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Abstract

Autonomous systems can be used to search for sparse signals
in a large space; e.g., aerial robots can be deployed to localize
threats, detect gas leaks, or respond to distress calls. Intuitively,
search algorithms may increase efficiency by collecting ag-
gregate measurements summarizing large contiguous regions.
However, most existing search methods either ignore the possi-
bility of such region observations (e.g., Bayesian optimization
and multi-armed bandits) or make strong assumptions about
the sensing mechanism that allow each measurement to ar-
bitrarily encode all signals in the entire environment (e.g.,
compressive sensing). We propose an algorithm that actively
collects data to search for sparse signals using only noisy
measurements of the average values on rectangular regions
(including single points), based on the greedy maximization
of information gain. We analyze our algorithm in 1d and show
that it requires Õ(n/μ2 +k2) measurements to recover all of k
signal locations with small Bayes error, where μ and n are the
signal strength and the size of the search space, respectively.
We also show that active designs can be fundamentally more
efficient than passive designs with region sensing, contrast-
ing with the results of Arias-Castro, Candes, and Davenport
(2013). We demonstrate the empirical performance of our
algorithm on a search problem using satellite image data and
in high dimensions.

1 Introduction

Active search describes the problem where an agent is given a
target to search for in an unknown environment and actively
makes data-collection decisions so as to locate the target as
quickly as possible. Examples of this setting include using
aerial robots to detect gas leaks, radiation sources, and human
survivors of disasters. The statistical principles for efficient
designs of measurements date back to Gergonne (1815), but
the growing trend to apply automated search systems in a
variety of environments and with a variety of constraints has
drawn much research attention recently, due to the need to
address the disparate aspects of new applications.

One possibility in such active search scenarios we aim
to explore, inspired by the robotic aerial search setting but
with statistical insights that we hope to generalize, is the
opportunity to take aggregate measurements that summarize
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large contiguous regions of space. For example, an aerial
robot carrying a radiation sensor will sense a region of space
whose area depends on its altitude. How can such a robot
dynamically trade off the ability to make noisier observa-
tions of larger regions of space against making higher-fidelity
measurements of smaller regions?

To simplify the discussion, we will limit such region sens-
ing observations to reveal the average value of an underlying
function on a rectangular region of space, corrupted by inde-
pendent observation noise. Noisy binary search is a simple
realization of active search using such an observation scheme.
This mechanism turns out to be sufficiently informative in
the cases that we analyze to offer insights into a variety of
search problems.

The ability to make aggregate region measurements in
noisy environments has rarely been considered in previous
work. Bayesian optimization, which has been used for local-
ization of sparse signals (Carpin et al. 2015; Ma et al. 2015;
Hernández-Lobato, Hoffman, and Ghahramani 2014; Jones,
Schonlau, and Welch 1998), usually considers only point
measurements of an objective function. Notice that point ob-
servations can be considered in our framework if the allowed
region sensing actions are constrained to be arbitrarily small.
On the other extreme, compressive sensing (Donoho 2006;
Candès and Wakin 2008; Wainwright 2009), considers scenar-
ios where every measurement can reveal information about
the entire environment through linear projection with arbi-
trary coefficients. This is not always a realistic assumption, as
for example for an aerial robot, which can only sense its im-
mediate vicinity. Between the two extremes, Jedynak, Frazier,
and Sznitman (2012); Rajan et al. (2015); Haupt et al. (2009);
Carpentier and Munos (2012); Abbasi-Yadkori (2012); Yue
and Guestrin (2011) considered policies for search where ob-
servations can be made on any arbitrary subset of the search
space, including discontiguous subsets, which is also often
incompatible with the constraints in physical search systems.

Another assumption we make, common for example in
compressive sensing, is sparsity. We assume that there are
only a small number of strong signals in the environment;
our goal is to recover these signals. Sparsity is necessary for
the definition of active search problems; otherwise, for dense
or weak signals, there is usually no better search approach
than simply exhaustively mapping the entire space.

In addition to applicability in real search settings, spar-
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sity has unique mathematical properties when considered
alongside region sensing. In unconstrained sensing, Arias-
Castro, Candes, and Davenport (2013) discovered a paradox
that active compressive sensing (that is, the ability to adap-
tively select observations based on previously collected data)
does not improve detection efficiency beyond logarithmic
terms over random compressive sensing. This limitation is
seen also when considering theoretical detection rates for
active compressive sensing methods (Abbasi-Yadkori 2012;
Carpentier and Munos 2012; Haupt et al. 2009). However, we
show that active learning can in fact offer significant improve-
ments in detection rates when observations are constrained
to contiguous regions.

We propose an algorithm we call Region Sensing Index
(RSI) that actively collects data to search for sparse signals
using only noisy region sensing measurements. RSI is based
on greedy maximization of information gain. Although infor-
mation gain is a classic principle, we believe that its use in the
recovery of sparse signals is novel and a good fit for robotic
applications. We show that RSI uses Õ(n/μ2 + k2) measure-
ments to recover all of k true signal locations with small
Bayes error, where μ and n are the signal strength and the
size of the search space, respectively (Theorem 3). The num-
ber of measurements with RSI is comparable with the rates
offered by unconstrained compressive sensing, even though
our constraints seem strong (i.e., region sensing loses all
spatial resolution inside the region of measurement). Further-
more, we show that all passive designs under our contiguous
region sensing constraint in 1d search spaces are fundamen-
tally worse, with efficiency no better than sequential scanning
of every point location, however strong the signals are. These
results provide evidence to promote the use of and research
into active methods.

1.1 Related Work

Arias-Castro, Candes, and Davenport (2013) proved that the
minimax sample complexity1 for any (i.e., potentially adap-
tive) algorithm to recover k sparse signal locations is at least
Ω(n/μ2), analyzing the problem in terms of the mean-squared
error in the recovery of the underlying signal values. The
authors also showed that a passive random design, combined
with a nontrivial inference algorithm, e.g., Lasso (Wainwright
2009) or the Dantzig selector (Candes and Tao 2007), can
have similar recovery rates (up to O(log n) terms). This
result was presented as a paradox, suggesting that the folk
statement that active methods have better sample complex-
ity is not always true. Here we show that active search can
make a substantial difference in recovery rates when the mea-
surements are subject to the physically plausible constraint
of region sensing, especially if the physical space has low
dimensions.

Malloy and Nowak (2014) presented the first active search
algorithm that achieves the minimax sample complexity for
general k. The algorithm is called Compressive Adaptive
Sense and Search (CASS) and it can be adapted to region
sensing in one-dimensional physical spaces. CASS directly

1Sample complexity is equivalent to the number of measure-
ments.

extends bisection search, by allocating different sensing bud-
gets to measurements at different bisection levels so as to
minimize the cumulative error rates. However, CASS may
fail if the repeated measurements of the same regions do
not contain perfectly independent noise. It also has the lim-
itation that it requires knowledge of the sensing budget a-
priori, yet produces no signal localization results until the
very last measurements at the lowest level. Our paper ad-
dresses these practical issues with a redesigned active search
algorithm using the Bayesian approach, which compares ev-
idence instead of blindly trust the assumptions, and we use
Shannon-information criteria, which implies bisection search
in noiseless one-sparse cases.

Braun, Pokutta, and Xie (2015) also used Shannon-
information criteria for active search but did not analyze
their sample complexity under noisy measurements. Jedynak,
Frazier, and Sznitman (2012); Rajan et al. (2015) studied a
similar search problem where the “regions” are relaxed to
any unions of disjoint subsets.

2 Problem Formulation

Consider a discrete space that is the Cartesian product of
one-dimensional grids, X =

∏d
i=1[ni]; [n] = {1, . . . , n}.

Let n =
∏

ni be the total number of points in X (here the
product symbol is the arithmetic rather than the Cartesian
product). We presume there is a latent real-valued nonnega-
tive vector β ∈ R

n that represents the vector of true signals
at all locations in X . We further assume that β is sparse: it
has value μ > 0 on k � n locations in X and has value 0
elsewhere. We consider making observations related to β
through rectangular region sensing measurements, defined
by

yt = x�
t β + εt, s.t. xtj = wt1j∈At , εt ∼ N (0, σ2

t ). (1)

Here xt ∈ R
n is a sensing vector that has support on At ⊆

X , a rectangular subset of X . We assume that the sensing
vector has equal weight wt across its support. The resulting
measurement, yt, is equal to the mean value of β on At

corrupted by independent Gaussian noise with variance σ2
t .

Note that selecting At suffices to specify the measurement
location.

In 1d search environments, At may be any interval of
[n], and the corresponding design takes the form xt =
(0, . . . , 0, wt, . . . , wt, 0, . . . , 0)

�. In higher search dimen-
sions, we consider only regions that are contained in a hierar-
chical spacial pyramid (Lazebnik, Schmid, and Ponce 2006),
i.e., a sequence of increasingly finer grid boxes with dyadic
side lengths to cover the space at multiple resolutions.

Our goal is to choose a sequence of designs X = {xt}Tt=1
so as to discover the support of β with high confidence. Given
a particular confidence, we will measure sample complex-
ity by assuming ‖xt‖2 = 1 and σt ≡ 1 for each measure-
ment and count the total number of measurements required
to achieve that confidence, T . Letting ‖xt‖2 = 1 implies
wt = 1/

√
‖xt‖0, which can be seen as a relaxed notion of

the region average, because the signal strength of a region
measurement, which is μwt, still decreases as the region size
‖xt‖0 increases.
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Algorithm 1 Region Sensing Index (RSI)

Require: π0(k, n, μ), T or ε, and the unknown β∗

Ensure: Ŝt // (5)
1: for t = 1, 2, . . . do
2: pick xt = argmaxx∈X I(β; y | x, πt−1) // (3)&(4)
3: observe yt = x�

t β
∗ + εt

4: update πt(β) ∝ πt−1(β)p(yt | β,xt−1) // (2)
5: find (ε̄t, Ŝt) = argmin|Ŝ|=k

1
kE

[
|ŜΔS| | πt

]
// (5)

6: break if t ≥ T or ε̄t < ε, if either is defined

The measure of T is made to be comparable with another
common choice of sample complexity, the Frobenius norm of
the entire design ‖X‖2F , when the rows of X are normalized
(Arias-Castro, Candes, and Davenport 2013). However, the
normalization is often overlooked in classical compressive
sensing, which allows algorithms to cheat in region sens-
ing by making an enormous number of measurements of
small weight and changing the sensing locations frequently.
Another measure of complexity is to measure both ‖X‖2F
and the number of location changes simultaneously (Malloy
and Nowak 2014). However, our discretized counting of
measurements is conceptually simpler.

Our analysis is Bayesian and we will analyze performance
in expectation, with prior β ∼ π0(β), a uniform distribution
on the model class, Sμ

(
n
k

)
, which includes all k-sparse mod-

els with μ signal strength among n locations (i.e., it has
(
n
k

)
possible outcomes). The Bayes risk will be measured by the
expected Delta loss, ε̄T = 1

kE|SΔŜT |, where ŜT is the best
estimator of the k signal locations after T measurements and
Δ is the symmetric difference operator on a pair of sets.

3 Proposed Methods

We note that region sensing loses all spatial resolution in-
side the region of measurement. Here we borrow ideas from
noisy binary search, which has a similar property, and use
information gain (IG) to drive the observation process. We
name our algorithm Region Sensing Index (RSI, Algorithm 1).
Like other active learning algorithms, RSI is a combination
of an inference subroutine that constantly updates the distri-
bution of β using the collected data and a design subroutine
that chooses the next region to sense based on the latest
information from the inference subroutine.
The inference subroutine. We use exact Bayesian inference
with a uniform prior π0(β) on the model class Sμ

(
n
k

)
. Denote

the outcome of the first t measurements as Dt = {(xτ , yτ ) :
1 ≤ τ ≤ t}. Even though Dt contains a dependent sequence
of data collections, where xτ depends on Dτ−1, ∀τ , Bayesian
inference decomposes into a series of efficient updates:

π(β | Dt) ∝ π(β)p(Dt | β)
= π0(β)

∏t
τ=1

(
p(xτ | Dτ−1)p(yτ | β,xτ )

)
∝ π0(β)

∏t
τ=1 p(yτ | β,xτ ), (2)

where p(xτ | Dτ−1) is the design without knowledge of the
true β and thus dropped. Define πt(β) = π(β | Dt); the

updates have the form πt(β) ∝ πt−1(β)p(yt | β,xt) =
πt−1(β)φ(yt − x�

t β), where φ is the standard normal pdf.
The design subroutine. The next sensing vector, xt+1 ∈ X ,
is chosen to maximize the IG:

I(β; y | x, πt) = H(y | x, πt)− E
[
H(y | x,β) | πt

]
, (3)

which is the difference between the entropy of the marginal
distribution, p(y | x, πt) =

∫
φ(y − x�β)πt(β) dβ, and

the expected entropy of the conditional distribution, p(y |
β;x) = φ(y − x�β). The latter, i.e., the conditional distri-
bution for any realization of β, has fixed entropy: log

√
2πe.

Meanwhile, the marginal entropy has no closed-form solu-
tions; instead, we use numerical integration.

The numerical integration is rather straightforward, be-
cause the marginal density function is analytical. From now
on, we will assume that (x, A, a, wx) correspond to the same
design (its sensing vector, its locations, its region size, and
its sensing weight per coordinate, respectively). Define two
new variables, λ = μwx(= μ/

√
a) and γ = x�β/λ, and one

new parameter p = (p0, . . . , pk)
� in (4). The goal is to

change the variable of the integration for the marginal density
function of y to:

p(y | x, πt) =

∫
πt(β)φ(y − x�β) dβ

=
∑k

c=0
pc φ(y − cλ) = p(y | λ,p),

where pc = Pr(γ = c) =
∑

β:x�β=cλ
πt(β). (4)

Notice, γ only has a finite number of choices: γ = |A∩S| ∈
{0, . . . , k}, where S is the nonzero support of β, because
both x and β are constant on their respective supports (xj =
wx, ∀j ∈ A and βj = μ, ∀j ∈ S). We then numerically
evaluate H(y | x, πt) = H(y | λ,p) with the obtained (4).

The Bayes estimator of signal locations. We pick the k-
sparse set ŜT to minimize the posterior risk:

min
|Ŝ|=k

1

k
E
[
|ŜΔS| | πT

]
=

1

k

∑
ı̂∈Ŝ

E
(
1{βı̂=0} | πT

)
, (5)

where βı̂ is the ı̂-th element of β. In other words, RSI picks
the top k locations where the posterior marginal expectation
is the largest. When k = 1, this is equivalent to picking
β̂T = argmaxπT (β). Otherwise, (5) yields the smallest
Bayes risk ε̄(DT ) given any collected data DT .

3.1 Accelerations

In practice, holding
(
n
k

)
models in memory can be infeasi-

ble if k is large, we can instead recover the support of β
element-wise by repeatedly applying RSI assuming k = 1.
After the posterior distribution πt(β

(1)) converges to a point-
mass distribution at the most-likely one-sparse model with
sufficient confidence, we report its location and move on by

2In real world experiments, we additionally estimate μ̂ĵ using a
point measurement on the inferred signal location for better model-
ing.
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Table 1: Conditions and conclusions for sample complexity.

Design
Type

Region
Sensing Algorithm Prior for

Bayes Risk
Min T to Guarantee
ε̄T = 1

kE|SΔŜT | ≤ ε
Sample

Complexity∗

passive yes (any) π0

(μ → ∞)
T ≥ n

2 (1−
n−1
n−k ε) (Theorem 1)

Θ(n)
Point sensing T ≤ n(1− n−1

n−k ε) (Corollary A.2)

active
no (any) π̃0 T ≥ 4n

μ2 (1− ε)2 (Theorem 2) Ω( n
μ2 )

†

yes CASS [2014] max risk
(incl. π0) T ≤ 20 n

μ2 log(
8k
ε ) + 2k log2(

n
k ) Õ( n

μ2 + k)‡

RSI (ours) π0
T̄ε ≤ 50( n

μ2 + k2

9 ) log2(
2
ε ) log(

n
ε )

(Theorem 3)
Õ( n

μ2 + k2)‡

∗ Assume ε = O(1) and k � n. † Shown for unconstrained sensing; binary search requires Ω(log2(n)+k)
additional measurements. ‡ log(n) terms are left out. T̄ε is defined differently; see Section 4.2 for details.

Algorithm 2 Region Sensing Index-Any-k (RSI-A)

Require: n, μ, ε, and the unknown β∗

Ensure: Ŝ
1: initialize Ŝ = ∅, β̂ = 0
2: for k = 1, 2, . . . , do

3: infer π0(β
(k)) ∝

∏t
τ=1 p(yτ | β(k) + β̂,xτ ),

∀β(k) ∈ {μ1j : j �∈ Ŝ}
4: call Ŝ(k) = RSI (π0, ε,β

∗ − β̂)

5: aggregate Ŝ = ∪c≤kŜ
(c) and β̂ =

∑
ĵ∈Ŝ μ̂ĵ1ĵ .2

removing the reported point from the search and recomputing
the posterior distributions using the uniform prior, π0(β

(2)),
on the new class, Sμ

(
n−1
1

)
.

We call this alternative algorithm Region Sensing Index-
Any-k (RSI-A, Algorithm 2) and use it in our simulations
so that the computational cost is no longer exponential in k.
Notice, our analysis is for the unmodified RSI; the statistical
disadvantage of RSI-A is no more than O(k), multiplicatively.

When implementing RSI-A, we also avoid unnecessary
numerical integration (3), if the region is guaranteed to have
inferior IG, indicated by its p vector (4), which is easier to
compute. We use the fact that I(γ; y | p, λ) with fixed λ > 0
is concave in the probability simplex Δk = {p ∈ [0, 1]k+1 :
p�1 = 1}. Under k = 1 approximation, the region whose
marginal probability p1 =

∑
x�β>0 π(β) is closest to 0.5

will provably have the largest IG among all regions of the
same size. Thus, we find the region with the highest IG in
two steps: (1) compare the p1 value for all regions for every
region size and (2) evaluate the IG of only these regions with
the best p1 values (closest to 0.5) in their region sizes.

4 Theoretical Analysis in 1D

The analysis is cleanest when the search space is 1d, where
the regions can be any integer intervals that subset [1, n].
Without loss of generality (WLOG), assume n is a multiple
of k and n ≥ 2k. Our goal is to find the smallest number

of measurements, T , to guarantee a small Bayes risk ε̄T =
1
kE|SΔŜT | ≤ ε. Table 1 summarizes our analysis. The
sample complexity is best appreciated assuming μ � 1,
k � n, and ε = O(1). A typical choice is ε = 1/2, i.e., the
number of measurements to guarantee that half of the signal
support can be recovered on average.

4.1 Baseline Results

Here we provide lower bounds on sample complexity. We
show that under region-sensing constraints, all passive meth-
ods require T ≥ Ω(n) measurements and active methods
require T ≥ Ω(n/μ2+k). When μ � 1, active methods have
significant potential for improvement over passive methods
using region sensing, which contradicts with the view in un-
constrained compressive sensing by Arias-Castro, Candes,
and Davenport (2013); Soni and Haupt (2014).
Theorem 1 (Limits of any passive methods using region
sensing). Assume β has prior π0 (uniform random on Sμ

(
n
k

)
).

Any passive method with T noiseless region measurements on
1d must incur Bayes risk ε̄T ≥ n−k

n−1 (1−
2T
n ). To guarantee

ε̄T ≤ ε, T ≥ n
2 (1−

n−1
n−k ε) is required.

The proof is due to model identifiability, neglecting obser-
vation noise. More details can be found in the appendix. It
applies to any μ ≥ 0 and particularly μ → ∞.
Theorem 2 (Limits of any methods, (Arias-Castro, Candes,
and Davenport 2013)). Assume β has a slightly different
prior, π̃0, that includes each location in X in the support of
β independently with probability k/n. Any method (including
active and non-region-sensing) must have ε̄T ≥ 1− μ

2

√
T/n.

To guarantee ε̄T ≤ ε, T ≥ 4n
μ2 (1− ε)2 is required.

The proof can be found under Theorem 3 of (Arias-Castro,
Candes, and Davenport 2013). Arias-Castro, Candes, and
Davenport (2013) gave a minimax risk with similar terms by
modifying π̃0 to a least favorable prior on all models that
are at most k-sparse. However, we only study Bayes risk for
technical convenience.

When using Theorem 2 for reference, notice the differ-
ence between π̃0 and π0 that the former additionally treats
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the sparsity to be a random variable k̃ with expectation k.
From concentration inequalities, |k̃ − k| ≤ O(

√
k), with

high probability. While k̃ and k are not directly comparable,
Theorem 2 is still a useful baseline. Under region-sensing
constraints, the number of measurements must also be at
least Ω(k) to allow visits to most of the nonzero locations
at least once, in a nontrivial draw of S where the signals are
separated.

With respect to Theorem 1, the point sensing or any non-
repeating region sensing will achieve the optimal sample
complexity (up to constant factors, see Appendix A for more
details). For Theorem 2, the CASS method published by
Malloy and Nowak (2014) for active sensing with region
constraints3 acheives a nearly optimal rate in theory. Table 1
contains a detailed summary of the sample complexities of
several algorithms, including our own.

4.2 Main Result

For technical convenience, we directly express our main
result in terms of the expected number of measurement that
are actually taken so as to realize ε̄(DT ) ≤ ε for a given
threshold ε in an experiment. Taking T = Tε as a random
variable, the expected number of actual measurements is
different from the pre-determined sampling budget that an
algorithm fully consumes to guarantee a desirable averaged
risk (see Section 4.1). However, it is a comparable alternative
in Bayesian analysis, used by e.g., Lai and Robbins (1985);
Kaufmann, Korda, and Munos (2012). When the objective is
constant ε = O(1), our result implies a deterministic budget
requirement of the same order of complexity, T ≤ ε−1

2 ETε2 ,
where ε2 = ε

2 , by direct application of Markov’s inequality.

Theorem 3 (Sample complexity of RSI). In active search for
k sparse signals with strength μ in 1d physical space of size
n ≥ 2k (WLOG, assume n is a multiple of k), given any ε > 0
as tolerance of posterior Bayes risk, RSI using region sensing
has bounded expected number of actual measurements,

T̄ε = E[min{T : ε̄(DT ) ≤ ε}]

≤ 50
( n

μ2
+

k2

9

)
log2

(2
ε

)
log

(n
ε

)
= Õ

( n

μ2
+ k2

)
, (6)

where the expectation is taken over the prior distribution and
sensing outcomes.

4.3 Proof Sketch

The proof for Theorem 3 hinges on an observation that the
information gain (IG) where RSI makes measurements is con-
sistently large, before active search terminates with minimal
Bayes risk. For example, the IG of any measurement in bi-
nary search with k = 1 and noiseless observations is always
O(log(2)). However, IG is harder to approximate when the
observations are noisy. Therefore, we first show an intuitive
lower bound for IG. Recall notations from (4).

3The original result in Malloy and Nowak (2014) is stronger; it
considers the maximum probability of support recovery mistakes,
P (S �= Ŝ) ≤ δ, for any S that are k-sparse and any signals with at
least μ strength.

Proposition 4. The IG score of a region sensing design has
lower bounds with respect to its design parameters (λ,p), as

I(γ; y | λ,p) ≥ 2qcq̄c

(
2Φ

(λ
2

)
− 1

)2

≥ 1

12
min{qc, q̄c}min{λ2, 32}, ∀1 ≤ c ≤ k, (7)

where qc = Pr(γ ≥ c) =
∑

κ≥c pκ, q̄c = 1− qc, and Φ(u)
is the standard normal cdf.

The proof uses Pinsker’s inequality and is given in Sec-
tion B in the appendix. Notice using the common choice of
Jensen’s inequality will give bounds in the opposite direction.
To formalizes our observation that the IG is bounded:
Lemma 5. WLOG, assume n is a multiple of k and n ≥ 2k.
At any step, if the current Bayes risk ε̄(D) > ε, we can always
find a region A of size at most n

k , such that λ2 ≥ μ2

a = kμ2

n
and ε

2 ≤ E[γ | D] ≤ 1− ε
2 (we call this Condition E), which

further yields

I(γ; y | λ,p) ≥ I∗ε =
ε

25k
min

{k2μ2

n
, 32

}
. (8)

The way to find the region A that satisfies Condition E is
given in Lemma B.5 in the appendix. The reason that Condi-
tion E is sufficient for (8) can be derived from Proposition 4
for k = 1 and Lemma B.6 in the appendix for k > 1.

Eq (8) shows the minimum decrease in the model entropy
in expectation after each measurement, starting from the
maximum entropy of a uniform prior distribution, k log(n).
However, the posterior entropy can never be negative, which
implies a bound on the expected number of times that (8)
can be applied, i.e. the expected number of measurements to
reach ε Bayes risk is 25 log(n)

ε ( n
μ2 + k2

9 ). Lemma D.5 in the
appendix shows some additional improvements to obtain the
logarithmic dependency of ε in Theorem 3.

5 Simulation Studies

We evaluated RSI or its approximation RSI-A when k > 1.
Other baseline algorithms include:
• CASS (compressive adaptive sense and search) (Malloy
and Nowak 2014): a branch-and-bound algorithm that tra-
verses the region hierarchy from top to down using pre-
allocated budgets per level. We count each xi as ‖xi‖22 region
sensing measurements (rounded up to the next integer).
• Point sensing: a passive design that uses exhaustive point
measurements on all locations.
• CS (compressive sensing) (Donoho 2006): a non-region-
sensing design that draws xt ∼ N (0, I) and rescales ‖xt‖22
to 1. CS then solves a convex optimization problem to infer
the nonzero signals, by minimizing

∑
t ‖yt−x�

t β‖22+λ‖β‖1
s.t. β ≥ 0, where λ is chosen to produce exactly k nonzero
coefficients using the Lasso regularization path.

We picked n = 1024 and various k (sparsity) and d (the
dimension of the physical space) annotated below the plots.
In the d = 5 case, we chose the region space to be the
Cartesian product of [4]5 and allowed regions from a spatial
pyramid (Lazebnik, Schmid, and Ponce 2006) of granularity
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Figure 1: Sensing efficiency. (a) Average search progresses
as more measurements are taken. (b-d) Minimum sample
size T in different SNR scenarios to guarantee ε̄T < 0.5.

45, 25, and 15. Each method was run with 200 repetitions to
find its average performance.

Figure 1(a) compares the recall rates of the algorithms
as they progressed in a 1d search for a single true signal of
strength μ = 16. RSI was the most efficient, finding the
correct location in 50% of the cases with as few as T = 20
measurements. CASS was comparable only at the step points
when all the allocated budgets were used, due to its rather
rigid designs. We drew multiple curves for CASS to reflect
this fact; the turning points were at T = 28 and 56 for ε =
0.5 and 0.85, respectively. CS was less effective compared
with CASS with equal budgets (e.g., ‖X‖2F = 52 > 28 for
ε = 0.5) which agrees with the analysis in Arias-Castro,
Candes, and Davenport (2013). Point sensing was the least
efficient, using T = n/2 = 512 measurements, which was
worse than the other methods by a factor of Ω̃(μ2) (ignoring
logarithmic terms). Notice, due to non-identifiability, any
passive designs would have equal or worse rates.

Figure 1(b) extends the comparison on the full spectrum
of SNR, 1/4 < μ < 1024, showing the minimum number of
measurements T to guarantee constant Bayes risk ε̄T < 0.5.
RSI led the comparison, showing a sample complexity of
Õ(n/μ2) when μ is small and Õ(1) when μ is large. CASS also
had a similar trend. CS ignores the region sensing constraints
and was inferior to RSI. Notice CS also has a minimum
sample complexity, but in order to meet the incoherence
conditions for Lasso sparsistency (Candes and Tao 2007;
Wainwright 2009; Raskutti, Wainwright, and Yu 2010), the
rank of the covariance matrix of the measurements X�

SXS

must be at least k. Point sensing and other passive region
sensing would always require at least Ω(n) measurements
regardless of μ. Figure 1(c-d) show similar conclusions with
other choices of k and d. The number of measurements was
largely unaffected by k > 1 if μ is low, which supports the
first term of Theorem 3, which is Õ(n/μ2). Comparisons
between CS and RSI in high dimensions (d > 1) depend on
how region constraints are defined. In our high-dimensional
simulations, the region choices were rather limiting for RSI,
giving more advantage to the unconstrained CS when μ is
large.

6 Real World Datasets

Region sensing was intended to address the problems of real
robotic search. Here, we took satellite images like Figure 2a
and used natural blue pixels, e.g., the blue roof which we
circled near the lower left of the center of the image, as a sim-
ulated target of interest. These experiments directly simulate
search and rescue in open areas based on life jacket colors or
communication signals and also share similarities with gas
leaks or radiation detection, where real data is usually sensi-
tive or expensive. Many assumptions were violated in these
experiments, e.g., the noise was not iid and the target was
a collection of neighboring pixels. For the purpose of more
accurate modeling of the actual measurement powers at each
region level, we used statistics from the real data to model
μw(a) and σ(a) as functions of the region size a(= ‖x‖0).
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(a) Target blue pixels (circled)
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(b) RSI search pattern

Figure 2: Demo active search on real images.

Figure 2b shows in the background the actual scalar obser-
vations, affinely transformed from the original RGB values to
filter out the target blue color. The foreground contains the
rectangular regions of measurement, sequentially decided by
RSI after observing the average values in previous regions.
Feasible region choices were contained in a spatial pyramid
(Lazebnik, Schmid, and Ponce 2006). RSI behaved simi-
larly to sequential scanning at the optimal altitude except for
occasional bisections into subregions.

By comparing the IG of all feasible regions, RSI usually de-
cides to (a) sense the next region in space when the previous
outcome is low, (b) investigate the subregions when the last
parent region yields a large outcome (we disallow repeated
actions for the lack of noise-independence,) or (c) back out
from an investigation if the subsequent measurements yield
low outcomes. Option (c) demonstrates the ability of error
recovery, which is our advantage to CASS thanks to Bayesian
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modeling. The search in Figure 2b ended after 36 measure-
ments, whereas the image contained 36 000 pixel points.

Figure 3 compares the performances on 221 image patches
of 512× 512 pixels, cropped from National Agriculture Im-
agery Program (NAIP).4 The other algorithms for comparison
include random (point), CS, and CASS*. Here, CASS* is a
modified CASS method where each measurement can only be
taken once, because repeated measurements yield the same
outcome. To fully represent CASS*, in addition to choosing
k by the true sparsity, we added fixed choices of k = 64 and
512, yielding three different curves.
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Figure 3: Performances on 221
NAIP image crops.

RSI achieved the best per-
formance, finding on aver-
age 60% blue pixels with
as few as 1700 measure-
ments (0.5% of the total
number of feasible observa-
tions). CASS* performance
highly depended on the pa-
rameter choices and pro-
duced results only near the
end of the experiment. CS
did poorly, probably due to
the fact the signals were not
iid (a blue object can contain multiple pixels).

7 Discussions

Region sensing is a new setting motivated by robotic search
operations where we also found statistical insights to contrast
with the unconstrained sensing in Arias-Castro, Candes, and
Davenport (2013). RSI performs near-optimally in 1d search
domains and fundamentally faster than passive sensing. In
higher dimensions, the analysis may be harder, especially for
passive baselines. The number of subregions generated by
intersecting the measurement regions may be harder to count,
unless measurement regions are restricted to grid regions
in a spatial pyramid (such that any pair of regions is either
nested or disjoint). We also want to establish frequentist
analysis in the future. Finally, it is interesting to generalize
the measurement model beyond taking the average value of a
single region at a time.
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