
Patch Reordering: A Novel Way to Achieve Rotation and
Translation Invariance in Convolutional Neural Networks

Xu Shen,† Xinmei Tian,† Shaoyan Sun,† Dacheng Tao‡
† CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System,

University of Science and Technology of China Hefei, Anhui, China 230027
‡ Centre for Artificial Intelligence and the Faculty of Engineering and Information Technology,

University of Technology Sydney, 81 Broadway Street, Ultimo, NSW 2007, Australia

Abstract

Convolutional Neural Networks (CNNs) have demonstrated
state-of-the-art performance on many visual recognition
tasks. However, the combination of convolution and pool-
ing operations only shows invariance to small local location
changes in meaningful objects in input. Sometimes, such net-
works are trained using data augmentation to encode this in-
variance into the parameters, which restricts the capacity of
the model to learn the content of these objects. A more ef-
ficient use of the parameter budget is to encode rotation or
translation invariance into the model architecture, which re-
lieves the model from the need to learn them. To enable the
model to focus on learning the content of objects other than
their locations, we propose to conduct patch ranking of the
feature maps before feeding them into the next layer. When
patch ranking is combined with convolution and pooling op-
erations, we obtain consistent representations despite the lo-
cation of meaningful objects in input. We show that the patch
ranking module improves the performance of the CNN on
many benchmark tasks, including MNIST digit recognition,
large-scale image recognition, and image retrieval.

Introduction

In recent years, convolutional neural networks (CNNs) have
achieved state-of-the-art performance on many computer vi-
sion tasks, including image recognition (Szegedy et al. 2015;
Simonyan and Zisserman 2014a; He et al. 2016), seman-
tic segmentation (Long, Shelhamer, and Darrell 2015), im-
age captioning (Karpathy and Li 2015; Donahue et al. 2015;
Fang et al. 2015), action recognition (Gkioxari, Girshick,
and Malik 2015; Simonyan and Zisserman 2014b), and
video captioning (Yao et al. 2015; Pan et al. 2016). The
success of CNNs comes from their ability to learn the two-
dimensional structures of images for which objects and pat-
terns may appear at different locations. To detect and learn
patterns despite their locations, the weights of local filters
are shared when applied to different positions in the image.

Since distortions or shifts of the input can cause the posi-
tions of salient features to vary, weight sharing is very im-
portant for CNNs to detect invariant elementary features re-
gardless of location changes of these features (Lecun et al.
1998). In addition, pooling also reduces the sensitivity of the

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

output to small local shifts and distortions by reducing the
resolutions of input feature maps. However, another impor-
tant property of weight sharing or pooling is that the location
of detected features in the output feature maps is identical
to that of the corresponding local patch in the input feature
maps. As a result, the location change of the input visual
patterns in lower layers will propagate to higher convolu-
tional layers. Due to the typically small local spatial support
for pooling (e.g., 2 × 2) and convolution (e.g., 9 × 9 kernel
size), large global location changes of patterns in input (e.g.,
global rotation or translation of objects) will even propagate
to the feature maps of the final convolutional layer (as shown
in Fig. 1). Consequently, the following fully connected lay-
ers have to learn the location invariance to produce consis-
tent predictions or representations, which restricts the use of
the parameter budget for achieving more powerful outputs.

In this paper, we introduce a Patch Reordering (PR) mod-
ule that can be embedded into a standard CNN architecture
to improve the rotation and translation invariance capabili-
ties. Output feature maps of the convolutional layer are first
divided into multiple tiers of non-overlapped local patches
at different spatial pyramid levels. We reorder these local
patches at each level based on their energy (e.g., L1 or L2
norm of activations of the patch). To retain the spatial con-
sistency of local patterns, we only reorder the patches of a
given level locally (i.e., within each single patch of its up-
per level). In convolutional layers, a location change of the
patterns in input feature maps will result in a corresponding
location change of the output feature maps, while the local
patterns (activations) in the output are equivalent. As a re-
sult, ranking these local patterns in a specific order leads to
a consistent representation despite the locations of local pat-
terns in input, that is, rotation or translation invariance. The
proposed architecture can be inserted into any convolutional
layers and allows for end-to-end training of the models for
which they are applied. In addition, we do not need any extra
training supervision or modification to the training process
or any preprocessing of input images.

Related Work

The equivalence and invariance of CNN representations to
input image transformations were investigated in (Lenc and
Vedaldi 2015; Cohen and Welling 2015; Gens and Domin-
gos 2014). Specifically, Cohen and Welling (Cohen and

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2534

(a) (b)

Figure 1: Large global location changes of patterns in input (e.g., global rotation or translation of objects) will propagate to the
feature maps of the final convolutional layer. As a result, the fully connected layers have to encode the invariance of location
changes into its parameters, which restricts the capacity of the model to learn the content of these objects.

Welling 2015) showed that a linear transform of a good vi-
sual representation was equivalent to a combination of the
elementary irreducible representations using the theory of
group representations. Lenc and Vedaldi (Lenc and Vedaldi
2015) estimated the linear relationships between represen-
tations of the original and transformed images. Gens and
Domingos (Gens and Domingos 2014) proposed a gener-
alization of CNNs that formed feature maps over arbitrary
symmetry groups based on the theory of symmetry groups
in (Lenc and Vedaldi 2015), resulting in feature maps that
were more invariant to symmetry groups. Bruna and Mal-
lat (Bruna and Mallat 2013) proposed a wavelet scattering
network to compute a translation invariant image represen-
tation. Local linear transformations were adopted in the fea-
ture learning algorithms in (Sohn and Lee 2012) for the pur-
pose of transformation-invariant feature learning.

Numerous recent works have focused on introducing spa-
tial invariance in deep learning architectures explicitly. For
unsupervised feature learning, Sohn and Lee (Sohn and Lee
2012) presented a transform-invariant restricted Boltzmann
machine that compactly represented data by its weights and
their transformations, which achieved invariance of the fea-
ture representation via probabilistic max pooling. Each hid-
den unit was augmented with a latent transformation as-
signment variable that described the selection of the trans-
formed view of the weights associated with the unit in (Kivi-
nen and Williams 2011). In both works, the transformed
filters were only applied at the center of the largest recep-
tive field size. In tied convolutional neural networks (Le et
al. 2010), invariance was learned explicitly by square-root
pooling hidden units computed by partially un-tied weights.
Here, additional learned parameters were needed when un-
tying weights.

The latest two works on incorporating spatial invariance
in CNNs are described in (Kanazawa and Sharma 2014;
Jaderberg et al. 2015). In (Kanazawa and Sharma 2014),
feature maps in CNNs were scaled or rotated to multiple lev-
els, and the same kernel was convolved across the input at
each scale. Then, the responses of the convolution at each
scale were normalized and pooled at each spatial location to
obtain a locally scale-invariant representation. In this model,
only limited scales were considered, and extra modules were
needed in the feature extraction process. To address differ-
ent transformation types in input images, Jaderberg et al.

(Jaderberg et al. 2015) proposed inserting a spatial trans-
former module between CNN layers, which explicitly trans-
formed an input image into a proper appearance and fed the
transformed input into the CNN model.

In conclusion, all aforementioned related works improve
the transform invariance of deep learning models by adding
extra feature extraction modules, more learnable parame-
ters, or extra transformations on input images, which makes
the trained CNN model problem-dependent and not gener-
alizable to other datasets. In contrast, in this paper, we pro-
pose a very simple reordering on feature maps during the
training of CNN models. No extra feature extraction mod-
ules or more learnable parameters are needed. Therefore, it
is very easy to apply the trained model to other vision tasks.

Patch Reordering in Convolutional Neural

Networks

Weight sharing in CNNs allows feature detectors to de-
tect features regardless of their spatial locations in the im-
age; however, the corresponding location of output patterns
varies when subject to location changes of the local patterns
in the input. Learning invariant representations causes pa-
rameter redundancy problems in current CNN models. In
this section, we will reveal this phenomenon and propose
the formulation of our Patch Reordering module.

Parameter Redundancy in Convolutional Neural
Networks

Let X l−1 = {�xij , i = 1, · · · , h, j = 1, · · · , w} denote the
output feature maps of a convolutional layer with m ele-
ments (m = h × w × c for c feature maps with height h
and width w). Each �xij is a c-dimensional input feature vec-
tor corresponding to location (i,j). If it is followed by a fully
connected layer, X l can be computed by

X l = f(WX l−1) = f(
h∑

i=1

w∑

j=1

�wT
ij�xij), (1)

where f is a non-linear activation function and �wij are
the weights for location (i,j). If there is some location
change (such as a rotation or translation) of the input fea-
tures, the resulting new input becomes X ′l−1 = {�x′

i′j′ , i
′ =

1, · · · , h, j′ = 1, · · · , w}. Since there are no value changes

2535

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

0

1

2

3

4

5

6

7

8

log
 h

ist
og

ra
m

CNN-Patch-Reordering
CNN

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

0

1

2

3

4

5

6

7

8

log
 h

ist
og

ra
m

CNN-Patch-Reordering
CNN

(b)

Figure 2: Log histogram of similarity between weights in fc6 (a) and fc7 (b) layers in a CNN with (CNN-Patch-Reordering)
and without the (CNN) patch reordering module. In conventional CNNs, the correlation of parameters in fc6 is much higher
than that in fc7, while that for PR-CNN is quite consistent. This phenomenon implies that the location change of input visual
patterns leads to a higher parameter redundancy in the subsequent layers.

(except cropping or padding), for �xij in any position (i,j),
we can always find its correspondence �x′

i′j′ in the trans-
formed input, i.e. �xij = �x′

i′j′ . If the network learns to be
invariant under this type of location change, the output (or
representation) should remain the same. Specifically,

X ′l ≈ X l ⇒ f(

h∑

i′=1

w∑

j′=1

�wT
i′j′

�x′
i′j′) ≈ f(

h∑

i=1

w∑

j=1

�wT
ij�xij) .

(2)
Then, in the monotonous section of f , we have

h∑

i′=1

w∑

j′=1

�wT
i′j′

�x′
i′j′ ≈

h∑

i=1

w∑

j=1

�wT
ij�xij . (3)

Since �xij = �x′
i′j′ , the aforementioned equation can be

simplified as:

h∑

i′=1

w∑

j′=1

(�wi′j′ − �wij)
T�xij ≈ �0 (4)

Because �xij varies as the input image changes, we have
�wi′j′ − �wij ≈ �0. That is to say, encoding rotation or transla-
tion invariance into CNNs leads to highly correlated param-
eters in higher layers. Therefore, the capacity of the model
decreases. To validate this redundancy in CNN models, we
compare the log histogram of cosine similarities between
weights in fc6 and fc7 in AlexNet (Krizhevsky, Sutskever,
and Hinton 2012). Fig. 2 shows that parameter redundancy
of the model is significantly reduced because of a more con-
sistent feature map after patch reordering.

Patch Reordering

If one object is located at different positions in two images,
the same visual features of the object will locate at different
positions in their corresponding convolution feature maps.

The feature maps generated by deep convolutional layers are
analogous to the feature maps in traditional methods (Chat-
field et al. 2011; Coates and Ng 2011). In those methods, im-
age patches or SIFT vectors are densely extracted and then
encoded. These encoded features compose the feature maps
and are pooled into a histogram of bins. Reordering of the
pooled histogram achieves translation and rotation invari-
ance. Likewise, since the deep convolutional feature maps
are the encoded representations of images, reordering can be
applied in a similar way.

Since convolutional kernels function as feature detectors,
each activation in the output feature maps corresponds to a
match of a specific visual pattern. Therefore, when the fea-
ture detectors slide through the whole input feature maps,
the locations with matched patterns generate very high re-
sponses and vice versa. Consequently, the “energy” distri-
bution (L1 norm or L2 norm) of the local patches in the out-
put feature maps presents some heterogeneity. Furthermore,
patches with different energies correspond to different parts
of the input object. Naturally, if we rank the patches by their
energies in a descending or ascending order, regardless of
how we change the location of visual patterns by rotation or
translation in the input, the output order will be quite con-
sistent. Finally, and rotation- and translation-invariant rep-
resentation is generated.

Forward Propagation The details of the patch reordering
module are illustrated in Fig. 3. The feature maps are di-
vided into (n× n)l non-overlapped patches at level-l. Here,
n is a predefined parameter (e.g., 2 or 3). Then, we rank
the patches by energy (L1 or L2 norm) within each patch of
level l − 1:

En
l−1

i∈(w
l−1
1

,w
l−1
2

);j∈(h
l−1
1

,h
l−1
2

)
=

w
l−1
2∑

i=w
l−1
1

h
l−1
2∑

j=h
l−1
1

|Xi,j | or X
2
i,j . (5)

The patches are located from the upper left to the lower right
in descending order of energy. The offset of each pixel in

2536

(a) (b)

Figure 3: Side-by-side comparison of the structure of (a) a conventional convolutional layer and (b) the proposed convolutional
layer with patch reordering module. Feature maps are divided into (n × n)l non-overlapped patches at level-l. Here, we take
n = 2 and l = 2 as an example. The four patches of level 1 are first reordered so that patches with higher energy precedes
other patches. Then, we repeat this process within each single patch in the previous level (here, we only show the reordering of
the first patch in level 2). One visual example of the output feature maps between original and rotated/translated input images
with/without patch reordering is illustrate in Supplemental Material.

the patch (oli, o
l
j) can be obtained from the gap between the

target patch location and the source patch location. Finally,
the output feature map can be computed by

Zi,j = X
i+
∑l

k=1
ok
i
, j+

∑l

k=1
ok
j

. (6)

Backward Propagation During the back-propagation
process, we simply pass the error from the output pixel to
its corresponding input pixel:

EX
i,j = EZ

i−
∑l

k=1
ok
i
, j−

∑l

k=1
ok
j

. (7)

Experiments

In this section, we evaluate our proposed CNN with patch
reordering module on several supervised learning tasks, and
compare our model with state-of-the-art methods, including
traditional CNNs, SI-CNN (Kanazawa and Sharma 2014),
and ST-CNN (Jaderberg et al. 2015). First, we conduct
experiments on the distorted versions of the MNIST hand-
writing dataset as in (Jaderberg et al. 2015; Kanazawa and
Sharma 2014). The experimental results show that patch re-
ordering is capable of achieving comparable or better classi-
fication performance. Second, to test the effectiveness of
patch reordering on CNNs for large-scale real-world im-
age recognition tasks, we compare our model with AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) on ImageNet-
2012 dataset. The results demonstrate that patch reordering
improves the learning capacity of the model and encodes
translation and rotation invariance into the architecture even
when trained on raw images only. Finally, to evaluate the
generalization ability of the proposed model on other vision
tasks with real-world transformations of images, we apply
our model to solve the image retrieval task on UK-Bench
(Nister and Stewenius 2006) dataset. The improvement in
the retrieval performance reveals that the proposed model
has a good generalization ability and is better at solving real-
world transformation variations.

We implement our method using the open-source Caffe
framework (Jia et al. 2014). For patch energy, we have tested
both L1 and L2 norm and found that they did not show much
difference. Our code and model will be available online. For
SI-CNN and ST-CNN, we directly report their results from
the original papers on MNIST. For ImageNet-2012, since

Method R T
FCN 2.1 2.9
CNN 1.2 1.3
SI-CNN 0.9 -
ST-CNN 0.8 0.8
PR-CNN(ours) 0.8 0.7

Table 1: Classification error on the transformed MNIST
dataset. The different distorted MNIST datasets are R (rota-
tion) and T (translation). All models have the same number
of parameters and use the same basic architectures.

these two methods did not report their results on this dataset,
we forked from the github for re-implementation.

MNIST

In this section, we use the MNIST handwriting dataset to
evaluate all deep models. In particular, different neural net-
works are trained to classify MNIST data that have been
transformed via rotation (R) and translation (T). The rotated
dataset was generated from rotating digits with a random an-
gle sampled from a uniform distribution U [−90◦, 90◦]. The
translated dataset was generated by randomly locating the
28× 28 digit in a 42× 42 canvas.

Following (Jaderberg et al. 2015), all networks use ReLU
activation function and softmax classifiers. All CNN net-
works have a 9×9 convolutional layer (stride 1, no padding),
a 2× 2 max-pooling layer with stride 2, a subsequent 7× 7
convolutional layer (stride 1, no padding), and another 2× 2
max-pooling layer with stride 2 before the final classification
layer. All CNN networks have 64 filters per layer. For SI-
CNN, convolutional layers are replaced by rotation-invariant
layers using six angles from −90◦ to 90◦. For ST-CNN, the
spatial transformer module is placed at the beginning of the
network. In our patch reordering CNN, the patch reorder
module is applied to the second convolutional layer. The
feature maps are divided into 4l blocks at level l. Here, we
set l = 1. All networks are trained with SGD for 150000
iterations, with a 256 batch size, 0.01 base learning rate, and
no weight decay or dropout. The learning rate was reduced
by a factor of 0.1 every 50000 iterations. Weights were ini-
tialized randomly, and all networks shared the same random

2537

Method Ori R T
CNN 57.1/80.2 36.6/57.7 46.5/70.8
CNN-Data-Aug 56.6/79.8 36.5/58.3 50.0/73.9
SI-CNN 57.2/80.2 36.8/58.9 -
ST-CNN 59.1/81.7 37.3/59.3 51.4/75.3
PR-CNN(ours) 60.4/82.4 40.7/63.3 54.9/78.0

Table 2: Classification accuracy on the ImageNet-2012 val-
idation dataset. The evaluation datasets are Ori (original), R
(rotation), and T (translation).

seed.
The experimental results are summarized in Table 1. It

shows that our model achieves better performance under
translation and comparable performance under rotation. Be-
cause our model does not need any extra learnable parame-
ters, feature extraction modules, or transformations on train-
ing images, the comparable performance still reflects the su-
periority of the patch reordering CNN. For ST-CNN, the
best results reported in (Jaderberg et al. 2015) is obtained
by training with a more narrow class of transformations se-
lected manually (affine transformations). In our method, we
did not optimize with respected to transformation classes.
Therefore the comparison is unfair for our PR-CNN. We
should compare with the most general ST-CNN defined for
a class of projection transformations: 0.8(R) and 0.8(T).

ImageNet-2012

The ImageNet-2012 dataset consists of images from 1000
classes and is split into three subsets: training (1.3M), vali-
dation (50K), and testing (100K images with held-out class
labels). The classification performance is evaluated using
the top-1 and top-5 accuracy. The former is a multi-class
classification accuracy. The latter is the main evaluation cri-
terion used in ILSVRC and is defined as the proportion of
images whose ground-truth category is not in the top-5 pre-
dicted categories. We use this dataset to test the performance
of our model on a large-scale image recognition task.

CNN models are trained on raw images and tested on
both raw and transformed images. For all transform types,
specific transformations are applied to the original images.
Then, the transformed images are rescaled to have a smallest
image side of 256 pixels. Finally, the center 224× 224 crop
is used for test. The rotated (R) dataset is generated by ran-
domly rotating original images from −45◦ to 45◦ with a uni-
form distribution. The translated dataset (T) is generated by
randomly shifting an image by a proportion of U [−0.2, 0.2].

All the models follow the architecture of AlexNet. For
SI-CNN, the first, second and fifth convolutional layers are
replaced by rotation-invariant layers using six angles from
−90◦ to 90◦. For ST-CNN, the input is fed into a spatial
transformer network before the AlexNet. The spatial trans-
former network uses bilinear sampling with an affine trans-
formation function. As in (Jaderberg et al. 2015), the size
of the spatial transformer network is about half the size of
AlexNet. For our PR-CNN, the feature maps are divided
into 4l blocks at level l = 2, and the patch reorder module is

Method FC6 FC7
CNN 3.381 3.438
CNN-Data-Aug 3.340 3.441
SI-CNN 3.431 3.452
ST-CNN 3.430 3.446
PR-CNN(ours) 3.574 3.539

Table 3: Performance of CNN models on the UK-Bench re-
trieval dataset. Here, we use the 4096-dimensional feature
of fc6 and fc7 for evaluation.

applied to the fifth convolutional layer.
To train SI-CNN and PR-CNN, we use a base learn-

ing rate of 0.01 and decay it by 0.1 every 200, 000 itera-
tions. Both networks are trained for 700, 000 iterations. We
use a momentum of 0.9, a weight decay of 0.0005, and a
weight clip of 35. The convolutional kernel weights and
bias are initialized by N (0, 0.012) and 0.1, respectively. The
weights and bias of fully connected layers are initialized by
N (0, 0.0052) and 0.1. The bias learning rate is set to be 2×
the learning rate for the weights. For ST-CNN, since it does
not converge under the aforementioned setting, we fine-tune
the network with the classification network initialized by the
pre-trained AlexNet. The spatial transformer module con-
sists of 2 convolutional layers, 2 pooling layers, and 3 fully
connected layers. The first convolutional layer filters the in-
put with 48 kernels of size 11 × 11 × 3 with a stride of 4
pixels, then is connected by a 3×3 pooling layer with stride
2. The second convolutional layer has 48 kernels of size
5× 5× 48 with a stride of 2 pixels, followed by a 3× 3 max
pooling layer with stride 2. The output of the pooling layer
is fed into two fully connected layers with 48 neurons. Fi-
nally, the third fully connected layer maps the output into 6
affine parameters. Then the 6-dimensional output is fed into
the spatial transformer layer to get the transformed input im-
age. During the fine-tuning, the learning rate of the spatial
transformer is set to be 0.01× that of the classification net-
work. We use a base learning rate of 0.001 and decay it by
0.1 every 50, 000 iterations, the training process converges
after approximately 200, 000 iterations.

The results are presented in Table 2. It shows that data
augmentation, feature map augmentation, transform pre-
processing and patch reordering are all effective ways to im-
prove the rotation or translation invariance of CNNs. Our
PR-CNN not only achieves more consistent representation
faced with location changes in input but also relieves the
models from encoding invariance. It improves the classifica-
tion accuracy of the model even for the original test images.

UK-Bench

We also evaluate our PR-CNN model on the popular image
retrieval benchmark dataset UK-Bench (Nister and Stewe-
nius 2006). This dataset includes 2550 groups of images,
each containing 4 relevant samples concerning a certain ob-
ject or scene from different viewpoints. Each of the in to-
tal 10200 images is used as one query to perform image
retrieval, targeting at finding each image’s 3 counterparts.
We choose UK-Bench since the viewpoint variation in the

2538

Figure 4: Transform invariance measure (the larger, the bet-
ter). By applying patch reordering on feature maps during
training, the invariance of the following layers is signifi-
cantly improved.

dataset is very common. Although many of the variation
types are beyond the three types of geometry transforma-
tions that we attempt to address with, we demonstrate the
effectiveness of PR-CNN for solving many severe rotation,
translation and scale variance cases in image retrieval task.

We directly apply the models trained on ImageNet-2012
for evaluation. The outputs of the fc6 and fc7 layers are
used as the feature for each image. Then, we compute the
root value of each dimension and perform L2 normalization.
To perform image retrieval on UK-Bench, the Euclidean dis-
tances of the query image with respect to all 10200 database
images are computed and sorted. Images with the smallest
distances are returned as top ranked images. NS-Score (av-
erage top four accuracy) is used to evaluate the performance,
and a score of 4.0 indicates that all the relevant images are
successfully retrieved in the top-four results.

As shown in Table 3, data augmentation, feature map aug-
mentation or spatial transformer network does not present
considerable capacity of transform invariance when applied
to an unrelated new task. Maybe these models need to be
well fine-tuned when transferred to a new dataset and the
Spatial Transformer block is content and task dependent.
Patch reordering is better for transferring by encoding invari-
ance only into architecture, which is irrelevant to the content
of input. It demonstrates that our PR-CNN model can be
seamlessly transferred to other image recognition based ap-
plications (e.g. image retrieval) without any re-training/fine-
tuning. Meanwhile, for other models, fc7 presents better in-
variance than fc6. However, for our PR-CNN, fc6 is better.
We can find some clues from Fig. 2, that is, fc6 presents less
parameter redundancy than fc7 in PR-CNN.

Measuring Invariance

We evaluate the transform invariance achieved by our model
using the invariance measure proposed in (Goodfellow et al.
2009). In this approach, a neuron is considered to be firing
when its response is above a certain threshold ti. Each ti
is chosen to satisfy the condition that G(i) =

∑ |hi(x) >
ti|/N is greater than 0.01, where N is the number of inputs.
Then, the local firing rate L(i) is computed as the propor-
tion of transformed inputs to which a neuron fires. To ensure
that a neuron is selective and with a high local firing rate
(invariance to the set of the transformed inputs), the invari-
ance score of a neuron is computed based on the ratio of its

(a)

(b)

Figure 5: Performance of PR-CNN when the PR module is
applied to different layers with different levels. The perfor-
mance drops significantly when we perform patch reorder-
ing in low layers. This is because patch reordering breaks
local spatial correlations among patches, which is vital for
recognizing meaningful visual patterns in lower layers.

invariance to selectivity, i.e., L(i)/G(i). We report the aver-
age of the top 20% highest scoring neurons (p = 0.2), as in
(Kanazawa and Sharma 2014). Please refer to (Goodfellow
et al. 2009) for more details.

Here, we build the transformed dataset by applying ro-
tation ([−45◦, 45◦] with a step size of 9◦) and translation
([−0.2, 0.2] with a step size of 0.04) on the 50, 000 valida-
tion images of ImageNet-2012. Fig. 4 shows the invariance
score of CNN and PR-CNN measured at the end of each
layer. We can see that by applying patch reordering to fea-
ture maps during training, the invariance of the subsequent
layers is significantly improved.

Effect of Patch Reordering on Different Layers

To investigate the effect of applying patch reordering to dif-
ferent convolutional layers and the effect of pyramid levels,
we train different PR-CNN models with patch reordering ap-
plied to 1 ∼ 5 convolutional layers with level 1 or 2. When
l = 1, we divide the feature maps into 4 × 4 blocks. For
l = 2, the feature maps are first divided into 2 × 2 blocks,
and each block is further divided into 2× 2 sub-blocks. The
experimental results are presented in Fig. 5. We can see that
the performance drops significantly when we perform patch
reordering in low layers. Meanwhile, multi-level reorder-
ing does not result in a significant difference to single- level
reordering in regard to higher convolutional layers. Low-
level features, such as edges and corners, are detected in
low layers, and they must be combined in a local spatial
range to conduct further recognition. Because patch reorder-
ing breaks this local spatial correlation and treats each block
as an independent feature, the generated representation be-
comes less meaningful. This explanation can also clarify the
phenomenon that the multi-level division of feature maps

2539

significantly improves model performance in lower layers
because a hierarchical reordering will preserve more local
spatial relationships than will a single one.

Conclusion

In this paper, we introduce a very simple and effective way
to improve the rotation and translation invariance of CNN
models. By reordering the feature maps of CNN layers, the
model is relieved from encoding location invariance into its
parameters. Meanwhile, CNN models are able to generate
more consistent representations when faced with location
changes of local patterns in input. Our architecture does not
need any extra parameters or pre-processing on input im-
ages. Experiments show that our model outperforms CNN
models in both image recognition and image retrieval tasks.

Acknowledgments This work is supported by NSFC un-
der the contracts No.61572451 and No.61390514, the 973
project under the contract No.2015CB351803, the Youth
Innovation Promotion Association CAS CX2100060016,
Fok Ying Tung Education Foundation WF2100060004, the
Fundamental Research Funds for the Central Universities
WK2100060011, Australian Research Council Projects: FT-
130101457, DP-140102164, and LE140100061.

References

Bruna, J., and Mallat, S. 2013. Invariant scattering con-
volution networks. IEEE Trans. Pattern Anal. Mach. Intell.
35:1872–1886.
Chatfield, K.; Lempitsky, V.; Vedaldi, A.; and Zisserman,
A. 2011. The devil is in the details: an evaluation of recent
feature encoding methods. In Proceedings of the British Ma-
chine Vision Conference, 76.1–76.12.
Coates, A., and Ng, A. Y. 2011. The importance of encoding
versus training with sparse coding and vector quantization.
In ICML, 921–928.
Cohen, T. S., and Welling, M. 2015. Transformation prop-
erties of learned visual representations. ICLR.
Donahue, J.; Hendricks, L. A.; Guadarrama, S.; Rohrbach,
M.; Venugopalan, S.; Saenko, K.; and Darrell, T. 2015.
Long-term recurrent convolutional networks for visual
recognition and description. CVPR.
Fang, H.; Gupta, S.; Iandola, F.; Srivastava, R.; Deng, L.;
Dollar, P.; Gao, J.; He, X.; Mitchell, M.; Platt, J. C.; Zitnick,
L.; and Zweig, G. 2015. From captions to visual concepts
and back. CVPR.
Gens, R., and Domingos, P. M. 2014. Deep symmetry net-
works. NIPS.
Gkioxari, G.; Girshick, R.; and Malik, J. 2015. Contextual
action recognition with r*cnn. ICCV.
Goodfellow, I. J.; Le, Q. V.; Saxe, A. M.; Lee, H.; and Ng,
A. Y. 2009. Measuring invariances in deep networks. NIPS.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. CVPR.
Jaderberg, M.; Simonyan, K.; Zisserman, A.; and
Kavukcuoglu, K. 2015. Spatial transformer networks. NIPS.

Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.
Kanazawa, A., and Sharma, A. 2014. Locally scale-invariant
convolutional neural networks. NIPS.
Karpathy, A., and Li, F.-F. 2015. Deep visual-semantic
alignments for generating image description. CVPR.
Kivinen, J. J., and Williams, C. K. I. 2011. Transforma-
tion equivariant boltzmann machines. In Artificial Neural
Networks and Machine Learning, 1–9.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. NIPS 1097–1105.
Le, Q. V.; Ngiam, J.; Chen, Z.; hao Chia, D. J.; Koh, P. W.;
and Ng, A. Y. 2010. Tiled convolutional neural networks.
NIPS.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, 2278–2324.
Lenc, K., and Vedaldi, A. 2015. Understanding image repre-
sentations by measuring their equivariance and equivalence.
CVPR.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo-
lutional networks for semantic segmentation. CVPR.
Nister, D., and Stewenius, H. 2006. Scalable recognition
with a vocabulary tree. In CVPR, 2161–2168.
Pan, Y.; Mei, T.; Yao, T.; Li, H.; and Rui, Y. 2016. Joint
modeling embedding and translation to bridge video and
language. CVPR.
Simonyan, K., and Zisserman, A. 2014a. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556.
Simonyan, K., and Zisserman, A. 2014b. Two-stream con-
volutional networks for action recognition in videos. NIPS.
Sohn, K., and Lee, H. 2012. Learning invariant representa-
tions with local transformations. In ICML.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolution. CVPR.
Yao, L.; Torabi, A.; Cho, K.; Ballas, N.; Pal, C.; Larochelle,
H.; and Courville, A. 2015. Describing videos by exploiting
temporal structure. ICCV.

2540

