AHK is at least comparable to existing methods in gen-
eral cases and superior to them when queries and landmark
points are from different distributions. For additive homoge-
neous kernels, we selected the following kernels:

d

22 LilYi ’
= Tty

d
> min(z;, yi),
=1

L

K2 (x,y)

Kinters (mv y)

where x,y € R? and z; is the i-th component of x.
For experiments, we used two popular datasets:

e MNIST is composed of 784-dimensional 50,000 training
data and 10,000 testing data with 10 classes.

e GISTIM (Jégou, Douze, and Schmid 2011) is composed
of 920-dimensional 1 million GIST descriptors with addi-
tional 1,000 queries.

For both datasets, all data points are L.; normalized.
For a fair comparison, we used the following configura-
tion of compared methods:

e BE-AHK (the proposed method) has one hyperparameter
to set the number of samples per dimension to construct
feature maps. We used three (ten) samples per dimension
for x? (intersection) kernel.

e KLSH (Jiang, Que, and Kulis 2015) has two hyperpa-
rameters: the number of landmark points and the rank
of KPCA. We fixed the number of landmark points to be
1,000. We tested different ranks for KPCA, because it it
sensitive to the performance of KLSH.

o RHBE(Charikar 2002) and SCR (Li, Samorodnitsky, and
Hopcroft 2012) do not have any tuning parameters.

To avoid any bias, we repeated all experiments five times to
produce the mean and standard deviation.

Kernel Preservation Evaluation

We measured the difference between the normalized Ham-

ming distance and “acos-kernel”, which is defined as follow:
cos™" (K(z,y))

i
™

where K (-,-) is an additive kernel. According to (Li,
Samorodnitsky, and Hopcroft 2012), the performance of
non-linear classifiers with “acos-kernel” is similar to the
classifier with original kernel. It motivates us to measure
how much the normalized Hamming distance can preserve
the “acos-kernel” by the following metric used in (Yang et
al. 2014):

|H - K||r |H — K[|
1K ][F |1 K[
where [H],; is the normalized Hamming distance between

two vectors and [K|,. is the “acos-kernel” of two points.
|| - ||F and || - || are Frobenius and spectral norms.

and
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Figure 3: Plots for the difference between the normalized
Hamming distance and “acos-kernel” values on the subset
of GISTIM dataset with respect to the number of bits, in
which KLSH(32) means that the rank of KPCA is 32. The
first row is obtained by Frobenius norm and the second one
by spectral norm.

Figure 3 shows the difference between Hamming distance
and “acos-kernel” with respect to the number of bits on a
subset of GIST1M dataset, where 5,000 points are randomly
chosen. Clearly, BE-AHK almost acts as an unbiased esti-
mator of “acos-kernel”, because the difference becomes zero
when the number of bits increases. It is worth noting that
SCR does not work with an intersection kernel, which makes
it inappropriate to use SCR with other kernels instead of x?
kernel.

Hamming Ranking Evaluation

We computed precision-recall curves on MNIST and
GISTIM datasets with respect to the number of bits to com-
pare BE-AHK with existing methods in terms of approx-
imate nearest neighbor search. For both datasets, we ran-
domly selected 100 queries from test sets and computed 100
nearest neighbors for ground-truths, in which 2 or intersec-
tion kernels are used for similarity measures. We followed
Hamming ranking to compute precision and recall, which
is one of the standard measures (Wang, Kumar, and Chang
2010a) (Wang, Kumar, and Chang 2010b) to evaluate binary
embedding or LSH, in which distance between query and
data points is computed by Hamming distance and is sorted
in ascending order to find the nearest neighbors of query.
Figure 4 and 5 represent precision-recall curves on
MNIST and GIST1M datasets. In any cases, we observed
that BE-AHK is comparable to existing methods in case of a
large code size. Specifically, BE-AHK and KLSH work well
for both x? and intersection kernels. However, as shown in
the second row in Figure 4, BE and SCR do not perform well
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Figure 5: Precision-recall curves on GIST1M with 8,192bits,
in which the left figure shows the results for x5 and the right
one for the intersection kernel.

with an intersection kernel on MNIST, because the nearest
neighbors computed by angular and x? distances are very
different from the ones by an intersection kernel. As ob-
served in Figure 3, BE-AHK more accurately estimates ker-
nel values as the number of bit increases, which makes it
reasonable to observe that BE-AHK works well for both ker-
nels when a large code size is given.

Finally, we compared BE-AHK with KLSH in the case
that the training data points and queries are generated from
different distributions, which is designed to mimic stream-
ing data environment. In order to do that, the data points
are grouped into ten clusters and landmark points are cho-
sen from one of the cluster, which naturally induces differ-
ent distributions for training data and queries. As shown in
Figure 6, it is very clear that the performance of KLSH is
significantly dropped compared to Figure 4 while the per-
formance of BE-AHK is the same. Since BE-AHK is a
data-independent algorithm, we observe that it is superior
to KLSH in streaming data environment.

Conclusion

We proposed a completely randomized binary embedding
to work with a family of additive homogeneous kernels, re-
ferred to as BE-AHK. The proposed algorithm is built on
Vedaldi and Zisserman’s work on explicit feature maps for
additive homogeneous kernels, which consists of two steps:
(1) data points are embedded onto a m-dimensional space
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Figure 6: Precision-recall curves on MNIST with 8,192bits
when landmark points and queries are generated from dif-
ferent distribution. The left figure shows the results for x2
and the right one for the intersection kernel.

by explicit feature maps, and (2) the embedded points are
transformed into binary codes by random hyperplane binary
embedding. We theoretically and empirically confirmed that
BE-AHK is able to generate similarity-preserving binary
codes, which guarantees to retrieve nearest neighbors effi-
ciently. For future work, we will extend BE-AHK to work
with other families of kernels, such as shift-invariant kernels
or polynomial kernels.
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