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Abstract

Faced with the requirements of huge amounts of data pro-
cessing nowadays, hashing techniques have attracted much
attention due to their efficient storage and searching ability.
Among these techniques, the ones based on spectral graph
show remarkable performance as they could embed the data
on a low-dimensional manifold and maintain the neighbor-
hood structure via a non-linear spectral eigenmap. However,
the spectral solution in real value of such methods may de-
viate from the discrete solution. The common practice is just
performing a simple rounding operation to obtain the final
binary codes, which could break constraints and even result
in worse condition. In this paper, we propose to impose a
so-called spectral rotation technique to the spectral hashing
objective, which could transform the candidate solution into
a new one that better approximates the discrete one. More-
over, the binary codes are obtained from the modified solution
via minimizing the Euclidean distance, which could result in
more semantical correlation within the manifold, where the
constraints for codes are always held. We provide an effi-
cient alternative algorithm to solve the above problems. And
a manifold learning perceptive for motivating the proposed
method is also shown. Extensive experiments are conducted
on three large-scale benchmark datasets and the results show
our method outperforms state-of-the-art hashing methods, es-
pecially the spectral graph ones.

Introduction

With the increasing demand of massive data organization,
storage, and retrieval, hashing technique has attracted uni-
versal attention at present. Hashing is mainly explored to
map the raw image or document into a sequence of binary
codes while preserving the similarity structure among the
original data. As the generated short binary codes take a
few storage space and computation cost, hashing has been
widely used in machine learning and computer vision, e.g.,
multimodal learning (Zhang, Wang, and Si 2011), classifi-
cation (Gong et al. 2013a), image retrieval (Liu et al. 2011),
and image patch matching (Korman and Avidan 2011).

Unsupervised hashing methods can be roughly grouped
into two categories, data-independent and data-dependent
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(Wang et al. 2016). The well-known hashing technique Lo-
cality Sensitive Hashing (LSH) (Andoni and Indyk 2006)
belongs to the first one. It utilizes random projection to
map the data into binary codes. And the projection can be
realized by various similarity measures, e.g. p-norm dis-
tance for p ∈ (0 , 1] (Datar et al. 2004), kernel similar-
ity (Kulis and Grauman 2012). Although the random fash-
ion takes low computation complexity, it need more binary
codes to achieve high precision and recall (Shen et al. 2013;
Liu et al. 2014), which leads to the improvement of corre-
sponding storage space and retrieval time cost.

The second category, the data-dependent hashing method,
is mainly developed to generate more compact codes and
has attracted more attention in recent research. Unlike the
randomly selected hyperplane in the LSH, these methods at-
tempt to learn the parameters with different projection func-
tions from a training set . For example, Iterative Quantiza-
tion (ITQ) (Gong et al. 2013b) utilizes PCA projection to
generate hash function with large variance, while Isotropic
Hashing (Kong and Li 2012) aims to produce the projected
dimensions with equal variance. And these hashing func-
tions can also be learned in the kernel space, such as Binary
Reconstruction Embedding (BRE) (Kulis and Darrell 2009).
Besides, hashing method based on reconstruction network
is also considered, e.g., Binary Autoencoder (BA) (Carreira-
Perpinán and Raziperchikolaei 2015). However, compared
with the aforementioned methods, hashing technique based
on the graph Laplacian shows its effectiveness in embed-
ding the original data into low dimensional space, i.e. the
compact binary codes. This mainly results from the more
semantically accurate neighbors after the nonlinear embed-
ding of Laplacian eigenmaps (Shen et al. 2013).

This paper focuses on the unsupervised graph Laplacian
hashing method. The previous hashing based on spectral
graph, e.g., Spectral Hashing (SH) (Weiss, Torralba, and
Fergus 2009) and Anchor Graph Hashing (AGH) (Liu et al.
2011), mainly suffers from two problems. First, the discrete
codes are not exactly the spectral solution but a rounding
result of the real value codes to spectral relaxation. The di-
rectly thresholding scheme may lead to the improving er-
ror when the hashing length increases. Although Discrete
Graph Hasing (DGH) (Liu et al. 2014) proposes a discrete
optimization framework to directly learn the binary codes,
but it needs much more time and cannot guarantee the opti-
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mal solution to the original objective. Second, the obtained
real value codes from the top-K smallest eigenvector may
deviate from the discrete solution, and there may exist bet-
ter solution that fits the spectral relaxation. In this paper, in
order to address the aforementioned two problems, we pro-
pose a method, named as Large Graph Hashing with Spec-
tral Rotation (LGHSR), which applies the spectral rotation
to the graph hashing method and could get a closer real value
code to the discrete solution than existing results. Moreover,
the final binary codes are obtained from an alterative opti-
mization method while maintaining the constraint for codes,
which results in efficient low dimensional representation and
takes low time complexity. Our method is evaluated on three
large-scale datasets, and shows better compact codes over
state-of-the-art methods on various metrics.

In the rest of this paper, we first revisit the hashing tech-
nique based on spectral graph in Section 2. Then we propose
our objective function and provide the detailed optimization
algorithm in Section 3. Section 4 provides a kind of mani-
fold learning perspective for the proposed method. Section
5 conducts different sets of experiments for evaluating it on
public datasets. In the end, Section 6 concludes this paper.

Spectral Graph Hashing Revisit

Hashing aims at projecting the high dimensional real value
data xi ∈ Rd into r-bits binary codes fi ∈ {−1, 1}r, and
keeping the similarity structure of these n datapoints. It
can be formulated as the following minimization problem
(Weiss, Torralba, and Fergus 2009),

min
F

∑
i,j=1

Wij

∥∥fi − fj
∥∥2

2
,

s.t. F ∈ {−1, 1}n×r
, FT F = nI, FT 1 = 0

(1)

where fi is the ith row of F, and the affinity matrix W in-
dicates the similarity of original data via Euclidean distance
Wi,j = exp(−‖xi − xj‖22

/
2ε2), and ε is the bandwidth pa-

rameter. The constraints FT F = nI enforces the different
bits to be uncorrelated and FT 1 = 0 forces each bit has
equal chance to be −1 or 1. These constraints make the bi-
nary codes be more efficient for encoding the original data.

As Eq. (1) seeks the compact binary codes via minimizing
the average Hamming distance between similar points, it is
equivalent to solve the problem of balanced graph partition-
ing. Even so, the latter one is still a NP-hard problem. One
general way is to relax it via spectral method, which could
be written as,

min
F

Tr
(
FT (D − W)F

)
,

s.t. F ∈ {−1, 1}n×r
, FT F = nI, FT 1 = 0

(2)

where (D − W) is the graph Laplacian (Chung 1997), D is
a diagonal matrix with the element di =

∑
j

Wij , and Tr

denotes the matrix trace operation. However, the first dis-
crete constraint still makes Eq. (2) hard to be solved. A kind
of spectral relaxation could turn it into an easy problem by
removing this constraint, where the solution becomes the

r eigenvectors of the graph Laplacian with minimal eigen-
value except the eigenvalue of zero. For a novel data out of
the training set, it is assumed that the datapoint is sample
from a uniform distribution, which could therefore obtain an
analytical solution (Weiss, Torralba, and Fergus 2009).

However, hashing technique requires efficient coding,
the time complexity of constructing affinity matrix W is
O

(
dn2

)
. When the training samples and feature dimen-

sion become very large, e.g. CIFAR-10 has 60K images and
each sample has 512D GIST feature (Krizhevsky and Hinton
2009), a big training time consuming has to be faced with.
To solve this problem, AGH considers an approximation of
the matrix W by only preserving the neighborhood structure
of each data point (Liu, He, and Chang 2010). Specifically, a
small set of m points are obtained through clustering on the
training data n, where m � n. The sets of points are treated
as the anchors, U =

{
uj ∈ Rd|j = 1, . . . ,m

}
, to approxi-

mate the neighborhood structure. Then a nonlinear mapping
from data to anchor is computed as follows,

Zij =

{
K(xi,uj)

∑
ĵ∈〈i〉 K(xi,uĵ)

, ∀j ∈ 〈i〉
0, otherwise

(3)

where 〈i〉 indicates the s nearest anchors around xi (s � m),
the function K (·) is used to measure the similarity between
data xi and anchor uj with �2 distance in Gaussian kernel

space K (xi, uj) = exp
(
−‖xi − uj‖22

/
2σ2

)
, and σ is the

bandwidth parameter. The normalized matrix Z ∈ Rn×m is
then utilized to obtain a low-rank affinity matrix A ∈ Rn×n,

A = ZΛ−1ZT, (4)

where Λ = diag(ZT 1). The construction of affinity matrix
can also be accelerated via (Nie, Zhu, and Li 2017). As the
Λ−1 normalizes the constructed matrix A, the summation
of each column and row equal to one and the graph Lapla-
cian becomes I − A. Then, the Eq. (2) can be re-written as a
maximization problem,

max
F

Tr
(
FT AF

)
.

s.t. F ∈ {−1, 1}n×r
, FTF = nI, FT1 = 0

(5)

Similar with Eq.(2), the first constraint should also be re-
moved, which turns Eq. (5) into

max
F

Tr
(
FT AF

)
.

s.t. FT F = nI, FT1 = 0
(6)

The solution to this problem becomes the r eigenvectors of
the matrix A with maximal eigenvalue (except the eigen-
vector which has eigenvalue one). Such real value code re-
sults are often rounded into binary codes via a hard threshold
of zero (Weiss, Torralba, and Fergus 2009; Liu et al. 2011;
Shen et al. 2013).

Recently, the discrete constraint F ∈ {−1, 1}n×r is con-
sidered again. But a kind of extra penalty term is combined
with the original problem (Eq. 5), which is a distance be-
tween the binary code solution and a real value code set (Liu
et al. 2014). When the hyper-parameter of the penalty term

2204



becomes very large, the proposed problem will turn into the
original one and cost a lot of time to converse. But, if the pa-
rameter becomes small, the obtained solution may be away
from the solution to Eq. (5) and result in a poor binary code.

The aforementioned weaknesses of the hashing methods
based on spectral graph can be grouped into two categories.
First, these methods almost tend to take advantage of the
spectral relaxation to obtain a real value solution, and then
directly threshold the solution into a binary code. But the
rounding operation may result in improving error as the code
length r increases and even breaking the last two constraints.
Second, there is no guarantee that such yielded real value
solution best approximates the binary codes. As a matter of
fact, there have been numerous solutions to Eq. (6) and we
could find a closer real value solution to the discrete one.

Spectral Rotation Meets Better Solution

The spectral rotation technique has the property of spectral
solution invariance, which could provide a solution set to
Eq. 6 and find a better real value solution to the discrete
codes. Although the technique has been applied to optimize
the objective function in spectral clustering, such as (Zelnik-
Manor and Perona 2005; Nie et al. 2011; Huang, Nie, and
Huang 2013), it is barely noticed in the hashing method. In
this paper, we aim at applying the spectral rotation to the
spectral graph hashing method and seeking the real value
solution and binary codes in an iterative manner.

Let us first solve the spectral relaxation problem (Eq. (6))
to obtain a candidate real value solution F. In fact, for any F,
FQ is another solution, where Q is an arbitrary orthonormal
matrix. Hence, we hope we can find a better FQ that is closer
to the binary codes B, which can be formulated as,

min
F

‖B − FQ‖2F ,

s.t. B ∈ {−1, 1}n×r
,BT 1 = 0,QT Q = I

(7)

where the distance from the discrete solution B to the modi-
fied real value solution FQ is measured in terms of �2 metric.
Different from the constraint violation of B in the previous
methods, Eq. (7) still preservers the constraint that requires
each bit to be 50% of time and just relaxes the uncorrelated
constraint, which could make the code be more efficient.

The objective function Eq. (7) can be solved by employ-
ing iteratively alternative minimization.
When Q is fixed and M = FQ, Eq. (7) can be re-written as,

min
B

‖B − M‖2F =
∑
j

‖bj − mj‖22.

s.t. B ∈ {−1, 1}n×r
,BT 1 = 0

(8)

Hence, it is equivalent to minimizing the �2-norm of each
column of B − M. First, let b and m denote the column
vectors instead of bj and mj for simplification, respectively.
Then, due to b ∈ {−1, 1}n×1, the minimization of each col-
umn vector subtraction is also equivalent to the following
equation,

max
b

bT m.

s.t. b ∈ {−1, 1}n×1
, bT 1 = 0

(9)

The maximization of Eq. (9) can be directly solved by sort-
ing the elements of m in descending order, and then assign-
ing 1 or −1 according to the sorted result:

bik =

{
1, k ≤ n/2

−1, otherwise
(10)

where i is the index vector of the elements in v after the
sorting. The assigned vector b finally constitutes the matrix
B as a column.
When B is fixed, Eq. (7) can be re-written as,

max
Q

Tr(GT Q),

s.t. QT Q = I
(11)

where G = FT B. And the we can obtain an analytical solu-
tion to Eq. (11) via the Theorem 1.
Theorem 1 Q = UVT is the optimal solution to the problem
in Eq. (11), where U and V are the left- and right-part of the
compact Singular Value Decomposition (SVD) of G.
Proof
First, it is obvious that Q = UVT is feasible to Eq. (11).
Then, for an arbitrary Q, suppose that the compact SVD of
G is G = UΣVT , Eq. (11) can be re-written as,

Tr(GT Q) = Tr
(
VΣUT Q

)
(12)

= Tr (ΓΣ) , (13)

where Γ = UT QV. According to the von Neumann’s trace
inequality (Mirsky 1975),

Tr (ΓΣ) ≤
r∑

i=1

ρiσi, (14)

where ρ1 ≥ · · · ≥ ρr and σ1 ≥ · · · ≥ σr are the singular
values of Γ and Σ, respectively. As ΓΓT = I, the singular

values ρi = 1 and Eq. (14) becomes Tr (ΓΣ) ≤
r∑

i=1

σi. The

equality holds when Γ = I, which leads to

Q = UVT . (15)
This completes our proof. �

The proposed optimization of B and Q are executed iter-
atively until satisfying the convergence criteria, i.e. the un-
changed binary code matrix B. We summarize the proposed
LGHSR in Algorithm 1. The time complexity of the algo-
rithm is O

(
r2nN + rnN log2n

)
, where N is the budget

iteration number. Note that the former part corresponds to
solving Q and the latter is for solving B. As the code length
r is a tiny number compared with n, it can be expected that
the method will be achieved in a few seconds.

Out-of-Sample

For a new coming data x ∈ Rd, the corresponding binary
codes should also be derived. In consideration of the caused
errors of rounding operation in generating codes for training
data, we employ the similar objective as the training proce-
dure but use the real value solution instead of the discrete
one for improving robustness,

min
b(x)∈{−1,1}r

n∑
i=1

A (xi, x) ‖mi − b (x)‖22. (16)
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Algorithm 1 Large Graph Hashing with Spectral Rotation
Input: Training data X ∈ Rn×d, code length r, anchor size
m, neighbor number s, and number of iteration N .
Output: The binary codes B ∈ Rn×r.

1: Build the anchor graph and compute the approximated
affinity matrix A by Eq. (3) and Eq. (4), respectively.

2: Obtain the candidate real value solution F via solving
Eq. (6).

3: Initial an arbitrary orthogonal matrix Q.
4: Fix Q, assign 1 or −1 to the elements of each column of

B by Eq. (10).
5: Fix B, update Q and obtain better real value solution by

Eq. (15).
6: Repeat above 4-5 steps until convergence or N steps.

As A (xi, x) = ziΛ−1z (x), where zi is the i-row of matrix
Z, Eq. (16) is equivalent to,

max
b(x)∈{−1,1}r

〈
b (x) , (FQ)

T
ZΛ−1z (x)

〉
. (17)

As b (x) is restricted to be binary value, the optimal solution
to Eq. (17) becomes

b (x) = sgn (Pz (x)) , (18)

where sgn(·) is the sign function and P = (FQ)
T

ZΛ−1 can
be pre-computed, which could make the out-of-sample hash-
ing more effective.

Manifold Learning Perspective of Spectral

Rotation

The real value codes obtained by the Laplacian eigen-
map can be considered as the points embedded on a low-
dimensional manifold via solving the spectral relaxation
problem in Eq. (6). As shown in Fig. 1, the neighborhood
structure of the high dimensional data points are preserved in
the manifold. However, the embedded points are still away
from the corresponding discrete codes. And directly carry-
ing out the rounding operation may even confuse the binary
codes that belong to non-adjacent data points. In this con-
dition, spectral rotation takes advantage of the orthogonal
matrix Q, which could still derive the optimal spectral solu-
tion and remain the neighborhood structure among the data
points. It is employed for finding better solution that is closer
to the corresponding discrete codes (in terms of �2), which is
considered to be a kind of transformation, i.e. the red arrow
in Fig. (1). Hence, the transformed solution should be more
reliable for generating the discrete codes.

To verify the effectiveness of spectral rotation, it is per-
formed with the real value solution of AGH (Liu et al.
2011) and compared with the corresponding discrete solu-
tion. Note that, as AGH directly rounds the real value so-
lution via zero, it is fair to perform the similar operation in
the spectral rotation. Hence, the second constraint in Eq. (7)
is not considered, and the rounding operation is adopted for
updating B. Multiple anchor number m are considered, as
it plays an important role on building the affinity matrix A

discrete coding

high dimensional data

Laplacian eigenmap

spectral rotation

Figure 1: Manifold learning perspective for spectral rota-
tion. Suppose the training data are embedded into the low-
dimensional manifold and represented by the adjacent cross
points in black. The cross points in red represent the ob-
tained solution via the proposed the spectral rotation. And
the triangles in blue ellipse represent parts of the discrete
codes of the training data.

Code
Length MAP 100 300 500 700 1000

48 bits
AGH 17.89 18.68 18.67 19.29 19.41

AGH+SR 18.12 20.65 21.07 20.84 20.71

96 bits
AGH 15.07 17.66 16.46 16.29 16.55

AGH+SR 16.46 19.82 20.88 20.56 20.51

Table 1: Comparison between AGH and the AGH with Spec-
tral Rotation (SR) on CIFAR-10, where the anchor number
m varies from 100 to 1000.

(Liu, He, and Chang 2010). Table 1 displays the compari-
son results in Mean Average Precision (MAP). The MAP of
AGH after performing the spectral rotation have a big im-
provement on both 48 bits and 96 bits codes. This shows
that the spectral rotation makes the real value solution bet-
ter approximate the discrete one, as shown in Fig. 1. What’s
more, when the code length becomes larger, the performance
of AGH reduces remarkably but the spectral rotation holds
to some extent. We consider that the improper embedded
points by AGH make final discrete codes confused and re-
sult in the increasing error, while the modified points can
overcome it by transforming the points into proper positions.
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Figure 2: Hamming ranking (in MAP) and hash lookup (in
F-measure) performance on MNIST.
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Figure 3: Hash lookup performance (in F-measure and re-
call) of different hashing methods on CIFAR-10.
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Figure 4: Hash lookup performance (in F-measure and pre-
cision) of different hashing methods on YouTube Face.

Experiments

There are three large-scale datasets used for evaluating the
above methods, MNIST1 (LeCun et al. 1998), CIFAR-102

(Krizhevsky and Hinton 2009), and YouTube Faces3 (Wolf,
Hassner, and Maoz 2011). The well-known MNIST dataset
consists of 70,000 images associated with digits from 0 to
9, each of 784-dimensions. It is split into a training set of
69,000 samples and a testing set of 1,000 samples (100
samples for each digit). The CIFAR-10 dataset consists of
60,000 32×32 color images, with 6,000 images per object
category. Each images is represented by a 512-dimensional
GIST feature vector (Oliva and Torralba 2001). The test-
ing set consists of 100 images of each category, which are
uniformly randomly sampled. And the training set is with
all remaining samples. The YouTube Faces dataset contains
3,425 videos of 1,595 different people. Following the set-
tings in (Liu et al. 2014), we form a new subset that con-
sists of 370,319 face images belong to 340 people, where
each people has at least 500 images. A 1,770-dimensional
LBP feature vector (Ahonen, Hadid, and Pietikainen 2006)
is utilized to represent each face image. 100 face images are
uniformly sampled from the people category that contains
more than 2,000 images, and the final sampled 3,800 images
from 38 people form the test set. The remaining samples in
the built subset form the training set. The samples with the
same label are considered as the ground truth for evaluating

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.toronto.edu/˜kriz/cifar.html
3http://www.cs.tau.ac.il/˜wolf/ytfaces/

the retrieval result for each dataset.
The proposed method is compared with several unsuper-

vised hashing methods, including LSH (Andoni and Indyk
2006), Kernel LSH (KLSH) (Kulis and Grauman 2012), ITQ
(Gong et al. 2013b), BRE (Kulis and Darrell 2009), BA
(Carreira-Perpinán and Raziperchikolaei 2015), SH (Weiss,
Torralba, and Fergus 2009), Scalable Graph Hashing (SGH)
(Jiang and Li 2015), Inductive Manifold Hashing (IMH)
(Shen et al. 2013), DGH (DGH-R) (Liu et al. 2014), and
AGH (Liu et al. 2011). Note that, these methods cover the
data-independent and data-dependent category, and the last
five belong to the spectral graph based hashing methods.
Considering the common setting of anchor number m and
neighborhood number s (Shen et al. 2013; Liu et al. 2014),
we set m = 300 and s = 3 in the experiments. And K-means
is utilized to generate the anchor points of the training data.
The iteration N is set to 20 for all the experiments. Besides,
Hamming ranking and hash lookup are both employed for
the evaluation of above methods. Specifically, Mean Aver-
age Precision (MAP) is computed based on the Hamming
distance to a query for the Hamming ranking, and the hash
lookup performance is according to a Hamming ball of ra-
dius 2 to a query.

Results on MNIST. Fig. (2) shows the comparison results
on MNIST dataset in MAP and F-measure (for hash lookup).
We can see that our proposed method outperforms the other
methods with almost all the code lengths, except the largest
one. To be specific, LGHSR with short codes has a remark-
able improvement in both MAP and F-measure, which re-
sults from the effectiveness of spectral rotation. However,
when the code length becomes large, LGHSR do not hold
the high performance, even worse than SGH in MAP and
AGH in F-measure. This is because the constrains for codes
have to be preserved in LGHSR while the threshold strategy
could destroy them to keep the original low-dimensional em-
bedding in real value. Hence, the preserved constraints could
lead to a sub-optimal result compared with those methods
without constraints, especially for the longer code. Even so,
LGHSR still performs better than the other methods in most
conditions, and the generated codes could be much more ef-
ficient as the maintained constraints.

Results on CIFAR-10. The hash lookup results in F-
measure and recall are shown in Fig. (3). Compared with
other methods, LGHSR achieves superior performance in
terms of both metrics. Although most of the methods de-
crease sharply with the increasing code length, which results
from the more sparse hamming space, LGHSR still remains
substantial superiority over them. Note that when the code
length is nearly 96 bits, our method just has a comparable
result due to the same condition in MNIST dataset. Besides,
we show the Hamming ranking performance in Table 2. It
is obvious that LGHSR has a remarkable improvement over
other methods with all the code length. In details, the hash-
ing methods based on spectral graph have significant advan-
tages compared with others, which confirms the effective-
ness of non-linear embedding. Further, LGHSR significantly
increases the MAP scores among the spectral graph meth-
ods, which states the real value solution better approximates
the discrete one. What’s more, the binary codes should be
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Mean Average
Precision CIFAR-10 YouTube Faces

Code Length 24 bits 32 bits 48 bits 96 bits 48 bits 96 bits 128 bits

LSH 0.1349 0.1309 0.1339 0.1373 0.1241 0.1374 0.139
KLSH 0.1315 0.1394 0.1524 0.1591 0.4134 0.5210 0.6190

BA 0.1793 0.1837 0.1863 0.1902 0.6821 0.7274 0.7901
SH 0.1341 0.1324 0.1368 0.1298 0.6229 0.6789 0.7267
ITQ 0.1764 0.1757 0.1797 0.1842 0.6674 0.7135 0.7729
IMH 0.1916 0.1995 0.1889 0.1888 0.4047 0.6886 0.7422
BRE 0.1542 0.1624 0.1731 0.1823 0.5731 0.6304 0.6721
DGH 0.1910 - 0.1912 0.1950 0.7245 0.7672 0.7805
AGH 0.1907 0.1857 0.1868 0.1766 0.6759 0.7477 0.7629

LGHSR 0.2049 0.2039 0.2033 0.1987 0.7613 0.8091 0.8428

Table 2: Hamming ranking performance on CIFAR-10 and YouTube Faces dataset with varying code lengths.

Dataset CIFAR-10 YouTube Faces
Time (s) Train Test Train Test

LSH 0.8 1.4×10−5 8.4 2.2×10−5

BA 732.7 6.4×10−5 6493.3 9.1×10−5

SH 11.5 1.3×10−4 121.5 2.3×10−4

IMH 18.9 3.1×10−5 113.7 2.6×10−5

BRE 1075.4 6.1×10−5 10426.3 1.0×10−4

AGH 18.3 5.8×10−5 114.9 4.4×10−5

DGH 89.2 3.9×10−5 431.6 3.2×10−5

LGHSR 29.8 3.8×10−5 220.2 2.7×10−5

Table 3: Comparison of training and testing times (in sec-
onds) on CIFAR-10 and YouTube Faces dataset.

more efficient as the held constraints.
Results on YouTube Faces. Different from CIFAR-10

and MNIST, the number of categories in testing set is
smaller than the training set of YouTube Faces dataset,
which could be more difficult to retrieve for a given query.
Fig. (4) shows the hash lookup performance in terms of F-
measure and precision. LGHSR outperforms most of the
methods but is comparable to DGH in F-measure when
faced with longer code length. Nevertheless, the hyper-
parameter of DGH has to be tuned to control the impact
of penalty term to the spectral relaxation problem for each
dataset, which also results in the relaxed constraints of
learned hashing codes. In fact, our proposed method has no
parameters to be tuned but keep a distinct improvement over
DGH and other methods in precision. We also shows the
Hamming ranking performance in Table 2, where we use
the mean precision of top-retrieved samples of 2,000 instead
of MAP. LGHSR shows the highest Hamming ranking re-
sults. Specifically, our method achieves a noticeable average
improvement of nearly 5 points compared with DGH and
much better than other methods. Besides, LGHSR keeps ob-
vious improvements with the increasing code length, even in
the sparse hamming space.

We also report the training and testing time of these meth-
ods on CIFAR-10 and YouTube Faces in Table 3. The exper-
iments are conducted on desktop PC with a 4-core 3.20GHZ

CPU and 16G RAM. Note that, the code lengths for CIFAR-
10 and YouTube Faces are 96 bits, and 128 bits, respec-
tively. It is obvious that LSH is the fastest while BRE
costs the most time. Due to the spectral rotation proce-
dure, LGHSR performs worse than the methods based on
the rounding operation, i.e. AGH, IMH. However, we have
a great improvement compared with them in the perfor-
mance. LGHSR shows remarkable efficiency compared with
the state-of-the-art methods, i.e. DGH and BA.

Conclusion

In this paper, we propose to employ spectral rotation to
transform the original solution to spectral relaxation of hash-
ing problem, which could provide a more efficient approxi-
mation to the discrete binary codes in terms of �2 distance.
To maintian the constraints for binary codes, we consider
a ranking method instead of the rough rounding operation,
which could make the codes be more efficient. We also intro-
duce a tractable algorithm which could divide the proposed
objective into two subproblems and solves them via an al-
ternating fashion. Moreover, a manifold learning insights is
provided to explain the improvements of such method, and
corresponding experiments are also conducted to prove that.
Extensive experimental results on three large-scale bench-
mark datasets demonstrate that our proposed method can
generate better compact codes and cost comparable training
and testing time with most of other methods.
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