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Abstract

We propose a fast first-order method to solve multi-term non-
smooth composite convex minimization problems by em-
ploying a recent proximal average approximation technique
and a novel adaptive parameter tuning technique. Thanks to
this powerful parameter tuning technique, the proximal gra-
dient step can be performed with a much larger stepsize in
the algorithm implementation compared with the prior PA-
APG method (Yu 2013), which is the core to enable signif-
icant improvements in practical performance. Moreover, by
choosing the approximation parameter adaptively, the pro-
posed method is shown to enjoy the O( 1

k
) iteration com-

plexity theoretically without needing any extra computational
cost, while the PA-APG method incurs much more itera-
tions for convergence. The preliminary experimental results
on overlapping group Lasso and graph-guided fused Lasso
problems confirm our theoretic claim well, and indicate that
the proposed method is almost five times faster than the state-
of-the-art PA-APG method and therefore suitable for higher-
precision required optimization.

Introduction

Let X be a finite-dimensional linear space endowed with the
inner product 〈·, ·〉 and its induced norm ‖ · ‖. Here, we are
interested in solving the following multi-term nonsmooth
composite convex minimization problem

F ∗ := min
x∈X

F (x) = f(x) + g(x) (1)

with g(x) =
∑N

i=1 αigi(x), where αi ≥ 0 satisfying∑N
i=1 αi = 1, gi : X → [−∞,+∞] is a proper, closed

convex function, and f : X → (−∞,+∞) is a continuously
differentiable and gradient Lipschitz convex function with
modulus Lf , i.e.,

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ X.

Moreover, we assume that Qi = dom g∗i is a bounded
convex set for all i = 1, · · · , N , in which g∗i denotes the
Fenchel conjugate of gi with the following definition

g∗i (x) = sup
ui∈Qi

{〈ui, x〉 − gi(ui)} . (2)

Copyright c© 2017, Association for the Advancement of Artificial
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Notice that the boundedness assumption about Qi is actu-
ally equivalent to the global Lipschitz continuousness of gi
used in (Yu 2013, Assumption 1) according to (Borwein and
Vanderwerff 2010, Proposition 4.4.6).

This multi-term nonsmooth composite convex minimiza-
tion problem (1) covers a large number of important applica-
tions in machine learning, such as overlapping group Lasso
(Zhao, Rocha, and Yu 2009; Mairal et al. 2010), graph-
guided fused Lasso (Chen et al. 2012; Kim and Xing 2009),
graph-guided logistic regression (Ouyang et al. 2013), and
other types of regularized risk minimization problems (Teo
et al. 2010). The regularization term g(x) =

∑N
i=1 αigi(x)

often carries some important structure information about
the structure of the problem itself or data, such as the
structured sparsity (Bach et al. 2011; 2012) and nonneg-
ativity. However, the involved vital multi-term nonsmooth
components make the optimization problem (1) too com-
plicated to be solved even if N is small. For the special
case N = 0, 1, the most popular first-order methods are
the accelerated gradient-type methods enjoying the O( 1

K2 )
optimal iteration complexity (Nesterov 2013b), which were
first proposed by Nesterov (Nesterov 1983) for N = 0 and
then popularized for N = 1 by Beck and Teboulle (Beck
and Teboulle 2009a) and Nesterov (Nesterov 2013a). Beck
and Teboulle’s method is called “FISTA” while Nesterov’s
method in (Nesterov 2013a) is called “APG”. When N is
larger, one feasible method is the subgradient-type method
(Nemirovsky, Yudin, and Dawson 1982; Polyak 1977) with
an extremely slow iteration complexity O( 1√

K
). To opt out

of this dilemma, Nesterov proposed the smoothed acceler-
ated proximal gradient (S-APG) method (Nesterov 2005a;
2005b) for dealing with nonsmooth minimization involving
multi-term nonsmooth functions. To make the smoothed ac-
celerated proximal gradient method to achieve the iteration
complexity O( 1

K ), the smoothing parameter must be taken
as small as O( 1

K ). However, the small smoothing param-
eter leads to a small iteration stepsize, which has a nega-
tive effect on practical optimization performance. To make
the smoothed accelerated proximal gradient method much
more appealing, some adaptive smoothing algorithms (Boţ
and Hendrich 2015; Tran-Dinh 2015) were proposed based
on Nesterov’s smoothing technique. However, another draw-
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back is that the smoothing technique may compromise the
important structure contained in those nonsmooth terms.
Moreover, as N grows, the approximation error is linearly
increasing with respect to N . Regarding this issue, Yu (Yu
2013) utilized the proximal average approximation tech-
nique that exploits the proximal mapping information of
each nonsmooth term to decrease the approximation error,
and then proposed the proximal average based accelerated
proximal gradient (PA-APG) method which shows promis-
ing performance compared with the smoothed accelerated
proximal gradient method in (Nesterov 2005b).

To let the PA-APG method enjoy the O( 1
K ) iteration com-

plexity, PA-APG has to suffer from the same issue that
the approximation parameter must be as small as O( 1

K ).
This issue will make PA-APG impractical if we need to at-
tain higher-precision optimization, which has been demon-
strated in our experiments. To tackle this difficulty, we unite
an easy-to-use adaptive approximation technique and the
proximal approximation technique to propose an Adaptive
Proximal Average based Accelerated Proximal Gradient
(APA-APG) method, which still enjoys the O( 1

K ) iteration
complexity without increasing any extra computational cost.
In contrast, Yu’s PA-APG method in (Yu 2013) incurs much
more iterations to reach convergence. It should be empha-
sized that such a combination is nontrivial and also very effi-
cient in enhancing the optimization performance. To accom-
plish the O( 1

K ) iteration complexity, we first derive the dual
formulation of one proximal average approximation func-
tion based on the convex analysis techniques (Rockafellar
2015), and then leverage the dual formulation and Danskin’s
min-max theory (Bertsekas 1999, Proposition B.25) to es-
tablish a much tighter lower estimation of the proximal av-
erage approximation function, which is crucial to proving
the O( 1

K ) complexity of the APA-APG method. At last, we
evaluate our proposed APA-APG method by executing over-
lapping group Lasso and graph-guided fused Lasso tasks.
All experimental results indicate that our APA-APG method
is about five times faster than the PA-APG method in (Yu
2013).

The rest of this paper is organized as follows. In Sec-
tion 2 we first give the definition of one proximal average
function, then derive its dual formulation, and discover a
much stronger property of the proximal average function.
In Section 3 we present our proposed APA-APG method
along with its two variants denoted by APA-APG1 and APA-
APG2, respectively. Importantly, we prove its O( 1k ) iteration
complexity. In Section 4 we conduct experiments to evaluate
APA-APG. Finally, we draw our conclusions in Section 5.

In the rest of the paper, we use the notations A :=
(α1, · · · , αN ), B := Diag(α1, · · · , αN ) and C := B−A∗A.
Let IN denote the identity matrix with dimension R

N×N . It
is easy to check that 0 � C � IN . Let Q = Q1 × · · · ×QN

be the Cartesian product of Qi for i = 1, · · · , N . We ex-
press Proxγg (x) := argminy g(y)+

1
2γ ‖y−x‖2 as the prox-

imal mapping of g(y) specified by the parameter γ > 0. Let
Diam(Q) := maxx∈Q ‖x‖ be the diameter of set Q, and
C 1

2Q := {C1/2u | u ∈ Q}.

Proximal Average Function and Its Dual

Formulation

In this section, we first present the definition of one proximal
average function and then give its equivalent dual formula-
tion which is vital for us to establish the main results. In
addition, more properties and applications about proximal
average functions can be found in (Bauschke et al. 2008;
Hare 2009; Yu et al. 2015; Zhong and Kwok 2014a; 2014b).

Definition 1 (Bauschke et al. 2008, Definition 4.1) The
proximal average function of g(x) =

∑N
i=1 αigi(x) with

parameter γ > 0 is defined via the following optimization
problem

gγ(x) := inf
yi

{ N∑
i=1

αigi(yi)+
1

2γ

N∑
i=1

αi‖yi‖2− 1

2γ
‖x‖2 :

N∑
i=1

αiyi = x
}
. (3)

The following proposition states a key property of the prox-
imal mapping Proxγgγ (x) in (Bauschke et al. 2008).

Proposition 1 (Bauschke et al. 2008, Theorem 6.7)
Proxγgγ (x) = α1Prox

γ
g1(x) + · · ·+ αNProxγgN (x).

The following dual formulation plays a critical role in estab-
lishing the main results of this paper. We first claim that Qi

is a compact convex set for all i = 1, · · · , N . The details
can be found in the proof of Lemma 1 in the supplemental
material.

Lemma 1 Suppose that αi ≥ 0 satisfying
∑N

i=1 αi = 1 and
gγ(x) is the proximal average of g(x) with approximation
parameter γ > 0. Then, for any γ, γ1, γ2 > 0, the following
statements hold:

gγ(x)= sup
u∈Q

{ N∑
i=1

αi〈ui, x〉−
N∑
i=1

αig
∗
i (ui)− γ

2
‖u‖2C

}
,

(4)

gγ1(x) ≤ gγ2(x) +
γ2−γ1

2
‖u∗

γ1
(x)‖2C ,

(5)
γ1
2
‖u∗

γ1
(x)‖2C+gγ1

(x) ≤ g(x) ≤ gγ2
(x)+

γ2
2
‖u∗

0(x)‖2C ,
(6)

where u∗
γ(x) ∈ U∗

γ (x) and U∗
γ (x) denotes the optimal so-

lution set of (4) with some parameter γ ≥ 0. Moreover,
‖u∗

γ(x)‖2C is constant over the set U∗
γ (x) for any γ > 0.

Remark 1 (1) The proximal average function gγ(x)
is a nonsmooth lower semicontinuous convex function
(Bauschke et al. 2008, Corollary 5.2). When N = 1, ma-
trix C = 0 and g(x) = gγ(x).

(2) One can easily find that the proximal average ap-
proximation is tighter than the moreau envelope smoothing
function according to the dual formulation (4) and the fact
0 � C � IN .
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The following lemma ensures a much stronger theoreti-
cal property of gγ(x) than the general convexity proven in
(Bauschke et al. 2008, Corollary 5.2). This lower bound es-
timation of the proximal average function gγ(x) is crucial
for us to establish the O( 1k ) iteration complexity of the pro-
posed APA-APG algorithm. Due to the page limit, we defer
the proof of Lemma 2 to the supplemental material.

Lemma 2 Let gγ(x) be the function defined by (4). Then, it
holds that ∂gγ(y) = AU∗

γ (y) and for any ξ ∈ ∂gγ(y),

gγ(x) ≥ gγ(y) + 〈ξ, x− y〉+ γ

2
‖u∗

γ(x)− u∗
γ(y)‖2C . (7)

Adaptive Proximal Average Approximation

Method

By virtue of the basic property of proximal average func-
tions, we solve the following approximated convex mini-
mization (8) to obtain an appropriate approximate solution
to the initial problem (1):

min
x

Fγ(x) = f(x) + gγ(x). (8)

In what follows, we integrate the accelerated proximal gra-
dient and adaptive proximal average approximation tech-
niques to tackle problem (8), establishing the upper bound
estimation of F (xk+1) − F ∗. We name the proposed adap-
tive proximal average approximation method as Adaptive
Proximal Average based Accelerated Proximal Gradient
(APA-APG), and also present two variants of the APA-APG
algorithm, which we denote as APA-APG1 (see Algorithm
1) and APA-APG2 (see Algorithm 2), respectively.

Algorithm 1 APA-APG1 Algorithm
Parameters: Choose γ1 > 0, a > 0, and an initial point
x0. Let x̂0 = x0.
for k = 0, 1, · · · do

Set τk = 1
k+a and γk+1 = min( γ1a

k+a ,
1
Lf

);
x̂k := (1− τk)x

k + τkx̃
k;

xk+1 :=
∑N

i=1 αiProx
γk+1
gγk+1

(x̂k − γk+1∇f(x̂k));

x̃k+1 := x̃k + τ−1
k (xk+1 − x̂k);

end for

Algorithm 2 APA-APG2 Algorithm
Parameters: Choose γ1 > 0, a > 0, and an initial point
x0. Let x̂0 = x0.
for k = 0, 1, · · · do

Set τk = 1
k+a and γk+1 = min( γ1a

k+a ,
1
Lf

);
x̂k := (1− τk)x

k + τkx̃
k;

xk+1 :=
∑N

i=1 αiProx
γk+1
gγk+1

(x̂k − γk+1∇f(x̂k));

x̃k+1 := x̃k + τ−1
k (2− γk+1Lf )(x

k+1 − x̂k);
end for

Remark 2 (1) Notice that the step of updating xk+1 in Al-
gorithms 1 and 2 can be equivalently formulated as the fol-

lowing convex minimization problem according to Proposi-
tion 1

xk+1 = argmin
x

gγk+1
(x) +

1

2γk+1
‖x−Gk‖2, (9)

where Gk =
(
x̂k − γk+1∇f(x̂k)

)
.

(2) In the above two proximal average approximation al-
gorithms, the adaptive stepsize γk+1 = min( 1

k+a ,
1
Lf

) is
used to make these algorithms much more practical and ef-
ficient. Also, γk+1 → 0 as k → ∞, which implies that the
APA-APG has a better approximation than PA-APG, where
the approximation parameter γ = O(min( 1

Lf
, ε)) is a pre-

given constant.
(3) The difference between the two proposed algorithms only
exists in the updating step on x̃k+1. In details, the updat-
ing step of x̃k+1 in APA-APG2 enjoys a larger weight on
(xk+1 − x̂k). Moreover, the iteration complexity of APA-
APG2 is easy to establish by adopting the same proof tech-
nique as APA-APG1. To avoid redundancy, we only give the
detailed proof for APA-APG1.
Lemma 3 Let τk, γk be the parameters appearing in Algo-
rithms 1. Then, the statement holds that

(1− τk)
γk+1

τ2k
=

γk
τ2k−1

,

−
∞∑
k=1

(1− τk)(γk+1 − γk + γk+1τk)

2

γk+1

τ2k
≤ γ2

1a.

Iteration Complexity Analysis

The following lemma gives some useful inequalities. For no-
tational convenience, we define

Qk
γ(x) := f(x̂k) + 〈∇f(x̂k), x− x̂k〉+ gγ(x). (10)

Lemma 4 For any x ∈ domFγk+1
, the point pair {xk, x̂k}

generated by Algorithm 1 and all k ≥ 1, the following sand-
wich relation holds

Fγk+1(x) ≥ Qk
γk+1

(x) ≥ Fγk+1(x
k+1)− Lf

2
‖xk+1 − x̂k‖2

− (γk+1)
−1〈xk+1 − x̂k, x− xk+1〉

+
γk+1

2
‖u∗γk+1

(xk+1)− u∗γk+1
(x)‖2C .

(11)

Remark 3 This type of sandwich inequalities is commonly
used for estimating the iteration complexities of accelerated
proximal gradient (FISTA) algorithms (Beck and Teboulle
2009b; 2009a). Moreover, this bound is much tighter since
we have explored the specific structure of the proximal aver-
age function gγ(x).

The following two lemmas give an upper bound of
Λk+1(x, γ, τ) and Γk+1(x, γ, τ), respectively (see their
proofs in the supplemental material).
Lemma 5 Let {xk, x̂k, x̃k} be the sequence generated by
Algorithm 1. For any x ∈ DomF , the following upper
bound estimation for Λk+1(x, γk+1, τk) holds

Λk+1(x, γk+1, τk) ≤ τ2k
2γk+1

(‖x− x̃k‖2 − ‖x− x̃k+1‖2),
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where Λk+1(x, γ, τ) = τ
γ 〈xk+1−x̂k, x−x̂k〉+ 1−τ

γ 〈xk+1−
x̂k, xk − x̂k〉 − 1−γLf

2γ ‖xk+1 − x̂k‖2.

Lemma 6 Let x∗ be an optimal solution of problem (1) and
{xk+1} be the sequence generated by Algorithm 1 or 2.
Then, Γk+1(x∗, γk+1, τk) takes the lower bound estimation
as follows

Γk+1(x∗, γk+1, τk)

≥ (1− τk)(γk+1 − γk + γk+1τk)

2
‖u∗

γk+1
(x∗)‖2C , (12)

where Γk+1(x, γ, τ) = γ(1−τ)
2 ‖u∗

γ(x
k+1) − u∗

γ(x)‖2C +
γτ
2 ‖u∗

γ(x)‖2C − (γk−γ)(1−τ)
2 ‖u∗

γ(x
k+1)‖2C .

In the following lemma, we give an upper bound estima-
tion for Fγk+1

(xk+1)−F ∗ (see its proof in the supplemental
material).

Lemma 7 Let {xk} be the sequence generated by Algo-
rithm 1. It holds that

Fγk+1(x
k+1)− F ∗ ≤ τ2

k

γk+1

{γ1
τ2
0

(
Fγ1(x

1)−F (x∗)
)

+
1

2
‖x∗ − x̃1‖2+(γ1)

2a‖Diam
C

1
2Q

‖2
}
.

Now, we are on the position to establish the O( 1k ) up-
per bound estimation for F (xk+1) − F ∗. Based on (Nes-
terov 2005a; 2005b), the theorem below indicates that the
proposed algorithm enjoys the O( 1k ) iteration complexity.

Theorem 1 Let {xk} be the sequence generated by Algo-
rithm 1 or 2. It holds that

F (xk+1)− F ∗ ≤ O(
1

k
).

Experiments

In this section, we perform some experiments on two impor-
tant problems in machine learning: overlapping group Lasso
and graph-guided fused Lasso to verify the efficacy of our
proposed APA-APG1 and APA-APG2 algorithms. Since the
S-APG algorithm has been shown of less efficacy compared
with PA-APG in (Nesterov 2005b), we only need to com-
pare our proposed algorithms APA-APG1 and APA-APG2
with the state-of-the-art solver PA-APG. To be fair, all the
compared algorithms start with the same initial points.

Overlapping Group Lasso

We first conduct the experiments on the overlapping group
Lasso optimization problem (Zhao, Rocha, and Yu 2009;
Jacob, Obozinski, and Vert 2009; Mairal et al. 2010)

min
1

2λK
‖Ax− b‖2 +

K∑
i=1

αi‖xGi‖,

where A ∈ R
n×d is the sampling matrix in which the

entries are sampled with i.i.d. normal distribution; x∗
j =

(−1)j exp−(j−1)/100; b = Ax + ξ in which ξ is the noise

sampled from the zero mean and unit variance normal dis-
tribution; G = {G1, · · · ,GK} denotes the set of groups each
of which is a subset of {1, · · · , d}; xGi ∈ R

d is a copy of x
with x{1,··· ,d}\Gi

= 0; λ is the regularization parameter for
structured sparsity Moreover, the groups are defined as

{{1, · · · , 100}, {91, · · · , 190}, · · · , {d− 99, · · · , d}}
with d = 90K + 10. It means that in each group there exist
ten overlapped components. Similar to (Yu 2013), we adopt
the uniform weight αi =

1
K , and set λ = K

5 .

In the experiments, the sampling dimension n is fixed to
n = 4000 and the numbers of groups are set to K = 10,
K = 20, and K = 40, respectively. Figures 1-3 show the
performance of PA-APG, APA-APG1, and APA-APG2 on
the overlapping group Lasso problem with increasing preci-
sion parameters ε = 1.0e−4, ε = 1.0e−5, and ε = 1.0e−6,
respectively. It is obvious that PA-APG is much sensitive
with the number of the nonsmooth term K and required
precision. Hence, PA-APG is not suitable for the problem
with too many nonsmooth terms and highly required preci-
sion. Clearly, APA-APG1 and APA-APG2 are much faster
than PA-APG during the first 1000 iterations. Table 1 lists
the number of iterations needed by each solver under the
same terminal condition, which implies that APA-APG1 and
APA-APG2 exhibit great superiority over PA-APG and can
work for high-precision required problems.

Graph-Guided Fused Lasso

Here, we perform the experiments on the graph-guided fused
Lasso optimization problem (Chen et al. 2012; Kim and
Xing 2009)

min
1

2λK
‖Ax− b‖2 +

∑
(i,j)∈E

αij‖xi − xj‖

with αij ≥ 0 for all (i, i) ∈ E and
∑

(i,j)∈E αij = 1, where
E is the graph edge set constructed by thresholding the cor-
relation matrix. In the experiments, we fix n = 4000 and
vary the dimension d from 500 to 3000 to construct different
edge sets E. In the following experiments, we test the graph-
guided fused Lasso problem with d = 500, 1000, 2000.

Figures 4-6 show the performance of PA-APG, APA-
APG1, and APA-APG2 on the graph-guided fused Lasso
problem with three types of precision parameters ε =
1.0e−4, ε = 1.0e−5, and ε = 1.0e−6, respectively. Ap-
parently, the PA-APG algorithm proposed in (Yu 2013) is
also less efficient than the proposed adaptive proximal aver-
age approximation algorithms APA-APG1 and APA-APG2.
In addition, APA-APG2 is shown slightly better than APA-
APG1 on the graph-guided fused Lasso problem from the
shown performance in Figures 4-6. Moreover, according to
the number of iterations shown in Table 2, we know that the
PA-APG algorithm almost does not work for problems with
1.0e−6 highly required precision and larger number of non-
smooth terms. The performance on the graph-guided fused
Lasso problem also implies great superiority of the proposed
algorithms APA-APG1 and APA-APG2.
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Table 1: Performance of the number of iterations for overlapping group Lasso.
Method K = 10 K = 20 K = 40

Error 1e-4|1e-5|1e-6 1e-4|1e-5|1e-6 1e-4|1e-5|1e-6
PA-APG 124 | 710 | 1524 370 | 1456 | 5765 1531 | 5377 | 18087

APA-APG1 25 | 41 | 41 67 | 73 | 76 331 | 457 | 653
APA-APG2 25 | 41 | 41 67 | 73 | 76 261 | 335 | 1031

Figure 1: Objective value vs. iteration on overlapping group Lasso with accuracy 1.0e−4

Figure 2: Objective value vs. iteration on overlapping group Lasso with accuracy 1.0e−5

Figure 3: Objective value vs. iteration on overlapping group Lasso with accuracy 1.0e−6

Conclusions

In this paper, we proposed an adaptive proximal average ap-
proximation approach for multi-term nonsmooth composite
convex minimization by employing the proximal average
approximation and adaptive parameter tuning techniques.
For the proximal average approximation function, we first
gave its equivalent dual formulation and then established a
tighter lower bound estimation for it. By exploiting the new
structure of the proximal average approximation function,
we achieved the O( 1k ) iteration complexity for the proposed

adaptive proximal average approximation algorithm with an
appropriate choice of the approximation parameter with-
out increasing any extra computational cost. Moreover, we
conducted the experiments on overlapping group Lasso and
graph-guided fused Lasso problems, verifying the efficacy
of the proposed adaptive proximal average approximation
method. Specifically, we compared this method against the
state-of-the-art method PA-APG (Yu 2013) which has been
demonstrated much faster than the S-APG method (Nesterov
2005b). The experimental results showed that our proposed
method exhibits great superiority to resolve multi-term com-
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Table 2: Performance of the number of iterations for graph-guided fused Lasso.
Method d = 500 d = 1000 d = 2000

Error 1e-4|1e-5|1e-6 1e-4|1e-5|1e-6 1e-4|1e-5|1e-6
PA-APG 1426| 7297 |14624 2267| 9834|44364 3426 |13785 | 50472

APA-APG1 177 | 121 | 901 654 | 1820 | 1764 402 1074 | 4758 | 9341
APA-APG2 100 | 88 | 465 733 | 957 | 889 712 | 3527 | 4878

Figure 4: Objective value vs. iteration on graph-guided fused Lasso with accuracy 1.0e−4

Figure 5: Objective value vs. iteration on graph-guided fused Lasso with accuracy 1.0e−5

Figure 6: Objective value vs. iteration on graph-guided fused Lasso with accuracy 1.0e−6

posite convex minimization and also works well for higher-
precision required optimization.
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