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Abstract

The explosion of streaming data poses challenges to fea-
ture learning methods including linear discriminant anal-
ysis (LDA). Many existing LDA algorithms are not effi-
cient enough to incrementally update with samples that se-
quentially arrive in various manners. First, we propose a
new fast batch LDA (FLDA/QR) learning algorithm that
uses the cluster centers to solve a lower triangular system
that is optimized by the Cholesky-factorization. To take ad-
vantage of the intrinsically incremental mechanism of the
matrix, we further develop an exact incremental algorithm
(IFLDA/QR). The Gram-Schmidt process with reorthogonal-
ization in IFLDA/QR significantly saves the space and time
expenses compared with the rank-one QR-updating of most
existing methods. IFLDA/QR is able to handle streaming data
containing 1) new labeled samples in the existing classes, 2)
samples of an entirely new (novel) class, and more signifi-
cantly, 3) a chunk of examples mixed with those in 1) and
2). Both theoretical analysis and numerical experiments have
demonstrated much lower space and time costs (2 ∼ 10 times
faster) than the state of the art, with comparable classification
accuracy.

Introduction

Streaming data are explosive with the boom of mobile net-
works, social media, and video cameras in this decade.
To analyze this type of data, an efficient and incremen-
tal learning strategy is necessary. Moreover, these data are
mixed with known or novel class labels, arriving one by
one or chunk by chunk. These characteristics greatly chal-
lenge the existing learning methods. We aim at developing
an extremely fast incremental learning method for mixture
streaming data.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Classical linear discriminant analysis (LDA) (Chen et al.
2000) and its recent variants (Sharma and Paliwal 2015;
Kong and Ding 2014; Luo, Ding, and Huang 2011) can ef-
fectively extract features for classification. Recently, incre-
mental LDA (ILDA) methods have been emerging to address
the above challenges arisen from streaming data. Some of
these ILDA methods attempt to modify the objective func-
tion, while others use new optimization strategies to accel-
erate the calculation speed. The method of IDR/QR (Ye et
al. 2005) uses the QR-decomposition to update the within-
class scatter matrix (Sw) and between-class scatter matrix
(Sb). The methods of ICLDA (Lu, Zou, and Wang 2012),
IDR/new (Lu, Jian, and Wang 2015) and ILDA/QR (Chu et
al. 2015) also follow the idea of using QR-decomposition,
and employ various techniques to reduce the matrix size for
the decomposition. However, their updating schemes, the
key to any incremental algorithms, are not space and time
efficient for online learning.

Researchers also resort to the approximation of scattering
matrices for efficiency improvements. Liu et al. (Liu, Jiang,
and Zhou 2009) give the least-square solution of LDA (LS-
ILDA), but the incrementally update of the pseudo-inverse
of the data matrix is still time consuming. Kim et al. (Kim et
al. 2011) leverage the sufficient spanning set approximation
to Sb and the total scatter matrix St by updating the princi-
pal eigenvectors and eigenvalues of these two matrices. The
time complexity significantly decreases, but there exists an
evident gap between the accuracies of incremental and batch
versions.

In this paper, we devise an online incremental LDA al-
gorithm that requires much (2 ∼ 10 times) less computa-
tion complexity and smaller space than the state-of-the-art
for mixture streaming data. The algorithm is illustrated in
Fig. 1. Specifically, our contributions are twofold:

1. We take advantage of the QR-decomposition on a lower
triangular matrix (Chu et al. 2015), and propose a new
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Figure 1: The proposed method incrementally updates the
feature space given by new information from a mixture
streaming data.

fast batch method, called FLDA/QR. This algorithm takes
the centroid of each cluster to constitute the matrix for
decomposition, requiring a smaller storage and less com-
putation. Furthermore, we greatly reduce the computation
load of the QR-decomposition in FLDA/QR by using the
Cholesky-factorization.

2. We develop an exact incremental version of FLDA/QR,
i.e, IFLDA/QR. It is possible for us to update upon the
Gram-Schmidt reorthogonalization process (Daniel et
al. 1976) thanks to the well-defined intrinsic incremen-
tal mechanism of our FLDA/QR. The updating is sim-
pler and significantly more efficient than the rank-one
updating in many other ILDA algorithms based on QR-
decomposition.

The new IFLDA/QR algorithm has the flexibility to han-
dle streaming data that may contain 1) new labeled sam-
ples to the existing classes, 2) samples from an entirely new
(novel) class, and more significantly, 3) a chunk of sam-
ples mixed with those as 1) and 2). Both theoretical analysis
and numerical experiments on several benchmark data sets
validate the lowest computational costs of FLDA/QR and
IFLDA/QR compared with the state-of-the-art batch LDA
and incremental LDA algorithms, respectively. Meanwhile,
the classification accuracies of FLDA/QR and IFLDA/QR
are close or equal to those of the existing algorithms.

Linear Discriminant Analysis

Classical LDA algorithm attempts to project data examples
into a feature space, where those from different classes are
separated as much as possible. Let linearly independent data
matrix X ∈ R

d×n be partitioned into k clusters as X =
{X1, X2, . . . , Xk}, where Xi ∈ R

d×ni(i = 1, 2, . . . , k) and
n =

∑k
i=1 ni.

Define the between-class scatter Sb, the within-class scat-
ter Sw, and the total scatter St, where St = Sb + Sw. The
trace of Sb, Trace(Sb), measures the separation between
clusters, where Trace(Sw) gives the closeness within a

cluster. Therefore, the objective of LDA is to find an optimal
transformation matrix G that maximizes Trace(Sb) while
minimizing Trace(Sw) in the lower dimensional space.
Equation (1) gives the objective, called the classical Fisher
criterion (Chen et al. 2000):

G = argmax
G

Trace((GTStG)−1(GTSbG)), (1)

The classical LDA fails when St is singular d � n > k.
This small sample size (SSS) problem occurs for many ap-
plications involving under sampled data such as text and
image retrieval (Chen et al. 2000). A typical solution to
the SSS problem lies in replacing the inverse in classi-
cal LDA by the pseudoinverse as (2), where A(+) de-
notes the pseudoinverse of A (Sharma and Paliwal 2015;
Golub, Van, and Charles 1996).

G = arg max
GTG=I

trace((GTStG)(+)(GTSbG)). (2)

Furthermore, any G with

trace((GTStG)(+)GTSbG) = k − 1, (3)

is a solution to (2), provided that the training samples are
linearly independent (Chu et al. 2015).

Fast Batch Linear Discriminant Analysis

In this section, we present a fast batch LDA algorithm,
called FLDA/QR, from the perspective of online learning.
We aim to lower down the dimensionality of the data ma-
trix X ∈ R

d×n for fast computation. Unlike a common
treatment using the principal component analysis (PCA) for
the reduction (Huang et al. 2002), we take cluster centers as
training examples that is handy to pick up and has a definite
dimension value in the feature space.

Denote the global center matrix C consisting of k centers
as:

C =
[
c(1), . . . , c(k)

]
= XENk, (4)

where E =

⎡
⎢⎣
e1

. . .
ek

⎤
⎥⎦ ∈ R

n×k(ei = [1 · · · 1] ∈ R
ni ),

Nk = [1/n1 · · · 1/nk]
T . And we let M = ENk(M ∈

R
n×k), then X = CM−1 and MTE = I . The cost of con-

structing the matrix C is as low as O(dn) in our implemen-
tation.

Subsequently, we adopt a lower triangular linear system
(5), proposed by (Chu et al. 2015), to solve (2) :

XTG = E, (5)

where G ∈ R
d×k and trace((GTStG)(+)GTSbG) = k−1.

By replacing X with CM−1, we obtain a new expression
for the optimal transformation matrix, denoted by Gc, in the
following:

Gc = (CM−1)−TE = C−TMTE = C−T , (6)

where Gc ∈ R
d×k.

Since the input training data is the centroid matrix, Sw =
0. And it is easy to verify that Gc

TStGc = Gc
TSbGc , and
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rank(Gc
TSbGc) = k− 1. Therefore Gc satisfies (3), and is

an optimal solution to (2).
We further reduce the computational complexity by calcu-

lating C−T with the economic QR-decomposition of C =
QcRc ( where Qc ∈ R

d×k has orthonormal columns and
Rc ∈ R

k×k is an upper triangular). It is a crucial observa-
tion that the Cholesky-factorization of CTC (Golub, Van,
and Charles 1996) is able to generate the matrix Rc. Hence,
we first compute Qc = CRc

−1, followed by Gc = C−T =
QcRc

−T . This process is much more efficient than directly
computing the QR-decomposition of C−T .

FLDA/QR is summarized as Algorithm 1. The compu-
tational complexities of the four steps in Algorithm 1 are
O(dn), O(dk2+k3), O(dk2) and O(dk2), respectively. Re-
fer to Section 5 for detailed complexity comparisons with
the existing batch LDA algorithms.

It is also worth noting that the use of the center matrix to
construct a lower triangular linear system forms a well incre-
mental mechanism. We take the mechanism to develop our
fast exact incremental LDA algorithm in the next section.

Algorithm 1 FLDA/QR(Cholesky)
Input: The data matrix X ∈ R

d×n.
Output: The optimal transformation matrix Gc .

1: Construct centroid matrix C.
2: Compute Rc from the Cholesky Decomposition of

CTC.
3: Compute Qc = CRc

−1.
4: Compute Gc = QcRc

−T .

Incremental Linear Discriminant Analysis

We develop the incremental algorithm IFLDA/QR for three
learning tasks to handle mixture streaming data where new
samples arrive differently. Otherwise stated, the notation Ã
is the updated version of A.

Task1: Insertion of samples to an existing class

The key issue to insert samples of an existing class for incre-
mental learning is how to update Qc and Rc after the inser-
tion as Gc = QcRc

−T in the batch algorithm. A good incre-
mental learning algorithm should learn additional informa-
tion from new samples, and should leave alone the original
examples during updating. We first extract information c

(i)
new

induced by new samples with the class label i, and then con-
vert the computation of the QR-decomposition of C̃ into the
production of Gram-Schmidt process with reorthogonaliza-
tion of an augmented matrix

[
Qc c

(i)
new

]
. This process is

simpler and significantly faster than the rank-one updating
in most ILDA methods, e.g., IDR/QR (Ye et al. 2005). We
detail the algorithm below.

Let hi be the total number of new samples Xnew
(i) ∈

R
d×hi (i ∈ 1, . . . , k) to class i, and ĉ

(i)
new be the class center

of X(i)
new. Thus, the updated center of the class i can be given

as:

c̃(i) = c(i) + hi(ĉ
(i)
new − c(i))/(ni + hi) = c(i) + c(i)new. (7)

We update the new center C̃ of all training examples as:

C̃ =
[
c(1) · · · c(i) + c

(i)
new · · · c(k)

]
= C + c(i)newg

T

= QcRc + c(i)newg
T =

[
QcRc c

(i)
new

] [
I gT

]T

=
[
Qc c

(i)
new

] [
Rc 0
0 1

] [
I
gT

]
, (8)

where I is the identity matrix, and g = (0 · · · 1 · · · 0)T ∈ R
n

(the element 1 appears at the ith position).
Naturally, we are able to apply the Gram-Schmidt pro-

cess with reorthogonalization to compute the economic QR-
decomposition of

[
Qc c

(i)
new

]
(Daniel et al. 1976):

[
Qc c

(i)
new

]
= [Qc q]

[
I r
0 α

]
, (9)

where q = (c
(i)
new − Qcr)/α(‖q‖ = 1, Qc

T q = 0), α =∥∥∥c(i)new −Qcr
∥∥∥
2
=

√
c
(i)
new

T
c
(i)
new − rT r and r = Qc

T c
(i)
new.

Accordingly, the QR-decomposition of the updated center
matrix C̃ is:

C̃ = [Qc q]

[
Rc r
0 α

] [
I
gT

]

= [Qc q]

[
Rc + rI
αgT

]
= Q̃cR̃c, (10)

where Q̃c ∈ R
d×(k+1) and R̃c ∈ R

(k+1)×(k+1).
Finally, we have the updated transform matrix G̃c by

adding new information from new samples:

G̃c = [Qc q]

[
Rc r
0 α

]−T [
I

g−1

]

= [Qc q]

[
Rc
−T 0

−rTRc
−T /α 1/α

] [
I

g−1

]

= QcRc
−T + (q × g−1 − qc(i)new

T
QcRc

−T )/α

= Gc + q(g −Gc
T c(i)new)

T
/α, (11)

where g(+) = gT , for g(+) = (gT g)
−1

gT .
The pseudo-code of this algorithm is given in the Algo-

rithm 2.

Task2: Insertion of a novel cluster

We follow the similar strategy to update the transformation
matrix when inserting the samples of a novel cluster. We di-
rectly append the center of a novel class cnew to C without
the need of center re-calculation as Task1, and then apply
the Gram-Schmidt process with reorthogonalization to com-
pute the economic QR-decomposition of [Qc cnew] . The
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Algorithm 2 IFLDA/QR1 (the insertion of new samples to
an existing class)
Input: The Q and R matrices of the center matrix C of the

last step, and labeled new samples X(i)
new ∈ R

d×hi (i ∈
(1, . . . , k)).

Output: The updated Q̃c, R̃c and G̃c.
1: Compute c

(i)
new.

2: Compute r, α, q.
3: Update G̃c by (11).
4: Update Q̃c and R̃c by (10).

updating performs as follows.

C̃ = [C cnew] = [QcRc cnew] = [Qc cnew]

[
Rc 0
0 1

]

= [Qc q]

[
I r
0 α

] [
Rc 0
0 1

]

= [Qc q]

[
Rc r
0 α

]
= Q̃cR̃c, (12)

where r = QT cnew, α =
√

cnewT cnew − rT r, q =
(cnew −Qr)/α.

The transform matrix is updated as:

G̃c = C̃−T = [Qc q]

[
Rc r
0 α

]−T

= [Qc q]

[
Rc
−T 0

−rTRc
−T /α 1/α

]

=
[
QcRc

−T − qrTRc
−T /α q/α

]
=

[
Gc − qcnew

TGc/α q/α
]
. (13)

Algorithm 3 shows the pseudo-code of inserting samples
from a novel cluster.

Algorithm 3 IFLDA/QR2 (the insertion of a novel class)
Input: The Q and R matrices of the center matrix C for the

previous step, and a novel cluster Xnew ∈ R
d×nnew .

Output: The updated Q̃c, R̃c and G̃c.
1: Compute cnew.
2: Compute r, α, q.
3: Update G̃c by (13).
4: Update Q̃c and R̃c by (12).

Task3: Insertion of chunk data

A chunk of new data may contain samples from the existing
classes and novel classes. We have to extract the informa-
tion from these mixed data, while preserving the previously
learned ones. It is quite difficult for the existing ILDA meth-
ods to deal with such complex situation. In contrast, it is
easier for us to separate new information of C̃, for we keep
the cluster centers as the input. Accordingly, we transfer the
computation of the QR-decomposition of C̃ to the product

of two simpler decompositions. Thus, our method is more
efficient than the existing ILDA methods, e.g.IDR/new (Lu,
Jian, and Wang 2015). Their algorithm repeatedly runs so
many rank-one QR-updating for computing the new within-
class and between-class scatters.

Suppose the cluster center matrix Cnew of a chunk
containing the centers of some labeled new samples[
c
(j1)
new · · · c(jf1 )new

]
and the centers of a few of novel classes

[cnew1 · · · cnewf2 ]. Denote f1 be the number of the exist-
ing classes those will be updated by new samples, f2 be the
number of novel classes in the chunk, h be the total number
of samples in the chunk, f (f = f1 + f2) be the total num-
ber of classes in the chunk, and k̃ (k̃ = k + f2) be the total
number of classes in the training set after insertion. Then we
have the new data matrix:

Cnew =
[
c
(j1)
new · · · c(jf1 )new , cnew1 · · · cnewf2

]
. (14)

Then, we derive the updated center matrix C̃ after inser-
tion as the product of two matrices where the new informa-
tion Cnew is extracted:

C̃ =
[
( ˜c(1) · · · ˜c(k), cnew1 · · · cnewf2

]
=

[
C 0

]
+ Cnew

[
I g1

T · · · gf1
T g1

T · · · gf2T
]T

=
[
C Cnew

] [I 0
Z

]
(15)

where Z = [z1, . . . , zh] ∈ R
h×k̃, and zi ∈ R

k̃ is a unit
vector with the ith element being one and other elements
being zeros.

Since[
C Cnew

]
=

[
QcRc Cnew

]
=

[
Qc (I −QcQc

T )Cnew

] [Rc Qc
TCnew

0 I

]
. (16)

We compute the QR-decomposition of (I−QcQc
T )Cnew

as Q̂cR̂c, and update the center matrix as:

C̃ =
[
Qc Q̂c

] [Rc Qc
TCnew

0 R̂c

] [
I 0
Z

]
. (17)

Finally, we are able to update the transform matrix G̃c by
the matrices Q̂c and R̂c:

G̃c = C̃−T

=
[
Qc Q̂c

] [ Rc
−T 0

−R̂c
−T

Cnew
TQcRc

−T R̂c
−T

] [
I 0
Z

]

=QcRc
−T [

I 0
]
+ Q̂cR̂c

−T
Z

− Q̂cR̂c
−T

Cnew
TQcRc

−T [
I 0

]
=
[
Gc 0

]
+ Q̂cR̂c

−T
Z − Q̂cR̂c

−T
Cnew

T [
Gc 0

]
=
[
Gc − Q̂c(R̂c

−T
(Cnew

T )Gc) 0

]
+ Q̂c(R̂c

−T
Z). (18)

The pseudo-code is listed in Algorithm 4.
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Algorithm 4 IFLDA/QR3 (the insertion of chunk data)
Input: The Q and R matrices of the old center matrix, la-

beled new samples X(i)
new ∈ R

d×hi(i ∈ [1, . . . , k]) and
novel classes Xnewj ∈ R

d×hj (j ∈ [1, . . . , f2]).
Output: The updated Q̃c, R̃c and G̃c.

1: Construct Cnew.
2: Compute QR decomposition for (I − QcQc

T )Cnew =

Q̂cR̂c and update Q̃c and R̃c.
3: Update G̃c by (17).

Table 1: Computational Complexities of batch LDA meth-
ods for SSS problem (d � n > k). (n is the total number
of training samples, d is the dimension of training samples,
and k is the number of training classes.)

Batch Implementations Computational Complexities
PCA+Null LDA [Huang’02] O(16dn2 + 4dnk)
IDR/QR (batch) [Ye’05] O(8dk2 + 2dnk + dn)
NLDA/QR [Chu’10] O(4dn2 + 2dnk)
CLDA/new [Lu’12] O(4dn2 + 2dnk)
FNLDA [Sharma’12] O(dn2 + 2dnk)
IDR/new [Lu’15] O(4dk2 + 2dnk + dn)
LDA/QR [Chu’15] O(4dn2 + 2dnk)
FLDA/QR [Ours] O(3dk2 + dn)

Comparisons for Computational Complexity

and Space Complexity

We analyze the time and space complexities of FLDA/QR
and its incremental version IFLDA/QR compared with re-
cent batch and incremental LDA algorithms.

Table 1 lists the computational complexities for eight rep-
resentative batch LDA algorithms. Our FLDA/QR reduces
the size of the input data matrix, so that the computation
cost of the QR-decomposition of C ∈ R

d×k by Cholesky
factorization is far less than the QR-decomposition of X ∈
R

d×n in LDA/QR (Chu et al. 2015). The second stage
in FLDA/QR, solving G by the linear system (Gc =
QcRc

−T ), is simpler and more efficient than the batch
versions of IDR/QR (Ye et al. 2005) and IDR/new (Lu,
Jian, and Wang 2015). These two existing algorithms ap-
ply the regularized LDA to solve an eigenvalue prob-
lem on (QTSwQ+ μIc)

−1
QTSbQ (μ is a positive con-

stant), taking great time. Unlike PCA+LDA (Huang et al.
2002), FLDA/QR makes it easier to construct the cen-
ter matrix for dimensionality reduction, and to determine
the dimensionality of the feature space. More significantly,
FLDA/QR only runs the QR-decomposition step once, while
NLDA/QR (Chu and Thye 2010) has to compute the time-
consuming QR-decomposition twice. The other algorithm
FNLDA (Sharma and Paliwal 2012) has to compute the
multiplication of XTX and its eigen decomposition costing
O(dn2 +17n3) in total, much more slowly than FLDA/QR.
Besides, the space complexity of FLDA/QR, O(dk), is also
favorable for online learning.

The computational and space complexities of seven in-
cremental LDA methods are demonstrated in Tables 2 and

Table 2: The computational complexities for ILDA methods
for SSS problem (d � n > k). (k̃ is the total number of
classes after the insertion; f is the total number of classes in
the chunk. h is the total number of samples in a chunk.)

Methods Single Chunk
IDR/QR [Ye’05] O(dk + 91k3/3) NULL
IDR/new [Lu’15] NULL O(dk̃2 + dk̃(n +

h) + (n+ h)k̃2)
LS-ILDA [Liu’09] O(14dn+ 7dk) NULL
ILDA/SSS [Kim’11] O(2dn2 + 12n3) O(2d(n+ h)

2
+

12(n+ h)
3
)

ICLDA [Lu’12] O(2dn2 + 20n3) NULL
ILDA/QR [Chu’15] O(4dn+ 4dk) O(4dh(n + h +

k) + 2dk̃h)
IFLDA/QR [Ours] O(dh+ 4dk) O(4df(f + k) +

dk̃f)

Table 3: The space complexities for ILDA algorithms.(k̃ is
the total number of classes after the insertion. h is the total
number of samples in a chunk.f1 is the number of the exist-
ing classes those will be updated by new samples;f2 is the
number of novel classes in a chunk)

Methods Single Chunk
IDR/QR [Ye’05] O(2dk) NULL
IDR/new [Lu’15] NULL O(k̃3 +

2dnf1+dkf1)
LS-ILDA [Liu’09] O(2dn+ dk) NULL
ILDA/SSS [Kim’11] O(dn+ 2dk) O(dn+ 2dk)
ICLDA [Lu’2] O(4dn+ dn2 + dk) NULL
ILDA/QR [Chu’15] O(dn+ dk) O(dn+ dk)
IFLDA/QR [Ours] O(dk) O(df2 +

4df2
2 +

3dkf2)

3, respectively. Those algorithms without the version han-
dling chunk data are labeled with ’NULL’ in the columns
of ’Chunk’ in these two tables. The Gram-Schmidt process
with reorthogonalization in our IFLDA/QR runs much faster
than the rank-one QR-updating in IDR/QR (Ye et al. 2005)
and IDR/new (Lu, Jian, and Wang 2015). Our algorithm is
able to insert a novel class with m samples at one time, while
ILDA/QR (Chu et al. 2015) only updates one novel sample
to form a new class in one step. ILDA/QR inserts the rest
(m − 1) samples either by using the algorithm for updating
samples of an existing class, or by its chunk version which
takes much more time than the single updating as shown in
Table 2. Table 2 demonstrates that IFLDA/QR is the fastest,
and belongs one of the four algorithms that have the capabil-
ity to deal with mixture streaming data. Besides, IFLDA/QR
consumes less storage space than all the others as shown in
Table 3.

Experiments and Discussions

Settings

In this section, we evaluate the efficiency of FLDA and
IFLDA by comparing the computational complexities and
the classification accuracies with other methods. The ex-
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Table 4: Data structures: d is the dimension of the data, n is
the total number of the samples, k is the number of classes,
and ni is the number of samples in each class.

datasets d n k ni

ORL 92*112 400 40 10
AWA 4096 1000 20 50
Tr23 5832 204 6 6 ∼ 91

Table 5: Computational time (CT (seconds)) and classifica-
tion accuracies (CA) for eight batch LDA methods.

Methods ORL AWA Tr23
CT CA CT CA CT CA

PCA+NLDA 0.22 88.50 1.02 88.00 0.058 74.80
IDR/QR-b 0.05 95.32 0.04 85.50 0.009 76.55
IDR/new-b 0.03 95.06 0.02 85.50 0.005 76.34
NLDA/QR 0.12 95.00 0.38 88.22 0.025 67.00
CLDA/new 0.21 95.00 0.69 85.33 0.058 69.66

FNLDA 0.04 95.00 0.19 88.00 0.014 67.00
ILDA/QR-b 0.10 90.44 0.15 87.12 0.018 87.00
FLDA/QR 0.01 93.35 0.01 86.56 0.003 86.00

periments are conducted on a face image dataset: ORL
(Samaria and Harter 1994), an animal feature dataset: AWA
(Lampert, Nickisch, and Harmeling 2013) and a text doc-
ument feature set: Tr23 (derived from TREC collection
(http://trec.nist.gov/). Each class of Tr23 is of unequal
length). For AWA, we selected a subset of VGG19 fea-
ture (fc7 layer of very deep 19-layer CNN, pretrained on
ILSVRC2014) as input. The statistics of these datasets are
summarized in Table 4.

The experiments are performed on a 2.5GHZ Intel Core
I7 Apple MacBook Pro with 16GB RAM in MATLAB
2014b environment. And the matlab codes of the proposed
FLDA/QR and IFLDA/QR algorithms can be downloaded
from website : https://github.com/dlut-dimt/FLDA-QR-and-
IFLDA-QR.

Comparison with Batch LDA Algorithms

We randomly selected eighty percent of each dataset for
training and the rest for testing. K-nearest neighbor (K-
NN) method (with K = 1) has been used for classifica-
tion purpose, and fivefold cross-validation was conducted.
The average computational time and classification accura-
cies are shown in Table 5. The results show our FLDA/QR
has the lowest computational complexities. FLDA/QR is
about 4 ∼ 8 times faster than IDR/QR (batch), 2 ∼ 4 times
faster than IDR/new (batch), and 10 ∼ 100 times faster than
other methods. Besides, our classification performances are
as good as or not far less than the others.

Comparisons of Incremental LDA Algorithms

From the analysis for computational complexity in Table 2,
it is obvious that LS-ILDA, ILDA/SSS and ICLDA are not
comparable with other ILDA methods, therefore, we only
compare the rest ones in this experiments.

For all datasets, we first randomly split each class into
two parts by a fixed ratio (Part1 : Part2 = 4 : 1) in terms
of sample number, and take Part1 as the training set and

Table 6: The settings of datasets.( ni is the number of sam-
ples in each class and nq is the total number of classes in
each group.)

Methods P1:ITS P1:NSS P1:NCS P2:TS
ni nq ni nq ni nq ni nq

ORL 30 6 30 2 10 2 40 2
AWA 15 30 15 10 5 10 20 10
Tr23 4 5 ∼ 57 4 4 2 4 6 2 ∼ 30

Table 7: Computational time (CT(seconds)) and classifica-
tion accuracies (CA) for three algorithms.

Methods ORL AWA Tr23
CT CA CT CA CT CA

IDR/QR 1.781 92.50 0.047 87.33 0.096 61.67
ILDA/QR 6.102 95.00 0.214 89.33 0.024 75.77

IFLDA/QR 1.104 92.25 0.024 88.00 0.005 74.80

Part2 as the testings set (TS). We then divide Part1 into
three groups: the initial training set (ITS), the new sample
set (labeled) (NSS) and the novel class set (NCS). Fivefold
cross-validation of partition was evaluated. The settings of
datasets are listed in Table 6.

Insertion of new sample streams to the existing classes
This simulation is performed by randomly choosing and in-
serting new samples from the new sample set(NSS). We
record the total execution time of every updating and the
final classification accuracies for three methods in Table 7.
It can be seen that IFLDA/QR are the fastest. IFLDA/QR is
about 2 times faster than IDR/QR and 5 ∼ 9 times faster
than ILDA/QR. And the accuracies of IFLDA/QR are close
to the best one on three datasets.

Insertion of one novel sample This simulation is per-
formed by randomly choosing one instance from each novel
class, then inserting them into the training set. We record the
total execution time of every updating and the final classifi-
cation accuracies for three methods in Table 8. It is evident,
IFLDA/QR are the fastest, and IFLDA/QR is more accurate
than IDR/QR, and close to ILDA/QR on three datasets.

Insertion of a chunk of data This simulation is per-
formed by randomly choosing and then inserting new sam-
ples, chunk by chunk. We set five chunks for ORL and
AWA. For ORL, each chunk contains two novel classes and
twelve labeled samples. For AWA, each chunk contains one
novel class and thirty labeled samples. Tr23 only has three
chunks. Each of first two chunks contains eight labeled sam-
ples, and the third contains four labeled samples and two
novel classes.

We record the execution time of each updating for the
three algorithms in Fig.2. And the total computational time
with the classification accuracy of the final transformation,
with their batch algorithms, are listed in Table 9.

From Fig.2 and Table 9, we can come to the following
conclusions: (1) chunk IFLDA/QR achieves the same accu-
racy as that of batch FLDA/QR. (2) IFLDA/QR is faster than
ILDA/QR and IDR/new both in the chunk mode and batch
mode. (3) IFLDA/QR achieves comparative classification
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Table 8: Computational time (CT(seconds)) and classifica-
tion accuracies (CA) for three algorithms.

Methods ORL AWA Tr23
CT CA CT CA CT CA

IDR/QR 0.077 61.55 0.050 65.00 0.002 63.63
ILDA/QR 0.171 63.75 0.362 74.00 0.068 70.00

IFLDA/QR 0.039 62.75 0.039 72.00 0.001 67.63

Figure 2: Comparison of computational time on real
datasets: (a) ORL; (b) AWA; (c) Tr23.

accuracies on three real datasets. In addition, IFLDA/QR is
more suitable for data with small within-class discrimination
such as datasets AWA and Tr23.

Conclusion

In this paper, we first propose a new batch algorithm, called
FLDA/QR, which is by far the fastest LDA implementation.
Next, we present IFLDA/QR with three versions for insert-
ing the sample stream into the existing clusters, inserting
novel clusters, and inserting a chunk of instances at a time.
Theoretical analysis and numerical experiments have shown
that our FLDA/QR and IFLDA/QR are fast, efficient, and
competitive with the state-of-the-art in terms of classifica-
tion accuracy, computational complexity, and space require-
ment. FLDA/QR and IFLDA/QR can be applied to many
online incremental learning scenarios, especially for those
datasets with small within-class discrimination.
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