
Deep Collective Inference

John Moore, Jennifer Neville
Departments of Computer Science and Statistics

Purdue University, West Lafayette, IN
Email: moore269, neville@purdue.edu

Abstract

Collective inference is widely used to improve classifica-
tion in network datasets. However, despite recent advances
in deep learning and the successes of recurrent neural net-
works (RNNs), researchers have only just recently begun to
study how to apply RNNs to heterogeneous graph and net-
work datasets. There has been recent work on using RNNs
for unsupervised learning in networks (e.g., graph cluster-
ing, node embedding) and for prediction (e.g., link predic-
tion, graph classification), but there has been little work on
using RNNs for node-based relational classification tasks. In
this paper, we provide an end-to-end learning framework us-
ing RNNs for collective inference. Our main insight is to
transform a node and its set of neighbors into an unordered
sequence (of varying length) and use an LSTM-based RNN
to predict the class label as the output of that sequence. We
develop a collective inference method, which we refer to as
Deep Collective Inference (DCI), that uses semi-supervised
learning in partially-labeled networks and two label distribu-
tion correction mechanisms for imbalanced classes. We com-
pare to several alternative methods on seven network datasets.
DCI achieves up to a 12% reduction in error compared to the
best alternative and a 25% reduction in error on average—
over all methods, for all label proportions.

Introduction

Collective inference is widely used to improve classification
in network datasets (see e.g., Macskassy and Provost 2007).
This is because many network datasets have nodes with at-
tributes values that are correlated across the links. For exam-
ple, in protein-protein interaction networks, the functions of
interacting proteins in the cell are typically correlated. Sim-
ilarly in social networks, friends tends to share similar in-
terests and preferences. Thus in a partially labeled network
where the attribute values of some nodes are observed, but
others are unobserved, it is often helpful to learn a statisti-
cal relational model (see e.g., Getoor and Taskar 2007) and
apply the model using collective classification (see e.g., Sen
et al. 2008) to jointly make predictions about the set of un-
labeled nodes.

Recently, the use of recurrent neural networks (RNNs)
and deep learning for both supervised and unsupervised

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tasks have produced significant performance gains across
domains such as speech translation, image processing, and
natural language processing (Lipton, Berkowitz, and Elkan
2015; Chung et al. 2014; Graves and Jaitly 2014; Vinyals et
al. 2014; Ren, Kiros, and Zemel 2015). While research on
neural network models has been active for decades, recent
achievements with the models are due to the availability of
larger datasets, combined with several insights on how to
structure the form of the model, initialize the weights, guide
the optimization process to avoid overfitting, and fix prob-
lems such as vanishing gradients.

However, in the majority of domains where RNNs have
been applied successfully, the examples are structured ei-
ther as vectors, sequences, or matrices. Due to heteroge-
neous structure of graph data, it is still a relatively open
question as to how to best design and exploit RNNs for
learning in graphs with heterogeneous structure. There has
been work on using neural networks for unsupervised learn-
ing in networks (e.g., graph clustering (Tian et al. 2014),
node embeddings (Perozzi, Al-Rfou, and Skiena 2014; Tang
et al. 2015)). However, when these methods have been ap-
plied for classification (e.g., link prediction (Li et al. 2014),
graph classification (Yanardag and Vishwanathan 2015),
node classification (Grover and Leskovec 2016)), it is typ-
ically based on using the output of unsupervised learning
as features in a basic predictive model (e.g., logistic regres-
sion). The majority of previous methods for collective clas-
sification have been based on graphical models (e.g., Taskar,
Abbeel, and Koller 2002; Richardson and Domingos 2006;
Neville and Jensen 2007). There has been relatively little
work on neural network models for supervised, end-to-end
classification in partially-labeled relational graphs. One ex-
ception is the work of Monner and Reggia (2013) on Recur-
rent Neural Collective Classification (RNCC).

In this work, we develop an RNN for semi-supervised
collective inference in attributed networks. Specifically, we
consider the node classification problem, where given a sin-
gle partially-labeled attributed network, the goal is to learn
a model to jointly predict the remaining unlabeled nodes in
the network. We propose an RNN approach that uses semi-
supervised learning to jointly model relational structure and
attributes. Our main insights are: (1) to transform a node and
its set of neighbors into a random order (i.e., sequence of
varying length) and use an LSTM-based RNN (Hochreiter

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2364

and Schmidhuber 1997) to predict the class label as the out-
put of that sequence, (2) to use a data augmentation or ob-
jective function balancing to adjust for skewed class label
distributions, and (3) to initialize predictions of unlabeled
nodes with a basic relational RNN, instead of using only the
known class label values for the first round of learning.

We compare our proposed method to several baselines
and alternatives, including state-of-the-art approaches to
semi-supervised relational learning (Pfeiffer III, Neville, and
Bennett 2015), network embedding (Grover and Leskovec
2016), and RNCC (Monner and Reggia 2013). We show that
our approach achieves a significant reduction in classifica-
tion error. We consider seven network datasets and observed
up to a 12% reduction in error compared to the best alter-
native and a 25% reduction in error on average—over all
competing methods, for all label proportions. Our main con-
tributions are the following:

• We develop an LSTM-based RNN for node-based rela-
tional learning and collective inference, which we refer to
this method as Deep Collective Inference (DCI).

• We show DCI outperforms state-of-the-art methods for
semi-supervised collective classification using: graphical
models, node embeddings, and recurrent neural networks.

• We evaluate the efficacy of our modeling choices and
show that: (1) sequences of neighbors based on random
orderings work better than ordering by connectivity, (2) a
combination of data augmentation and cross entropy bal-
ancing helps to offset class label skew significantly dur-
ing learning, (3) initializing class label predictions for un-
known labels using a basic relational model improves per-
formance compared to stacking (Kou and Cohen 2007)
where class probabilities are used as features instead.

Background

We define a graph G = 〈V,E〉 where vi ∈ V with i ∈ [1, n]
is a node and E ⊆ V × V is the edge set. If eij ∈ E,
there is an edge between vi and vj , otherwise there is not.
Let Ni correspond to the set of neighbors of vi, that is
Ni = {vj | eij ∈ E}. Let F,Y be the feature and label
set over the nodes, respectively. Each vi ∈ V has a corre-
sponding feature vector fi ∈ F. For relational classification,
the input network is partially labeled and thus only some
of the nodes have an associated class label (i.e., if yj ∈ Y
then vj is labeled). The goal of relational classification is to
learn a model from the partially labeled network and use
the model to make predictions ŷ for the unlabeled nodes
{vk} s.t. yk /∈ Y. In this work we assume that Y is binary
and can only take values {0, 1}. Moreover each prediction
ŷi ∈ [0, 1] represents the probability of that the class label
value for vi is 1. Let VU,VL refer to nodes that are unla-
beled and labeled, respectively.

Recurrent Neural Networks

RNNs have been used extensively in sequence prediction
problems. The vanilla RNN can be described by the follow-
ing equations:

h(t) = σ(Whxx(t) +Whhh(t−1) + bh)

ŷ(t) = softmax(W yhh(t) + by)

softmax(z)j =
ezj∑
ezi

for the jth entry in z

where t is the sequence length, x(t) is the current element
in the sequence, and h(t−1) is the network’s previous state.
Whx, Whh, and W yh are the matrices of weights between
input and hidden layer, hidden to hidden layers, and hid-
den to output layers. bh and by are bias parameters. σ is
the continuous, differentiable activation function. For pre-
diction, the output ŷ(t) at each timestep t is calculated given
current hidden state h(t). RNNs are known to have prob-
lems with exploding or vanishing gradients. However, the
LSTM architecture overcomes the exploding/vanishing gra-
dient problem by carefully designing the hidden units such
that gradients behave well (Hochreiter and Schmidhuber
1997). Thus, in this work we use the LSTM architecture.

Deep Collective Inference
In this paper, we develop a deep collective inference (DCI)
method, which uses an RNN for collective classification in
relational network data. We refer to weights in any RNN as
both the weights and bias terms.

Problem Definition and Input Specification

We assume as input a partially labeled graph < G,F,Y >.
The goal is to learn a predictive model from the labeled
nodes VL and use the model to make predictions for the
unlabeled nodes VU = V − VL. We first specify a non-
collective version of our method to generate seed predictions
known as Deep Relational Inference (DRI).

Examples are constructed as follows: for a node vi, the
target output is the class label yi and the input is the node’s
features fi and the features of its neighbors {fj | vj ∈
Ni}. We form a model to learn a mapping of the inputs
[fi, {fj}vj∈Ni] to the output yi. Since each node has a differ-
ent number of neighbors, we will transform the input into an
unordered sequence (of varying length). First, we randomly
order the list of neighbors (i.e., [vj1 , vj2 , ..., vj|Ni|

]) and then
we use the associated features as a sequential input to the
model:

xi = [fj1 , fj2 , ..., fj|Ni|
, fi]

= [x
(0)
i ,x

(1)
i , ...,x

(|Ni|)
i] (1)

Note the last feature vector in the sequence fi corresponds
to the features of the target node. Here x(t) refers to the tth

neighbor (i.e., element) in the sequence and x
(|Ni|)
i refers to

the target node. Thus the resulting inputs to the RNN will be
a set of feature vector sequences: XL = {xi | ∀vi ∈ VL}.
We train DRI using a canonical RNN learning algorithm out-
lined in Algorithm 1. Then we perform inference to generate
seed predictions on the test set, ŷi

0 ∀ vi ∈ VU. Predictions
are obtained from the class with highest probability for vi.

RNN for Collective Inference

To extend DRI to the collective inference setting we aug-
ment each feature vector with a class label value, i.e.,

xi =
[
[fj1 , yj1], [fj2 , yj2], ..., [fi, ŷi]

]

2365

d

e

f

b h

ia

g

j

c

xd = [< fb,yb >, < ff,yf >, < fi,yi >, < fe,ye >, < fa,ya >, < fd,yd >]
 = [xd , xd , xd , xd , xd , xd](0) (1) (2) (3) (4) (5)

^

(a) Example network and unordered
sequence for node vd.

x(0) x(1) x(|Ɲ|-1) x(|Ɲ|)

...

y

(b) Sequential structure of RNN.

f0 f1 ... fp y

h1 ... hw
r1
...
rw

x(|Ɲ|)

ŷ

^

LSTM

(c) Internal details of RNN structure
at end of sequence.

Figure 1: Illustration of model structure.

= [x
(0)
i ,x

(1)
i , ...,x

(|Ni|)
i] (2)

In this case, if vj ∈ VL then we append the true class
label yj . Otherwise, we can append ŷj . For the target in-
stance vi, we use ŷi, since using the true class would lead
to obvious overfitting. This is illustrated for a small network
in Figure 1a, where the sequence for node vd is specified
based on a random ordering of its neighbors. The structure
of the RNN is illustrated in Figure 1b and 1c. r is the previ-
ous recurrent output and h refers to the hidden nodes. Any
generic RNN architecture can be used; however, we specify
an LSTM so that gradients behave well with hidden node
size, w = 10 used in evaluations. Similar to other templated
models, the length of the model is determined by the length
of each sequence. Each square in Figure 1b represents a lo-
cal RNN, with parameters W that are shared across each
the replication in the sequence. Figure 1c shows the details
of the local RNNs at the end of the sequence. The input con-
sists of the feature vector for the example at that point in the
sequence—the length depends on the number of node fea-
tures in G. On the final hidden output of the RNN, the w
outputs are aggregated using softmax to produce a predicted
class label ŷ.

Label Skew Corrections

Skewed class label distributions motivated us to explore two
different ways of correcting for skewed labels. The first in-
volves generating more data from the rare class via data aug-
mentation, while the second involves changing the objec-
tive function to balance between the classes. Our algorithm
learns which method to use by evaluating their performance
on a held out dataset where labels are known. We call this
held out set VLV2

in Algorithm 3. It is constructed from a
portion of the original validation set.

Data Augmentation In image classification, researchers
perform data augmentation by adding noise in some way to
an image and using the noisy image as another training ex-
ample (Krizhevsky, Sutskever, and Hinton 2012). We follow
this approach and generate additional training examples by
replicating examples (nodes) and then add noise by swap-
ping some attribute values (neighbors) across examples from
the same class.

Algorithm 2 details our approach to data augmentation. It
randomly selects two examples from the minority class, du-
plicates them, and then swaps at most 50% of the x attribute

Algorithm 1 RNNTrain(Xt, Xv, Y, maxItr, performSwap)
1: if performSwap then

2: Specify Canonical Cross Entropy as objective
3: else

4: Specify Balanced Cross Entropy as objective
5: end if

6: repeat

7: Initialize the structure of the RNN with random gaussian weights W.
8: Intialize Scores = int array of length maxItr ; Initialize te = 0 ;
9: Train RNN with 1 epoch over Xt to optimize over labels using specified ob-

jective function
10: Scores[te] = Calculate loss on Xv ; te++ ;
11: until [earlyStopMet(Scores, tol)] OR [te ≥ maxItr]
12: return RNN with learned weights W

values across the vectors. This corresponds to randomly
swapping the neighbors of the two duplicated nodes. In the
line 23 of Alg. 2, the augmented dataset Xret is formed
by downsampling to get to the original size of XL. We use
downsampling to ensure a fair comparison (i.e., equal train-
ing sizes) to other methods that do not use data augmenta-
tion. The algorithm returns the set Xret, which has a bal-
anced class distribution. We can then simply train on Xret

whenever an RNN is trained in Algorithm 3.

Balanced Cross Entropy We use balancing to adapt the
objective function to imbalanced classes and therefore gra-
dient updates when performing backpropgation. Here, we
specifically modify the Cross Entropy objective function,
but the adaptation is general and can be applied to any objec-
tive function, which has separate terms for each class. Recall
that the cross entropy objective is:

CE =
1

n

|VL|∑

i=1

yilog(ŷi) + (1− yi)(log(1− ŷi))

where yi is the true label of node vi and ŷi is the correspond-
ing prediction. To balance the gradient updates, we can sim-
ply take the frequency of positive labels (C+) and negative
labels (C−) in the training and validation sets and use these
to scale the terms in the objective function. The new bal-
anced objective function is then:

CEB =
1

n

|VL|∑

i=1

C−yilog(ŷi) + C+(1− yi)(log(1− ŷi))

2366

Algorithm 2 SwapAug Method(XL,YL)
1: counts0 = countClasses(YL, 0)
2: counts1 = countClasses(YL, 1)
3: smallLabel = 0
4: if counts0>counts1 then

5: smallLabel = 1
6: end if

7: classDiff = | counts0− counts1 |
8: Let XS ⊆ XL be the set of sequences that have smallLabel
9: initialize newX to list of size=classDiff+1
10: j = 0

11: while j < length(newX) do

12: j+= 2

13: n1, n2 = Select two integers at random ∈ [0, length(XS)− 1]

14: xt1
= copy(XS[n1]), xt2

= copy(XS[n2])
15: numSwaps = min(length(xt1)/2, length(xt2)/2)
16: t1Idxs = sample numSwap integers ∈ [0, length(xt1)− 1]

17: t2Idxs = sample numSwap integers ∈ [0, length(xt2
)− 1]

18: for each (t1idx, t2idx) in (t1Idxs, t2Idxs) do

19: swap
(
x
(t1idx)
t1

,x
(t2idx)
t2

)

20: end for

21: Append xt1
, xt2

to newX

22: end while

23: Xret = Sample (counts0+counts1) sequences randomly from newX + XL

24: return Xret

In our experiments C+ ≤ C−, but the adapted objective is
general and isn’t specific to a given class. Intuitively in our
case, since positive labels occur less frequently, we want to
upweight their effect by using C−, and since negative la-
bels occur more frequently, we want to downweight their
effect by C+. The net effect is that both sets of positive and
negative examples have equivalent impact on the gradient
updates. The modified objective is used in Algorithm 1 if
specified.

DCI Semi-supervised Learning

We now outline our algorithm to learn a deep collective
inference (DCI) model. Algorithm 4 is a wrapper method
that chooses the mechanism DCI should use to adjust for
imbalanced classes. Nodes with yi ∈ YL are split into train-
ing VLT

, validation 1 VLV1
, and validation 2 VLV1

in line
1. In lines 2-3, we learn a model using either swapping or
the balanced objective by calling Algorithm 3. In order to
select the Swapping or Balanced Cross Entropy approach,
we simply return the model that performs best on the held
out validation set VLV2

(lines 4-8).
Algorithm 3 describes how to learn a DCI model from

a partially-labeled network with a specified approach to
adjusting for imbalanced class distributions. First, a DRI
model is learned and applied to initialize the unlabeled pre-
diction set Y0

U (lines 1-8). Then, the algorithm starts the
semi-supervised collective inference process (lines 12-26).
One iteration of collective inference consists of the follow-
ing steps. New attribute input examples, X̃ and X̃val, are
formed by concatenating the current predictions Ytc

U and the
labels YL to F (lines 16-17). Note that neighbor orders are
random when constructing X̃ on each collective iteration. If

Algorithm 3 DCI Apply(G, F, Y, VU , VLT
, VLV1

,
VLV2

, maxItr, tol, performSwap)

1: //Train a DRI RNN to initialize seed predictions
2: Form X by constructing an unordered input sequence xi from trainNodes, F, Y.
3: Form Xval similarly except with VLV1

4: if performSwap then

5: X = SwapAug(X, YL)
6: end if

7: M = RNNTrain(X, Xval, YL, maxItr, performSwap)
8: UseM to predict ŷ0

i for each vi ∈ VU

9: Intialize both ScoresV1, ScoresV2 = int arrays of length maxItr; tc = 0 ;
10: Initialize the structure of the RNN with random weights Wtc .
11: //Start collective learning
12: repeat

13: if tc! = 0 then

14: Set Wtc = Wtrained
tc−1

15: end if

16: Form X̃ by constructing xi from VLT
, F, Y, Ŷtc

17: Form X̃val similarly except with VLV1

18: if performSwap then

19: X̃ = SwapAug(X̃, YL)
20: end if

21: Let RNN, Wtrained
tc

= RNNTrain(X̃, X̃val, YL, maxItr, performSwap)
22: Use the RNN to predict ŷtc+1

i for each vi ∈ VU to form Ŷtc+1

23: ScoresV1[tc] = Calculate loss on VLV1

24: ScoresV2[tc] = Calculate loss on VLV2

25: tc++

26: until [earlyStopMet(ScoresV1, tol)] OR [tc ≥ maxItr]
27: Let tbest be best collective model on VLV1

based on BAE

28: return RNN with learned weights Wtbest
, predictions Ŷtbest ,

ScoresV2[tbest]

SwapAug is used in line 19, then X̃ is transformed to re-
flect swapping. Otherwise, it is not transformed and CEB is
instead used as the objective function.

Next parameters are re-estimated (line 21) by training
the RNN. Let the parameters of the RNN at iteration tc be
Wtc . We perform backpropagation and utilize early stop-
ping methods based on the validation set. Any type of early
stopping method (denoted earlyStopMet) on the valida-
tion set can be used. For each iteration, tc, we obtain ŷtci for
each vi ∈ VU from the collective RNN by performing in-
ference on the unlabeled set (line 22). The predictions on the
unlabeled set are used in the next collective iteration.

Except for the first iteration, note that we initial-
ize weights according to the previous iteration’s trained
weights, i.e., let Wtc+1

= W trained
tc instead of initializing

randomly in lines 13-15.
We repeat collective inference until the early stopping cri-

teria is met on the validation set, VLV1
, or until maxItr is

reached. We return the RNN with predictions that performed
best in terms of BAE on the validation set VLV1

(line 28).
The DCI algorithm is simultaneously learning the param-

eters of the RNN and making predictions for the unlabeled
nodes—thus it is a semi-supervised approach to learning
based on the full, albeit partially-labeled, graph. In addition,
DCI uses an initialization approach where the predictions
are initialized with the DRI model, which DCI uses on its
first iteration of collective inference.

2367

Algorithm 4 DCI(G, F, Y, VU , val1%, val2%, maxItr, tol)
1: Form VLT

, VLV1
, and VLV2

from YL based on val1% and val2%

2: DCI S RNN, Ŷtbest
S , score S = DCI Apply(G, F, Y, VU , VLT

, VLV1
,

VLV2
, maxItr, tol, True)

3: DCI B RNN, Ŷtbest
B , score B = DCI Apply(G, F, Y, VU , VLT

, VLV1
,

VLV2
, maxItr, tol, False)

4: if score S < score B then

5: return DCI S RNN, Ŷtbest
S

6: else

7: return DCI B RNN, Ŷtbest
B

8: end if

There are a number of DCI variations that are possible
depending on different algorithmic decisions. We evaluate
the algorithmic choices and found that they each improve
performance significantly. See Section Empirical Evaluation
for more details.

Time Complexity

DCI is scalable especially if run on a GPU. DCI takes
O(|E|+ |V|) time since it’s bottleneck is performing |E|+
|V| backpropagations. This could potentially be reduced to
b ∗ |V | if performing truncated backprop to only b steps,
which essentially corresponds to throwing away sequence
input for large degree nodes.

Related Work

Relational Machine Learning

Relational machine learning (RML) methods seek to jointly
model user labels given their attributes and relational
structure (Getoor and Taskar 2007). In particular, semi-
supervised RML approaches have been developed for
partially-labeled networks (Xiang and Neville 2008; Mc-
Dowell and Aha 2012; Lin and Cohen 2010). Many semi-
supervised approaches to RML perform Expectation Maxi-
mization (EM), which can be divided into two basic steps: an
E-Step that uses collective classification and an M-Step that
optimizes the parameters given the current predicted labels.
Current state-of-the-art methods use pseudolikelihood EM
with a maximum entropy constraint in the inference step to
produce better calibrated probability estimates (Pfeiffer III,
Neville, and Bennett 2015). This method, which we refer to
as PLEM , is the current best performing RML method for
large-scale partially-labeled networks.

Neural Network Models for Graphs

Some recent work has used neural network models for graph
clustering (Tian et al. 2014), labeling graphs (Yanardag and
Vishwanathan 2015), and link prediction (Li et al. 2014).
However, this work typically focuses on learning models of
the graph structure alone and has not considered the devel-
opment of node-based predictive models.

There has been some work on unsupervised learning of
node embeddings, which are then used afterwards for learn-
ing predictive models for nodes. Line (Tang et al. 2015)
uses a two-stage approach to learning an embedding such
that nodes that are either well-connected or share many

neighbors are close. Structural Deep Network Embedding
(SDNE) (Wang, Cui, and Zhu 2016) generates a network
embedding via an auto-encoder architecture where 1st and
2nd order neighbors are used in their objective function.
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) uses ran-
dom walks and a skip-gram based approach. Node2Vec
(Grover and Leskovec 2016) extends the skip-gram architec-
ture from DeepWalk and performs various sampling strate-
gies to sample neighborhoods differently. Currently, SDNE
and Node2Vec are state of the art node embedding meth-
ods. While these methods have been shown to produce an
embedding that is useful for subsequent classification, they
do not directly learn to optimize class label predictions (i.e.,
the embedding is unsupervised) and moreover, they do not
consider node attributes in their models.

The Graph Neural Network (GNN) (Scarselli et al. 2009)
is a specially designed recurrent neural network for graph
data, which assumes node attributes and optionally specifies
attributes for edges. The model takes a whole graph as input
to propagate information about each node. Unfortunately,
GNNs cannot be directly applied to the node classification
problem since GNN training examples consist of entire la-
beled graphs.

The work most closely related to ours is the Recurrent
Neural Collective Classification (RNCC) method (Monner
and Reggia 2013). During our initial work on DCI, we were
unaware of the RNCC method, but the two methods are sim-
ilar in that they both use neighbor information in LSTMs for
collective classification. However, there are a number of key
differences between the two methods:

• Data: RNCC does not adjust for imbalanced class label
distributions, while DCI does.

• Architecture: RNCC’s LSTM architecture models a node
vi’s features separately from its neighbors’ features (i.e.,
with separate weights). DCI’s architecture models them
jointly with shared weights. In addition, RNCC uses
the hidden representation of neighbors as input features,
while DCI does not.

• Learning: RNCC performs collective inference on ev-
ery epoch of learning (i.e., epoch=collective iteration).
In contrast, DCI waits until parameter estimation has lo-
cally converged in terms of epochs in order to perform
the next round of collective inference. Also, RNCC uses a
generalized LSTM learning algorithm (Monner and Reg-
gia 2012), while DCI uses the standard LSTM backprop-
gation through time algorithm (Lipton, Berkowitz, and
Elkan 2015).

In our experimental evaluation next, we compare to
RNCC and also investigate the impact of a number of these
algorithmic decisions in ablation studies.

Empirical Evaluation

Data

We employ seven datasets in our evaluations. Table 1 reports
the number nodes, edges, density, and positive label propor-
tion of each dataset.

2368

Dataset |V | |E| density P (+)
Facebook 5906 73,374 4.2e-3 0.32

IMDB 7934 122,230 3.9e-3 0.164
Amz DVD 20000 16,118 75,596 5.8e-3 0.5
Amz DVD 7500 16,118 75,596 5.8e-3 0.21

Amz Music 64500 56,891 272,544 1.7e-4 0.5
Amz Music 7500 56,891 272,544 1.7e-4 0.08

Patents 881,187 5,302,712 1.4e-5 0.169

Table 1: Datasets

The Facebook dataset is a snapshot of the Purdue Uni-
versity Facebook network (Pfeiffer III, Neville, and Bennett
2015). Users have two attributes: religious views, and gen-
der, and a class label: political views.

The Internet Movie Database (IMDB) is a movie dataset
where we predict if a movie will have a gross revenue ≥ $50
million (Pfeiffer III, Neville, and Bennett 2015). Each movie
(node) has 29 genre attributes and 9 boolean variables that
record whether the average rating is greater than a particular
value. Edges are created between movies that share two or
more producers.

Amazon DVD 20000 is a subset of the Amazon co-
purchase data gathered by (Leskovec, Adamic, and Huber-
man 2007). Nodes correspond to DVD items and edges are
created via DVD copurchases. Each node has 24 attributes
describing the movie’s genres. The prediction task is to de-
termine whether the item has an Amazon salesrank < 20000.
Amazon DVD 7500 is the same as Amazon DVD 20000 ex-
cept that the threshold for class labels is salesrank < 7500.
This changes the class label distribution.

Amazon Music 64500 dataset is another subset of the
Amazon data where nodes are song items, and each node
has 22 attributes describing its styles. The class label thresh-
old is salesrank < 64500. Amazon Music 20000 uses the
threshold for class labels is salesrank < 7500

The Patents citation network (Pfeiffer III, Neville, and
Bennett 2015) consists of patent nodes and citations among
them. Each patent has an attribute vector which records the
TF/IDF values of it’s top 50 words. We consider the “Com-
puters” classification task where patents are predicted to be
filed in “Primary Category 2” (computer related) or not.

Methodology

Our metric for algorithmic comparison is the Balanced Ab-
solute Error (BAE), which normalizes error across classes.
See Pfeiffer III, Neville, and Bennett (2015) for more detail.
We run Algorithm 3 and plot performance for DRI and DCI
using LSTMs.

We use 10 trials for all datasets. For each trial, nodes are
randomly assigned to the labeled set, VL, Then the unla-
beled set is formed from the remainder: VU = V − VL.
The following plots show performance as the proportion of
the data used in the training set size is varied (i.e., |VL|

V). For
example, 0.2 corresponds to 20% labeled nodes and 80%
unlabeled in the network. For DCI, 12% and 3% of nodes of
the whole dataset is used for VLV1

and VLV1
, respectively,

which accounts for a total of 15% for validation. Thus when
the training proportion is 0.2, DCI uses 5% for training, 15%

for validation, and 80% for testing. Degree is concatenated
to each fi ∈ F to compare to previous work (Pfeiffer III,
Neville, and Bennett 2015). For our implementation, we use
Theano under the library known as Blocks (van Merriënboer
et al. 2015). All evaluations are performed using three com-
puter clusters with 20 Xeon cores each and memory ranging
from 64gb-256gb ram.

Models

We compare our proposed method DCI to baselines and
state-of-the-art alternative methods. Unless otherwise spec-
ified, each method uses all available labeled nodes, VL, for
training.

• LP: A label propagation baseline that uses a weighted vote
of the predicted/true labels of neighbors to make predic-
tions (Macskassy and Provost 2007).

• LR: An independent logistic regression baseline that uses
only node features (no relational data) to predict the label
optimized using L2 regularization.

• LR+N2V: LR but utilizing new attributes by concatenat-
ing node2vec (Grover and Leskovec 2016) features of size
128 and the original attribute vectors of each node.

• PLEM: The MaxEntInf adjusted semi-supervised rela-
tional learning method from (Pfeiffer III, Neville, and
Bennett 2015), specially designed for data with imbal-
anced class labels which is currently state-of-the art.

• PLEM+N2V: PLEM with added node2vec features. Note
that this is not an existing method, we add node embed-
ding features to PLEM to ascertain whether they improve
relational learning methods.

• DCI: Weights of LSTMs are initialized (except after first
iteration of collective inference) with sampled values
from the Gaussian distribution. We apply Batched Gra-
dient Descent where batch size = 100. The maximum
number of epochs for any network is 200. Early Stop-
ping is used to check if performance on the validation set
does not improve in the last 10 epochs. If no improve-
ment, training stops early, and the model performing best
on the validation set is chosen. DCI was run for 100 col-
lective iterations with the same early stopping criterion.
We used w = 10 (number of hidden nodes). We did not
perform hyperparameter optimization, though this could
further improve results. DCI further splits VL into train-
ing VLT

, validation 1 VLV1
, and validation 2 VLV2

sets.

• RNCC: RNCC is a similar model to DCI (Monner and
Reggia 2013). We implement a version as close to it as
possible. We use their RNN architecture where a given
node vi’s attributes ai are modeled via separate weights
than neighborhood node’s attributes. We utilize hidden
states learned from a non-collective version of RNCC as
the first hidden states to be used in collective inference.
However, we use a canonical LSTM and standard back-
propagation for learning, rather than the specific learning
rules from (Monner and Reggia 2013). RNCC is learned
with exact same hyperparameters and learning settings as

2369

(a) Facebook (b) Amazon DVD 20000 (c) Amazon DVD 7500

(d) Amazon Music 64500 (e) Amazon Music 7500 (f) IMDB

Figure 2: DCI compared to alternatives LP, LR, RNCC, LR+N2V, PLEM, PLEM+N2V.

described for DCI, with the exception of collective itera-
tions. Since epoch=collective iteration for RNCC, we uti-
lize Max Collective iteration = 200. Lastly, training and
validation sets are exactly similar to DCI’s, except that
VLV1

and VLV2
are merged and used as one complete

validation set.

Comparison to alternative methods

We compare DCI to the baselines LP, LR, LR+N2V, RNCC,
PLEM, and PLEM+N2V. Figure 2 reports the results. The
mean and standard errors of the BAE measure are plotted on
each dataset. We use the same train/test splits in each model.

It’s important to note that amazon DVD 20000 and ama-
zon Music 64500 both have about 50/50 class distributions,
while the rest of the datasets are imbalanced. In these cases,
the performance gap between DCI and competing meth-
ods is significant and clear. Amazon DVD 7500 is the only
dataset where DCI does not outperform PLEM+N2V on the
majority of label proportions. However, DCI does outper-
form it when the training size is high enough. This is possi-
bly due to small data, large class imbalance, and/or low net-
work density. These may not be problems for PLEM+N2V
since node2vec explores more of the network besides just
neighbors. However, on all other datasets DCI outperforms
other state-of-the art methods for most if not all training/test
splits, especially when it is not sparsely labeled.

It’s interesting to see that the RNCC implementation does
not outperform PLEM for most datasets. This indicates that
the algorithmic decisions for DCI allow DCI to significantly
outperform RNCC.

Because of the size of the Patents data, for efficiency we
perform DCI-10 and RNCC-10, which only uses a subset of
at most 10 neighbors (randomly selected). For DCI-10, we

Figure 3: DCI-10 compared to alternatives RNCC, PLEM,
PLEM+N2V on Patents dataset.

also only run for 10 collective iterations, while keeping the
rest of RNCC’s learning parameters the same. We compare
DCI-10 to PLEM and PLEM+N2V. See Figure 3 for the
results. Note that we did not include the more naive methods
in the plot, since their BAE values were too high and masked
the performance of the other methods. LR has ≈0.4 BAE
and LR+N2V has ≈0.19 BAE for all proportions. For this
network, it is interesting that with only 10 hidden units and
truncated backpropagation, DCI-10 eventually outperforms
PLEM and PLEM+N2V. We expect further improvement if
all neighbors are used.

In summary, our evaluation show that, across seven net-
work datasets, DCI resulted in an up to a 12% reduction
in error compared to the best alternative (PLEM+N2V).
Moreover, DCI achieved an average of 25% reduction in
error over all methods, all datasets, and all label propor-
tions. These results demonstrate the impact of our proposed
method for improving collective inference in large-scale net-
works.

2370

Comparison to DCI variants

We evaluate several variants of our proposed DCI method
on smaller datasets to assess initial algorithmic choices. All
other variants of DCI do not perform any label distribution
corrections and use the whole validation set for early stop-
ping instead of separating out a portion for VLV2

. We test on
all but the largest dataset in order to compute personalized
page rank vectors for each node, which is computationally
intensive on large datasets.

• DCI-WSB: Learned without data augmentations or cross
entropy balancing (WSB)

• DCI-ST: WSB version learned with stacking predictions
instead of using predicted class labels

• DCI-A: Instead of random ordering, WSB version learned
by ordering the top 10 neighbors in ascending order with
respect to personalized page rank for each given node
where the restart vector always restarts back to the given
node (Jeh and Widom 2002)

• DCI-D: Instead of random ordering, WSB version learned
by ordering the top 10 neighbors in descending order with
respect to personalized page rank

• DCI-10-WSB: Uses only a subset of at most 10 neighbors
(randomly selected) rather than the full set.

• DRI-WSB: Learned without label distribution correc-
tions.

Figure 4 shows a comparison between DCI, DCI-WSB,
DCI-ST, DCI-A, DCI-D, DCI-10-WSB, and DRI-WSB.
DRI-WSB performs worst in all evaluations compared to all
collective methods, which indicates that collective inference
is improving performance. In all datasets, specifying an or-
der and running DCI-A or DCI-D result in about the same or
worse performance than all other collective methods, which
suggests that a page rank does not improve and sometimes
degrades performance.

It is not so clear to determine which is best among DCI-ST
and DCI-WSB. Therefore, we summarize the gain by cal-
culating reduction in error over all training set proportions.
Overall there is small gain of 1.6% comparing DCI-WSB
to DCI-ST. This shows a small improvement when we use
class label predictions compared to stacking.

We also perform DCI-WSB with randomly initializing
predictions for the first iteration of collective inference
(DCI-WSB-R) and notice these results do not show a clear
winner in the plots. Therefore, we perform DCI with swap-
ping (DCI-S), DCI with balancing (DCI-B), and their ran-
dom initialization variants (DCI-S-R, DCI-B-R). Overall
there is a small 0.82% gain when we initialize with predic-
tions from DRI (DCI, DCI-S, and DCI-B) compared to us-
ing random initial predictions from the prior (DCI-R, DCI-
S-R, and DCI-B-R). DCI-WSB has a 0.06% gain over DCI-
WSB-R. DCI-S has a 1.78% gain over DCI-S-R. DCI-B has
a 1.04% gain over DCI-B-R.

Discussion and Conclusion

Recurrent neural networks have recently produced impres-
sive performance gains but have also been traditionally used

for sequential problems where order is generally important
and well-suited for structured inputs such as vectors or ma-
trices. In this work, we provided an end-to-end learning
framework by using RNNs for collective classification as
opposed to a two-stop process of finding a node embed-
ding, then using this representation in another model. Deep
Collective Inference (DCI) is developed for semi-supervised
learning in partially labeled networks. We proposed a data
augmentation scheme and a Balanced Cross Entropy objec-
tive to balance the classes, which improves performance.

We conducted experiments across seven network datasets
with varying levels of label availability and class propor-
tions. We compare to other state-of-the-art methods in rela-
tional learning, node embeddings, and RNNs. Our results are
clearly superior to other methods except in sparsely labeled
networks. DCI provides up to a 12% reduction in error com-
pared to the best state-of-the-art alternative (PLEM+N2V)
and a 25% reduction in error on average—over the six com-
peting methods, across all label proportions.

Acknowledgements

This research is supported by NSF under contract numbers
IIS-1149789, IIS-1302172, CCF-0939370. We thank Joseph
J. Pfeiffer III for helpful suggestions that motivated this
work. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstand-
ing any copyright notation hereon.

References

Chung, J.; Gülçehre, Ç.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. CoRR abs/1412.3555.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Statis-
tical Relational Learning. MIT Press.
Graves, A., and Jaitly, N. 2014. Towards end-to-end speech
recognition with recurrent neural networks. In Jebara, T.,
and Xing, E. P., eds., ICML’14, 1764–1772. JMLR Work-
shop and Conference Proceedings.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD’16.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8):1735–1780.
Jeh, G., and Widom, J. 2002. Scaling personalized web
search. In WWW’12, 271–279. ACM Press.
Kou, Z., and Cohen, W. W. 2007. Stacked graphical models
for efficient inference in markov random fields. In SDM,
533–538. SIAM.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS’12.
Leskovec, J.; Adamic, L. A.; and Huberman, B. A. 2007.
The dynamics of viral marketing. ACM Transactions on the
Web (TWEB) 1(1):5.
Li, X.; Du, N.; Li, H.; Li, K.; Gao, J.; and Zhang, A. 2014.
A deep learning approach to link prediction in dynamic net-
works. In SDM, volume 14, 289–297. SIAM.

2371

(a) Facebook (b) Amazon DVD 7500 (c) IMDB

(d) Amazon DVD 20000 (e) Amazon Music 7500 (f) Amazon Music 64500

Figure 4: DCI compared to its variants on Facebook, IMDB, and Amazon datasets

Lin, F., and Cohen, W. W. 2010. Semi-supervised classifi-
cation of network data using very few labels. In ASONAM,
192–199.
Lipton, Z. C.; Berkowitz, J.; and Elkan, C. 2015. A Critical
Review of Recurrent Neural Networks for Sequence Learn-
ing. ArXiv e-prints.
Macskassy, S. A., and Provost, F. 2007. Classification in
networked data: A toolkit and a univariate case study. The
Journal of Machine Learning Research 8:935–983.
McDowell, L., and Aha, D. 2012. Semi-supervised col-
lective classification via hybrid label regularization. arXiv
preprint arXiv:1206.6467.
Monner, D., and Reggia, J. A. 2012. A generalized lstm-
like training algorithm for second-order recurrent neural net-
works. Neural Netw. 25:70–83.
Monner, D. D., and Reggia, J. A. 2013. Recurrent neural
collective classification. IEEE Transactions on Neural Net-
works and Learning Systems 24(12):1932–1943.
Neville, J., and Jensen, D. 2007. Relational Dependency
Networks. JMLR 8:653–692.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD’14, 701–
710. ACM.
Pfeiffer III, J. J.; Neville, J.; and Bennett, P. N. 2015. Over-
coming relational learning biases to accurately predict pref-
erences in large scale networks. WWW ’15.
Ren, M.; Kiros, R.; and Zemel, R. S. 2015. Image question
answering: A visual semantic embedding model and a new
dataset. CoRR abs/1505.02074.
Richardson, M., and Domingos, P. 2006. Markov Logic
Networks. Mach. Learn. 62(1-2):107–136.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
Trans. Neur. Netw. 20(1):61–80.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3):93.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW’15, 1067–1077.
Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative
probabilistic models for relational data. In UAI, 485–492.
Tian, F.; Gao, B.; Cui, Q.; Chen, E.; and Liu, T.-Y. 2014.
Learning deep representations for graph clustering. In AAAI,
1293–1299.
van Merriënboer, B.; Bahdanau, D.; Dumoulin, V.; Serdyuk,
D.; Warde-Farley, D.; Chorowski, J.; and Bengio, Y. 2015.
Blocks and fuel: Frameworks for deep learning. CoRR
abs/1506.00619.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2014.
Show and tell: A neural image caption generator. CoRR
abs/1411.4555.
Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep net-
work embedding. KDD’16, 1225–1234.
Xiang, R., and Neville, J. 2008. Pseudolikelihood em for
within-network relational learning. In ICDM, 1103–1108.
Yanardag, P., and Vishwanathan, S. 2015. Deep graph ker-
nels. In KDD’15, 1365–1374. ACM.

2372

