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Abstract

Clustering is a fundamental research topic in data mining.
A balanced clustering result is often required in a variety of
applications. Many existing clustering algorithms have good
clustering performances, yet fail in producing balanced clus-
ters. In this paper, we propose a novel and simple method for
clustering, referred to as the Balanced Clustering with Least
Square regression (BCLS), to minimize the least square linear
regression, with a balance constraint to regularize the cluster-
ing model. In BCLS, the linear regression is applied to esti-
mate the class-specific hyperplanes that partition each class of
data from others, thus guiding the clustering of the data points
into different clusters. A balance constraint is utilized to reg-
ularize the clustering, by minimizing which can help produce
balanced clusters. In addition, we apply the method of aug-
mented Lagrange multipliers (ALM) to help optimize the ob-
jective model. The experiments on seven real-world bench-
marks demonstrate that our approach not only produces good
clustering performance but also guarantees a balanced clus-
tering result.

Introduction
Clustering has been widely studied for decades and plays
an essential role in many fields, such as statistics and ar-
tificial intelligence. The objective of clustering is to group
the data points that have similar patterns into the same clus-
ter and discover the data structure. Over the past decades,
many clustering algorithms have been proposed and ex-
tended, such as K-means, fuzzy C-means (Bezdek 2013),
spectral clustering methods (Ng et al. 2002; Nie, Wang,
and Huang 2016), and projected clustering (Nie, Wang, and
Huang 2014).

Given data points with balanced distribution (each class
has approximately the same number of samples), usually we
would expect the clustering result to reflect such balance.
In other words, a good clustering algorithm is supposed to
prevent a too small or too great number of data points from
being partitioned into a cluster. Nevertheless, prevalent clus-
tering algorithms like K-means, spectral clustering, and etc.,
do not produce a balanced clustering result, especially when
the data points need to be grouped into a large number of
clusters.
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In many data mining applications, it is often required to
have balanced clusters, and ordinary clustering algorithms
are unable to meet the requirement. Examples can be found
in photo query systems (Althoff, Ulges, and Dengel 2011)
and retail chain problems. Another promising application
is in the energy load balance of wireless sensor networks
(Du, Liu, and Qian 2009), where unbalanced cluster struc-
ture may cause unbalanced energy consumption and shorten
the network lifetime. Moreover, balanced clustering tends to
avoid forming outlier clusters, and thus has beneficial reg-
ularizing effect (Zhong and Ghosh 2003). Despite the wide
and essential application of balanced clustering, it seems to
have drawn no continuous attention from the community.

A few early proposed clustering algorithms are able to
produce balanced clusters. These balanced algorithms can
be categorized into two types: a) hard-balanced clustering,
in which cluster size is strictly required by setting fixed num-
ber of samples in clusters; b) soft-balanced clustering, in
which balance is an aim but not a mandatory requirement.
Constraint K-means (Bradley, Bennett, and Demiriz 2000)
and a lately proposed method, balanced K-means (Mali-
nen and Fränti 2014) are based on K-means and the num-
ber of data points in clusters is set as a parameter. They
are both hard-balanced clustering. Actually in many sit-
uations, absolute balance is not required. The method in
(Banerjee and Ghosh 2002) is based on a three step sam-
pling procedure, and their subsequent work (Banerjee and
Ghosh 2004) utilizes the penalty strategy to increase the dis-
tance from the data points to the centroid that has already
won data points. In the works (Zhong and Ghosh 2003;
Chang et al. 2014) the balance degree can be adjusted. These
algorithms are all soft-balanced clustering methods.

Balance is a global property, therefore it is very difficult
to guarantee both a balanced result and high cluster quality.
In our work, we aim to integrate the two goals, rather than
compromise either one. We consider a balance constraint to
regularize the clustering model, which belongs to the soft-
balanced algorithms, in order to have a balanced result and
maintain good clustering performance simultaneously. This
is the first motivation of our proposed method.

Linear regression plays an essential role in supervised
learning tasks, such as classification, and demonstrates
tremendously excellent performance as a learning model in
processing high dimensional data, such as in face recogni-
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tion (Chen 2014; Tahir et al. 2011). Previous works (Nie
et al. 2009; 2011) and (Ye 2007) reveal the secret of this
property: the true data assignment matrix can be always em-
bedded into a low dimensional linear mapping of the data,
generally when the data are high-dimensional and small-
sample-sized. Also, we noted that the linear regression can
provide the model of dissimilarity for clustering to guide the
partitioning. From this perspective, we propose a clustering
model with minimized least square error of linear regres-
sion. The third part of this paper shows that the linear re-
gression can estimate the class-specific hyperplanes dividing
each class of data from others. This the second motivation of
our work.

Contributions. Driven by the aforementioned two moti-
vations, we propose a novel clustering algorithm, based on
the least square linear regression with a balance constraint.
The proposed clustering method is called balanced cluster-
ing with least square regression (BCLS). To efficiently min-
imize the objective function and obtain a better solution, we
apply the augmented Lagrange multipliers (ALM) for the
optimization problem. We evaluate our proposed method on
seven real-world datasets and it turns out that this clustering
strategy works well in clustering different types of data, and
demonstrates excellent balancing performance.

Background

In this section, we briefly introduce two key background
methods we use in our proposed model. We build our clus-
tering model based on the least square linear regression and
then apply the method of ALM to tackle the optimization
problem.

We first introduce some notations that are used throughout
the paper. For matrix M = (mij) ∈ R

p×q , mij denotes the
(i, j)-th entry of M , MT denotes the transpose of M , and
tr(M) denotes the trace of M . The F -norm of M is denoted
by ‖M‖F , and the l2-norm is denoted by ‖M‖2. The inner
product of matrices A and B is denoted by 〈A·B〉. 1 denotes
the vector with all elements as 1, and 0 denotes the vector
with all elements as 0.

Least Square Linear Regression

Linear regression is a traditional approach for regression
problems. This antique, yet efficient method has been widely
used in real-world applications. Given a dataset of two
classes, {(xi, yi)}ni=1, where xi ∈ R

d, and yi ∈ {−1, 1}
is the label of the i-th data point, the linear regression model
has the following form:

f(x) = xTw + b (1)

where w ∈ R
d is the projection vector, and b ∈ R is the

bias of the linear model. In regression, the estimation error
is minimized as follows:

min
n∑

i=1

e(f(xi), yi) (2)

In the multivariate linear regression (Trevor, Robert,
and Jerome 2001), we are given a dataset of c classes,

X = [x1, x2, · · · , xn] ∈ R
d×n, where n is the number

of samples and d is the data dimensionality, and Y =
[y1, y2, · · · , yn]T ∈ R

n×c is the corresponding label matrix.
The least square error is a popular approach for the linear
regression model, aiming to obtain the optimal projection
matrix W = (wik) ∈ R

d×c, and the bias vector b ∈ R
c by

the following optimization model

min
W,b

n∑
i=1

‖WTxi + b− yi‖22 + γR(W ) (3)

A regularization term R(W ) with a coefficient γ is intro-
duced as a penalty term for the size of W .

The Method of Augmented Lagrange Multipliers

Augmented Lagrangian methods are a series of algorithms
for solving constrained optimization problems. The later
work (Bertsekas 1982) introduced the general method of
augmented Lagrange multipliers (ALM) for solving con-
straint optimization problem of the following kind:

min f(X), s.t. H(X) = 0 (4)

where f : R
m×n → R and H : R

m×n → R
m×n. The

augmented Lagrangian function is defined as

L(X,Λ, μ) = f(X) + 〈Λ, H(X)〉+ μ

2
‖H(X)‖2F (5)

where μ is a positive scalar that gets updated after each iter-
ation, and Λ is an estimate of the Lagrange multi-plier, with
the estimation accuracy improved at every step.

Compared to common used penalty methods, the major
advantage of ALM method lies on solving the original con-
straint problem without taking μ → ∞ and that μ can stay
much smaller when the objective function converges.

Hence, the constraint optimization problem becomes an
unconstraint problem by minimizing the Lagrangian func-
tion L(X,Λ, μ) with updating parameters μ and Λ. The in-
dication of convergence is H(X) → 0 or Λ remains un-
changed. The detailed algorithm is shown in Algorithm 1.

Proposed Model

Balance Constraint

In our work, we consider a common used class indicator ma-
trix Y = (yik) ∈ R

n×c, following the setting in (Trevor,
Robert, and Jerome 2001), as the clustering assignment ma-
trix. The assignment matrix is defined as follows:

yik =

{
1, if xi ∈ class k
0, otherwise (6)

For convenience, we simply express the assignment matrix
as Y ∈ Ind.

Our goal is to partition the data samples into balanced
clusters among different categories, preventing that any clus-
ter has too big or small number of samples. Given Y as the
assignment matrix, and s = [s1, s2, · · · , sc] ∈ R

1×c, where
si denotes the number of samples in the i-th cluster. Ap-
parently we have s = 1TY , and the average number of the
samples in each cluster is n/c.
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Algorithm 1 Algorithm of General Method of ALM
Input: ρ > 1
Output: Solution X
Initialize μ, and set Λ = 0
while not converge do

1. Solve X(t+1) = argmin
X

L(X(t),Λ(t), μ(t)) in Eq.(5);

2. Update Λ: Λ(t+1) = Λ(t) + μ(t)H(X(t+1));

3. Update μ: μ(t+1) = ρμ(t).

end while
Return X .

To partition all the samples into balanced clusters means
to make the cluster size as close to n/c as possible. That is
to say, our purpose is to minimize σ2, the variance of {sk}:

min
s

σ2 ⇔ min
s

1

c

c∑
k=1

(
sk − n

c

)2

⇔ min
s

c∑
k=1

(
s2k − 2sk

n

c
+

n2

c2

)

⇔ min
s

(
c∑

k=1

s2k − n2

c

)

⇔ min
s

c∑
k=1

s2k (7)

With simple mathematical deduction, we can get
c∑

k=1

s2k = ‖s‖22 =
∥∥1TY

∥∥2
2
= tr

(
Y T11TY

)
(8)

From Eq. (7) and Eq. (8), we can observe that we can achieve
the goal of balanced clustering by minimizing the square-
sum of the number of samples in each cluster. Following
this idea, we use tr(Y T11TY ) as a balance constraint, and
it is obvious that the its value indicates the balance degree of
our clustering algorithm.

Theorem 1. Given s1 + s2 + · · · + sc = n and sk|ck=1 ≥
0,
∑c

k=1 s
2
k reaches its minimal value n2/c when sk = n/c.

Proof . According to the Cauchy-Schwarz Inequality,(
c∑

k=1

sktk

)2

≤
(

c∑
k=1

s2k

)(
c∑

k=1

t2k

)
(9)

Let tk|ck=1 = 1, the equality holds when s1 = s2 = · · · =
sc. So we can readily conclude that when sk|ck=1 = n/c,∑c

k=1 s
2
k arrives at its minimal value n2/c. �

According to the theorem above, the balance constraint is
capable of introducing competition among different classes.
By minimizing the balance constraint tr(Y T11TY ), the
data samples tend to be clustered into c balanced classes
with n/c samples in each class.

Algorithm 2 Algorithm of the BCLS method
Input: Centered dataset X = [x1, x2, · · · , xn] ∈ R

d×n,
the number of clusters c, and parameters γ, λ, and
ρ(ρ > 0).

Output: Assignment matrix Y ∈ R
n×c.

Initialize Y randomly, initialize μ, and set Λ = 0 ∈ R
n×c.

Repeat

1. Obtain W and b by solving the problem in Eq. (14) with
the solution in Eq. (15);

2. Obtain Z by solving Eq. (16) with the solution in Eq.
(17);

3. Obtain Y by Eq. (19) and Eq. (21);
4. Update Λ: Λ(t+1) = Λ(t) + μ(t)(Y − Z);
5. Update μ: μ(t+1) = ρμ(t).

Until Y − Z → 0 or Λ remains unchanged
Return Y .

Objective Function

Linear regression models have been widely used and have
excellent performance in supervised learning, such as clas-
sification. Few previous research has considered the applica-
tion of regression model for unsupervised learning. Unlike
the previous works, we proposed a novel clustering model
based on the least square linear regression.

In our clustering setting, given n data samples of c classes,
each column of X stands for a sample that consists of d fea-
tures. For simplicity, we assume the data are centered, i.e.,
X1 = 0. We combine the clustering goal with the regression
model in Eq. (3), and adopt the l2-regularization on the pro-
jection matrix W as the penalty for the size of W , as in (Zou,
Hastie, and Tibshirani 2006). Besides, based on the obser-
vation in the previous subsection, we introduce the balance
constraints tr(Y T11TY ) as another regularization term in
our clustering model. With the setting above, we proposed
the BCLS with the following objective function:

min
W,b,Y ∈Ind

∥∥XTW + 1bT − Y
∥∥2
F
+ γ‖W‖2F

+λtr
(
Y T11TY

)
(10)

where γ is the regularization parameter and λ is the balance
parameter.

Our BCLS method is based on the linear regression
model, aiming to estimate in each iteration, the class-specific
regression hyperplanes that partition the data of distinct
classes. From this perspective, we can view the projection
matrix W = [w1, w2, · · · , wc] ∈ R

d×c as the catenation of
{wk}, where wk denotes the normal vector to the hyperplane
that partitions the k-th class from the others. The accuracy
of the estimation of these hyperplanes gets improved step by
step, in the process of minimizing the least square regression
error.

In the objective function in Eq. (10), the minimization of
the least square regression term guides the clustering process
to partition data points into c clusters. Meanwhile, minimiz-
ing the balance regularization term guarantees the balanced
partitioning among different categories.
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Optimization Algorithm

In this section, we give an algorithm to optimize the objec-
tive function of BCLS in Eq. (10). Since the problem is NP-
hard in general, it is very hard to solve it in polynomial time.
In our work, we apply ALM to help obtain good solutions for
the optimization. We replace the assignment matrix Y in the
balance term with matrix Z that has entries with continuous
values, following the alternating direction method of multi-
pliers (Eckstein and Bertsekas 1992), so as to transfer Eq.
(10) into an equality constraint optimization problem and
approximately obtain the optimal solution by alternatively
solving Y with Z fixed and solving Z with Y fixed. Then
Eq. (10) becomes

min
W,b,Y ∈Ind

Y=Z

∥∥XTW + 1bT − Y
∥∥2
F
+ γ‖W‖2F

+λtr
(
ZT11TZ

)
(11)

Now we can adopt ALM to solve the above optimization
problem with equality constraint H(X) = Y − Z = 0. In
the method of ALM, the goal is to minimize the Lagrangian
function shown in Eq. (5). With simple mathematical de-
duction, the optimization problem of the general method of
ALM can be converted to:

min
X

f(X) +
μ

2

∥∥∥∥H(X) +
1

μ
Λ

∥∥∥∥
2

F

(12)

We apply the method of ALM above, to the optimization
problem in Eq. (11), and we get the final optimization prob-
lem for our BCLS method:

min
W,b,Y ∈Ind,Z

∥∥XTW + 1bT − Y
∥∥2
F
+ γ‖W‖2F

+λtr
(
ZT11TZ

)
+

μ

2

∥∥∥∥Y − Z +
1

μ
Λ

∥∥∥∥
2

F

(13)

where μ is a positive scalar and its value increases slightly
after each iteration, and Λ is an estimate of the Lagrange
multiplier. The estimation accuracy improves at every step
of iteration.

The problem in Eq. (13) is non-convex, and the objective
function has multiple unknown variables. It can be solved by
alternatively updating the four variables W , b, Y and Z.

i) With Y and Z fixed, Eq. (13) becomes

min
W,b

∥∥XTW + 1bT − Y
∥∥2
F
+ γ ‖W‖2F (14)

Noting that the data are centered, simply by setting the
derivatives of the objective function in Eq. (14) with respect
to W and b to zeros, we have⎧⎨

⎩
W =

(
XXT + γId

)−1
XY

b =
1

n
Y T1

(15)

ii) With W , b and Y fixed, Eq. (13) becomes

min
Z

λtr
(
ZT11TZ

)
+

μ

2

∥∥∥∥Y − Z +
1

μ
Λ

∥∥∥∥
2

F

(16)

Table 1: Description of Benchmark Datasets

Dataset # Sample # Dimension # ClassOriginal Processed

Wine 144 13 13 3
Ionosphere 252 34 20 2

UMIST 380 10304 50 20
YALE-B 2242 1024 70 38

AR 1400 4800 125 100
JAFFE 200 4096 20 10

CMU-PIE 1000 4096 50 10

Likewise, we can obtain Z by setting the derivative of the
objective function in Eq. (16) with respect to Z to zero:

Z =
(
μIn + 2λ11T

)−1
(μY + Λ) (17)

iii) With W , b and Z fixed, we can transform Eq. (13) into
the following form:

min
Y ∈Ind

‖Y − V ‖2F + const. (18)

where const. denotes a constant and V = (vik) ∈ R
n×c,

and

V =
2

2 + μ

(
XTW + 1bT

)
+

1

2 + μ
(μZ − Λ) (19)

Considering Y ∈ Ind, each element of Y = (yik) ∈ R
n×c

is binary and the sum of each row is 1, thus Eq. (18) can be
written as:

min
Y

n∑

i=1

c∑

k=1

(yik − vik)
2, s.t. yik ∈ {0, 1},

c∑

k=1

yik = 1 (20)

We use a traversal strategy to solve Eq. (20), and consider
the locations of 1 in Y from one row to another. We can
obtain the solution as follows

yik =

{
1, if k = argmax

k
{vik}ck=1

0, otherwise
(21)

The detailed algorithm of BCLS is shown in Algorithm 2.
Algorithm Analysis. Since the problem in Eq. (13) is

non-convex, given fixed Λ and μ, Algorithm 2 will find the
local solution in each iteration. The convergence of ALM
has been analyzed and proven in previous papers (Bert-
sekas 1982; Powell 1969). In each iteration, the major com-
putation burden seems to lie on obtaining the matrix in-
verse in Step 1 and Step 2. Actually, the inverse in Step 1
can be computed before the iteration. Besides, the matrix
μIn + 2λ11T in Step 2 is very special, and its inverse can
be given by

[
(μ+ 2nλ)In − 2λ11T

]
/(μ2 +2nλμ). Hence

the time complexity in a single iteration is O(n2c+ d2c).

Experiment

In this section, we evaluate the clustering and balanc-
ing performance of the proposed method on benchmark
datasets. We compare our method with K-means (KM),
fuzzy C-means (FCM) (Bezdek 2013), Discriminative K-
means (DKM) (Ye, Zhao, and Wu 2008), Spectral Cluster-
ing (SC) (Chen et al. 2011), and Balanced K-means (BKM)
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Table 2: Clustering performance (evaluated by ACC and NMI) and balancing performance (evaluated by Nentro) of KM, SC,
FCM, DKM, BKM, and our method BCLS. Reported are the ACC, NMI and Nentro score of these methods on each dataset
corresponding to the best objective function values over 20 random initializations.

Metric Dataset KM SC FCM DKM BKM BCLS

ACC

Wine 96.53 97.22 96.53 98.61 95.83 98.61
Ionosphere 76.59 75.40 76.59 76.59 74.60 77.78

UMIST 58.68 66.84 58.68 64.21 61.05 66.58
YALE-B 11.60 27.83 11.51 42.24 10.35 43.44

AR 25.07 35.43 30.57 59.50 29.29 65.86
JAFFE 89.00 97.00 96.50 90.00 96.00 100

CMU-PIE 20.30 34.30 21.50 45.00 22.20 73.80

NMI

Wine 86.71 89.70 86.71 93.83 83.37 93.85
Ionosphere 21.53 19.53 21.53 21.53 18.25 23.58

UMIST 72.23 78.37 70.83 75.57 72.76 74.22
YALE-B 16.27 33.36 15.61 53.99 14.83 54.50

AR 60.91 63.12 61.67 80.07 61.46 80.79
JAFFE 90.77 96.95 96.08 89.31 95.65 100

CMU-PIE 10.88 33.15 12.88 45.74 13.93 67.78

Nentro

Wine 0.9991 0.9983 0.9991 0.9996 1 1
Ionosphere 0.9989 0.9993 0.9989 0.9989 1 1

UMIST 0.9771 0.9874 0.9814 0.9743 1 0.9999
YALE-B 0.9724 0.9394 0.9817 0.9224 1 0.9997

AR 0.9635 0.9619 0.9835 0.9414 1 0.9991
JAFFE 0.9672 0.9960 0.9959 0.9863 1 1

CMU-PIE 0.9598 0.9443 0.9776 0.8195 1 0.9999

(Malinen and Fränti 2014). Specifically, KM and SC are
among the most classical algorithms that have been widely
used for years, FCM and DKM are two efficient K-means-
like methods, and BKM is a state-of-the-art hard-balanced
clustering method based on K-means. We choose several K-
means-like methods for comparison due to the linear prop-
erty of both K-means and our method.

Experiment Setup

Datasets and Preprocessing Seven real-world datasets
are used in the experiments, including two UCI datasets,
Wine and Ionosphere∗, and five face datasets, UMIST∗∗,
YALE-B, AR, JAFFE†, and CMU-PIE.

For the high dimensional datasets, dimension reduction
is performed in the preprocessing of the datasets. We apply
PCA with 80% to 95% of the information reserved on all
the datasets except Wine. Moreover, to better evaluate the
balancing capacity of each algorithm, we resize some of the
datasets, making each dataset has equal number of samples
in every classes. The detailed information of the processed
datasets is shown in Table 1.

Parameter Settings There are four parameters in the
BCLS. The first one is the regularization parameter γ in
Eq.(13), which is essential but the its value does not sen-
sitively influence the performance. We set γ to 10−5 for
all the datasets. The balance parameter λ, and the coeffi-
cient of the Lagrange multipliers μ, play very important

∗https://archive.ics.uci.edu/ml/index.html
∗∗http://images.ee.umist.ac.uk/danny/database.html
†http://www.kasrl.org/jaffe.html

roles in the BCLS algorithm and both should be deter-
mined carefully. We tune them by grid search from λ ∈
{10−3, 10−2, 10−1, 100, 101, 102, 103, 104, 105} and μ ∈
{10−3, 10−2, 10−1, 100}. The last one is ρ, the updating rate
of μ, and it should be set slightly greater than 1 (Bertsekas
1982). We set ρ to 1.002 for AR and 1.005 for the rest. For all
the other algorithms, we also tune the parameters carefully
and report the results under the best parameter settings.

The experiment results of all the clustering algorithms we
discuss here depend on the initialization. To reduce the sta-
tistical variation, we independently repeat all the clustering
algorithms for 20 times with random initialization. We re-
port the clustering result of each algorithm corresponding to
its best objective function value, respectively.

Evaluation We adopt the common used metrics, Cluster-
ing Accuracy (ACC) (Cai, He, and Han 2005) and Normal-
ized Mutual Information (NMI) (Strehl and Ghosh 2002) to
evaluate the clustering performance for all the algorithms.
We also use the Normalized Entropy (Nentro) (Zhong and
Ghosh 2003) to evaluate their balancing performance:

Nentro = − 1

log c

c∑
k=1

nk

n
log

nk

n
(22)

where nk is the number of data objects in cluster k. An
Nentro of 1 means perfectly balanced clusters and 0 means
extremely unbalanced clusters.

Experiment Results

The clustering performance (ACC and NMI score) and bal-
ancing performance (Nentro score) of each algorithm on the
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Figure 1: The effect of the balance parameter in BCLS on
ACC. Left: AR dataset; Right: UMIST dataset.

seven datasets are shown in Table 2. We plot the data points
distribution on the UMIST dataset, which is chosen arbitrar-
ily due to the limit space of the paper, as shown in Figure 2.
Moreover, the effect of the balance parameter λ in BCLS on
the clustering and balancing performance is demonstrated in
Figure 1, where we take the datasets AR and UMIST as ex-
amples. We have the observations as follows:

• The proposed algorithm demonstrates the best clustering
performance on most of the datasets except UMIST. It
even reaches the ACC and NMI score of 100% on the
dataset JAFFE.

• Each algorithm shows similar clustering performance on
the relatively low dimensional datasets (e.g., Wine and
Ionosphere). SC considers the geometry structure of the
data, hence relatively has an advantage in clustering high
dimensional data, compared to KM and FCM.

• The proposed algorithm significantly has better cluster-
ing performance on the face datasets (e.g., CMU-PIE
and YALE-B), due to the good capacity of linear regres-
sion in dealing with high dimensional data (Chen 2014;
Tahir et al. 2011).

• Our algorithm outperforms other algorithms except BKM,
in balancing performance. BKM is based on the hard-
balanced strategy and produce strictly balanced clusters
all the time, so its Nentro score on all the datasets con-
sistently remains 1. Figure 2 shows that BKM and BCLS
produce balance clusters, while the clusters of the other
algorithms remain unbalanced (From Figure 2 we observe
that, a slight numerical reduction on Nentro indicates big
sample number fluctuation among clusters).

• The balance parameter λ in BCLS has evident influence
on the clustering and balancing performance. From Fig-
ure 1 we can observe that, with the increasing value of λ,
both the ACC and NMI scores rapidly reach their maxi-
mum values respectively and then slightly decrease. The
clusters are generally more balanced with a greater value
of λ. We also observe that the balance constraint helps
evenly distribute the data points, and turns out increas-
ing the clustering performance. Hence, the best cluster-
ing result with balanced clusters can always be achieved
by incorporating the least square regression term and the
balance term, with a proper balance parameter λ.

Figure 2: Sample distribution of clusters corresponding to
the best objective function values on UMIST: (a) KM; (b)
SC; (c) FCM; (d) DKM; (e) BKM: BKM is a hard-balanced
algorithm producing absolutely balanced clusters; and (f)
BCLS: outperforms all other algorithms in balancing per-
formance, except BKM with hard-balanced strategy.

Conclusion

In this paper, we proposed a conceptually simple but ef-
fective clustering algorithm that produces balanced clusters.
We estimate the class-specific hyperplanes that partition the
data points into different clusters by iteratively minimizing
the least square error of the linear regression. In our pro-
posed method, a balance constraint was used to regularize
the clustering model, in order to achieve a balanced cluster-
ing result. Moreover, we applied ALM in the optimization to
obtain good solutions for the problem. The experiments on
seven real-world benchmark datasets demonstrated that the
proposed algorithm BCLS produces good clustering and bal-
ancing performances simultaneously. In the future study, we
may aim to apply BCLS into practical use such as saliency
detection (Han et al. 2015), remote sensing (Cheng et al.
2015; Lu, Wu, and Yuan 2014), and image super-resolution
(Lu, Yuan, and Yan 2013).
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