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Abstract

We introduce a novel supervised metric learning algo-
rithm named parameter free large margin nearest neighbor
(PFLMNN) which can be seen as an improvement of the clas-
sical large margin nearest neighbor (LMNN) algorithm. The
contributions of our work consist of two aspects. First, our
method discards the cost term which shrinks the distances
between inquiry input and its k target neighbors (the k near-
est neighbors with same labels as inquiry input) in LMNN,
and only focuses on improving the action to push the im-
posters (the samples with different labels form the inquiry
input) apart out of the neighborhood of inquiry. As a result,
our method does not have the parameter needed to tune on
the validating set, which makes it more convenient to use.
Second, by leveraging the geometry information of the im-
posters, we construct a novel cost function to penalize the
small distances between each inquiry and its imposters. Dif-
ferent from LMNN considering every imposter located in the
neighborhood of each inquiry, our method only takes care
of the nearest imposters. Because when the nearest imposter
is pushed out of the neighborhood of its inquiry, other im-
posters would be all out. In this way, the constraints in our
model are much less than that of LMNN, which makes our
method much easier to find the optimal distance metric. Con-
sequently, our method not only learns a better distance met-
ric than LMNN, but also runs faster than LMNN. Extensive
experiments on different data sets with various sizes and dif-
ficulties are conducted, and the results have shown that, com-
pared with LMNN, PFLMNN achieves better classification
results.

Instruction

Distance metric learningis an important topic in the
field of machine learning (Xing et al. 2003; Yang and
Sukthankar 2006; Parameswaran and Weinberger 2010;
Wang, Nie, and Huang 2014; Xiang, Nie, and Zhang 2008;
You et al. 2016; Guillaumin and Verbeek 2009;
Weinberger, Blitzer, and Saul 2005). The largest margin
nearest neighbor (LMNN) algorithm (Weinberger, Blitzer,
and Saul 2005) is one of the most popular metric learning
methods. Several reasons account for lots of attentions paid
on LMNN: firstly, LMNN always yields competitive results
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for many classification tasks because it captures the local
information of the data set (Weinberger and Saul 2009;
Ma, Crawford, and Tian 2010; Mensink et al. 2012;
You et al. 2016); secondly, LMNN with sim-
ilarity to support vector machines (SVMs) is
much easily extended to non-linear versions by
adopting the kernel technique (Do et al. 2012;
Torresani and Lee 2006), which expands the applica-
tion domain of LMNN; thirdly, the linear transform
matrix L learned by LMNN supervisedly contains many
statistical information of training set, thus it can be ap-
plied into many machine learning fields, such as feature
extraction, multi-task classification and dimensionality
reduction (Kedem et al. 2012; Torresani and Lee 2006;
Parameswaran and Weinberger 2010).

LMNN is inspired by improving the performance of
kNN algorithm whose performance depends crucially on
the distance metric. LMNN learns a linear transform matrix
L to construct the Mahalanobis distance by utilizing the
local information of the training set. Under such distance
metric, the k nearest neighbors with same labels (target
neighbors) of an inqury �xi are pulled nearer together and
the neighbors with different labels (imposters) are pushed
out of the neighborhood. In the model of LMNN, such
two competitive actions on the samples are implemented
by constructing two cost terms which are weighted by a
parameter needed to be tuned previously. However, it is
difficult to find the optimal distance metric effectively by
minimizing the combination of such two competitive cost
terms. Actually, the model of the LMNN is very complex,
which not only considers the imposters of an inquiry sample
but also concerns the target neighbors. Such imposters and
target neighbors can be regarded as the constraints of the
model. The more the constraints are, the more difficult the
way to find the solution is. Actually, it is easy to find that,
the missions of the actions of pulling and pushing are to
make the inquiry’s neighborhood ‘pure’. To complete such
mission, the action pushing the imposters apart form the
neighborhood is enough.

In this paper, we propose a novel metric learning algo-
rithm named parameter free large margin nearest neighbor
(PFLMNN). Different from LMMN pulling target neighbors
together and pushing imposters apart at the same time, our
approach only considers the action to pushing the imposters
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Figure 1: Illustration of how LMNN affects an input’s neighborhood. The k = 3 neighbors are pull together in the small radius
while the differently labeled inputs are pull out of the small radius by some finite margins.

out of the neighborhood. In this way, we simplify the mis-
sion of our optimization problem, compared with LMNN.
To enhance the power of penalizing large distance between
k nearest neighbors and inquiries, we develop a novel
method to push the imposters, which utilizes the geometry
information between the imposters ignored by LMNN. In
brief, only the nearest active imposter (one of the k nearest
neighbors of the inquiry, however, does not share the same
label with inquiry) of each inquiry is considered. Under a
distance metric, when the nearest imposter of an inquiry
is out of the neighborhood, all other imposters are out. In
this way, the constraints shown by the imposters needed to
be pushed are reduced, so that the proposed model would
be much simpler without weakening its constrained power.
Consequently, our model is easier to be optimized compared
with LMNN. In addition, no parameter needs to be tuned in
the cost function because of only one term owned by our
model, which makes the proposed method more convenient
to use. Extensive experiments are conducted to demonstrate
the effective of our method.

Revist LMNN

In this section, we briefly revisit the notations of LMNN
which would be used in our model. Let {�xi, yi}ni=1 denote
a training set of n labeled examples with inputs �xi ∈ Rd

and discrete class labels yi ∈ {1, 2, · · · , c}, where c is
the class number. The goal of LMNN is to learn a linear
transformation L : Rd −→ Rd, which is used to define the
Mahalanobis distance as:

D(�xi, �xj)=‖L(�xi− �xj)‖2=
√
(�xi− �xj)TM(�xi− �xj) (1)

where M = LTL is a symmetric positive definite matrix
(M � 0).

For an inquiry input �xi, we call its k nearest neighbors
with the same label of �xi as “target neighbors”, and all the

samples in the data set with different labels from yi as “im-
posters”. LMNN aims at learning a Mahalanobis distance
metric that keeps each input �xi closer to its target neighbors
than the imposters by one distance unit, i.e. large margin.
The relation of �xi ’s target neighbor �xj and imposter �xl can
be expressed as linear inequality constraint with respect to
the D(·, ·):

D2(�xi, �xl)−D2(�xi, �xj) ≥ 1 (2)

To achieve this goal, LMNN constructs two cost terms in
its loss function. The first term penalizes large distances be-
tween each input �xi and its target neighbors �xj , and the sec-
ond term penalizes small distance between each input and its
imposters. In this way, LMNN pulls the “target neighbors”
of each input example closer together, and pushes differently
labeled examples further apart. We use Si to denote the set
that contains “target neighbors” of �xi and Pi to denote the
set that consists of the corresponding imposters of �xi . The
loss function of LMNN is defined as

ε(M) =(1− λ)
∑
i

∑
j∈Si

D2(�xi, �xj)

+λ
∑
i

∑
j∈Si,l∈Pi

[1+D2(�xi, �xj)−D2(�xi, �xl)]+
(3)

where in the second term [z]+ = max(z, 0) denotes the
standard hinge loss and λ > 0 is a positive constant. We call
the first term in Eq.(3) as εpull and the second term as εpush.
It is easy to find that such two terms have competing effect,
since the first is reduced by shrinking the distances between
examples and the second is reduced by magnifying them. λ
palys the role of balancing the effect of the two terms. Fig-
ure 1 presents the illustration.

Eq.(3) can be transformed to an instance of semi-definite
programming (SDP) by introducing slack variables ξijl as
in Table 1. It indicates the model of LMNN is convex (Van-
denberghe and Boyd 1996). Suppose that the amount of ex-
amples in each class is equal, the number of constraints
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Table 1: The model of SDP for LMNN.
Minimize(1− λ)

∑
i,j∈Si

(�xi − �xj)
TM(�xi − �xj)

+λ
∑

i,j∈Si,l∈Pi
ηij(1− yil)ξijl

subject to

(1)(�xi− �xl)
TM(�xi− �xl)−(�xi− �xj)

TM(�xi− �xj)≥1−ξijl,
(2)∀j ∈ Si, ∀l ∈ Pi, ξijl ≥ 0,,
(3)M � 0.

including (1) (2) of SDP described in Table 1 is about
2kn2(1− 1/c), thus the standard off-the-shelf packages are
not suitable when the data set is huge.

As seen from Eq.(3), we can find that both of the two
terms try to achieve the goal stated in Eq.(2). However, to
achieve this goal, only the second term is enough, i.e, if
we remove the term εpull from Eq.(3), the goal in Eq.(2)
would be also achieved. In fact, for an optimization prob-
lem, the more complex the model is, the harder the solu-
tion to be found is. If the first term εpull is added in the ob-
jective, it means some extra constraints on the optimization
problem are added. In mathematics, adding such extra con-
straints would make the searching space smaller. The result
found from the smaller searching space may have poor per-
formance.

Parameter Free Large Margin Nearest

Neighbor

Problem Formulation

Compared with LMNN, PFLMNN algorithm only focuses
on the action that penalizes the small distance between the
imposters and each inquiry input. As the compensation
of the abandon of the action to pull target neighbors near
together compared with LMNN, it utilizes the geometry
information of the samples in the feature space. For an
inquiry �xi and its target neighbor �xj , if the nearest imposter
�xl satisfies the inequality in Eq.(2), all other imposters
would follow such inequality relation too. Such relationship
between the imposters is called geometry information. The
optimization problem of PFLMNN is defined as follows.

min
M�0

∑
i

∑
j∈Si

[1−min
l∈Pi

((�xi − �xl)
TM(�xi − �xl)

− (�xi − �xj)
TM(�xi − �xj))]+

(4)

where the Si is the set which contains k-nearest target
neighbors of �xi and Pi is the set which contains all the
instances with different labels (imposters) from �xi. As seen
in (4), there is only one cost term compared with LMNN, so
it requires no parameter to be tuned. The sub-optimization
problem in Eq.(4) is used to find the nearest imposter.

Why the sub-optimization problem can improve the per-
formance of the proposed method compared with LMNN?
The reasons consist of two aspects. Firstly, in LMNN, the
second term is the sum of distances of each inquiry and
its imposters. Each sample in this term is treated equally,

thus the imposters with different distances from the inquiry
may have negative impact on each other. As a result, the
performance for pulling all the active imposters apart would
be reduced. Secondly, each imposter which triggers the
hinge loss function can be regarded as a constraint of the
model. Equally treating the imposters would make the
amount of the constraints be huge, which would increase
the difficulty of finding optimal solution.

Relation with SDP

In this section, we explore the relationship of the PFLMNN
with SDP, which would contribute us to solve the proposed
method. As seen from Eq.(4), the optimization problem of
PFLMNN can be seen as combination of two sub-problems.
The first one aims to find the nearest imposters of �xi with
respect to target neighbor �xj under M , and the second one
optimizes metric matrix M by using those nearest imposters.
The two sub-optimization problems are inseparably inter-
twined, so it is difficult to solve it in a straight-forward form.
Now, we transform the Eq. (4) to a semi-definite program-
ming problem which is a convex problem.

Since the hinge loss can be “mimicked” by introducing
slack variables ξij (Weinberger, Blitzer, and Saul 2005), the
optimization problem in Eq. (4) can be transformed to fol-
lowing optimization problem.

minimize
M

∑
i

∑
j∈Si

ξij

subject to min
l∈Pi

((�xi − �xl)
TM(�xi − �xl)

−(�xi − �xj)
TM(�xi − �xj)) ≥ 1− ξij ,

M � 0,

ξij ≥ 0.

(5)

For the first constraint in the optimization problem stated in
Eq.(5), there is relationship as follows.

min
l∈Pi

((�xi− �xl)
TM(�xi− �xl)−(�xi− �xj)

TM(�xi− �xj))≥1−ξij

⇔ ∀l∈Pi, 1−ξij≤(�xi−�xl)
TM(�xi−�xl)−(�xi−�xj)

TM(�xi− �xj)

Thus, the Eq. (4) can be further transformed into a instance
of standard SDP described in Table 2.
M � 0 indicates that matrix M is required to be positive

semi-definite, and the linear transform matrix L can be cal-
culated by matrix decomposition of M .

Suppose each class has the same number of instances, the
numbers of samples in set Pi and set Si are n(1− 1/c) and
k respectively. So the amount of constraints (1) and (2) in
the Table 2 is kn2(1 − 1/c) + kn, which is less than that
of LMNN (2kn2(1 − 1/c)). It is proved that, the proposed
model is quite simpler than LMNN.

Similar to the optimization problem of LMNN, our model
is a convex problem which can be solved by standard SDP
programmer. However, most off-the-shelf packages fail to
solve this problem due to the expensive requirement of the
physical memory.
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Figure 2: Illustration of PFLMNN. Different from LMNN, PFLMNN only takes the action to pull the differently labeled inputs
out of the small radius by some finite margins.

Table 2: SDP model of PFLMNN.
Minimize

∑
i

∑
j∈Si

ξij

subject to

(1) ∀l∈Pi, (�xi− �xl)
TM(�xi− �xl)−(�xi− �xj)

TM(�xi− �xj)≥1−ξij ,
(2) ∀j ∈ Si, ξij ≥ 0,
(3) M � 0.

Optimization

In the previous section, we have demonstrated the convex-
ity of the proposed problem. The proposed method can be
solved by a sub-gradient descent method. Before giving the
solution, we introduce an useful theorem.
Theorem 1: Suppose M̃ ∈ Rn×n is a symmetric matrix
diagonal matrix, Sn

+ is the set of positive semi-definite ma-
trices with size n×n. The projection of M̃ in S+ is denoted
M . There is

M = UΣ+U
T (6)

where U is a orthogonal unit matrix which makes Σ =
UT M̃U diagonal, and Σ+ = max{Σ, 0}.

The proof of Theorem 1 can be found in (Han 1998). Fol-
lowing it, we can project an symmetric matrix into a semi-
definite cone.

Now, we introduce the sub-gradient method for solving
PFLMNN. Suppose Xi,j = (xi − xj)(xi − xj)

T , there is
Tr(MXij) = (xi − xj)

TM(xi − xj), where Tr(·) is the
trace of the matrix ·. Let Γ(M) denote the objective function
of Eq. (4), there is

Γ(M) =
∑

i,j∈Si

[1−min
l∈Pi

Tr(MXil) + Tr(MXij)]+ (7)

The sub-gradient of Γ(M) respect to M is given as follow.

∂Γ(M)

∂M
=

∑
i,j∈Si

[εijlm ]+(Xij −Xilm)

lm = argmin
l

(�xi − �xl)
TM(�xi − �xl)

εijlm = 1− Tr(MXilm) + Tr(MXij)

(8)

where [εijlm ]+ = 1, if εijlm > 0, else [εijlm ]+ = 0.
We let Mi denotes the feasible point at the i-th step. The

point M̃i+1 = Mi − γ ∂Γ(M)
∂M . Obviously, M̃i+1 is a sym-

metric matrix, but we can not grantee it as semi-definite. We
should project M̃i+1 into the feasible region according to
Theorem 1. The details of the sub-gradient method are pre-
sented in Algorithm 1.

Algorithm 1 PFLMNN

Input: Data sets {�xi, yi}ni=1.
Initialize M0.
Repeat

1. Calculate sub-gradient ∇Gi =
∂Γ(M)
∂M

at Mi by Eq. (8);

2. Calculate M̃i+1 = Mi + λ∇Gi;

3. Do eigenvalue decomposition on M̃i+1 and obtain U , Σ+;

4. Mi+1 = UTΣ+U , and Li+1 = sqrt(Σ+)U

Until Convergence
Output: L,M ;

Kernel Parameter Free Large Margin Nearest

Neighbor

In this section, we discuss how to ’kernelize’ the proposed
method in order to learn the metric under non-linear envi-
ronment.

We firstly calculate the sub-gradient of objective function
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in Eq. (4) with respect to L. By substituting M = LTL in
the objective function in Eq. (4), the sub-gradient is calcu-
lated as.

∂Γ(L)

∂L
=
∑
i,j

[εijlm ]+2L((�xi − �xj)(�xi − �xj)
T

− (�xi − �xlm)(�xi − �xlm)T )

lm =argmin
l

(�xi − �xl)
TLTL(�xi − �xl)

(9)

where,
εi,j,lm=1−(�xi−�xlm)TLTL(�xi−�xlm)+(�xi− �xj)

TLTL(�xi− �xj),
and if εijlm > 0, [εijlm ]+ = 1, otherwise, [εijlm ]+ = 0.

Suppose φ is a nonlinear map function, it projects xi to a
high dimensional feature space by φi = φ(�xi). There exists
a kernel function κ that can be used to compute the feature
inner products without carrying out the map, i.e. κ(�xi, �xj) =
φT
i φj . We modify our objective Γ(L) by substituting inputs
�xi with mapped features φ(�xi) into Eq. (9) and obtain

Γ(L) =[1−min
l∈Pi

((φi − φl)
TLTL(φi − φl)

−(φi − φj)
TLTL(φi − φj))]+

(10)

So the gradient in the feature space can now be written as:

∂Γ(L)

∂L
=2L

∑
i,j

[εijlm ]((φi − φj)(φi − φj)
T

− (φi − φlm)(φi − φlm)T )

(11)

where lm = argminl(φi−φl)
TLTL(φi−φl), εi,j,lm = 1−

(φi − φlm)TLTL(φi − φlm) + (φi − φj)
TLTL(φi − φj).

Let Φ = [φ1, · · · , φn]
T , we establish linear equation

L = ΩΦ, where Ω is the matrix allowing us to write L as
linear combination of feature points. This form of nonlinear
map is analogous to that used in kernel-PCA and it allows
to parameterize the transformation L in terms of only d× n
parameters, the entries of the matrix Ω. We now introduce
the following Lemma which we will later use to derive an
iterative update rule for L.
Lemma 1 The gradient in feature space can be computed
as ∂Γ(L)

∂L = ΨΦ, where Ψ depends on features φi, solely in
terms of dot product φT

i φj .
Proof: Defining ki = Φφi = [κ(xi, xi), · · · , κ(xn, xi)],
non-linear feature projections can be computed as Lφi =
ΩΦφi = Ωki. From this we derive:

∂Γ(L)

∂L
=2cΩ

∑
i,j

[εijlm ]+((ki − kj)(φi − φj)
T

− (ki − klm)(φi − φlm)T )

=ΨΦ

where

Ψ=2Ω
∑
i,j

[εijlm ]+(E
ki−kj

i −E
ki−kj

j −E
ki−klm
i +E

ki−klm

lm
)

E�v
i = [0, · · · , 0, �v, 0, · · · , 0] is the n×n matrix having vec-

tor �v in the i-th column and all 0 in the other columns.

The key idea is to iteratively update Ω rather than L. For
example, using gradient descent as optimization we derive
update rule:

Lnew=Lold−λ∂Γ(L)
∂L

|L=Lold
=(Ωold−λΨold)Φ=ΩnewΦ

(12)
where λ is the learning rate. We carry out this optimization
by iterating the update Ω←(Ω−λΨ) until convergence. For
classification, we project points onto the learned space by
exploiting the kernel trick: Lφq = Ωkq .

Table 3: The details of five data sets.

data set # classes # examples # dimension
Original Processed

Iris 3 150 4 4
Wine 3 178 13 13
Isolet 26 6238 617 172
AT&T 40 400 1170 30

Coil-100 100 7200 1024 103
USPS 10 11000 256 96

Numerical Experiment

In this section, we evaluate the performance of PFLMNN
and its kernelized version on several data sets. The classifi-
cation accuracy is adopted as the metric.

Data set description

All the experiments are conducted on six data sets with
different sizes and difficulties, i.e. Iris, Wine, Isolet, AT&T1,
Coil100 (Nene, Nayar, and Hiroshi 1996) and USPS (Hull
1994). Among those data sets, the Wine, Iris and Isolet
are taken from the UCI Machine learning Repository2.
AT&T, Coil100, USPS are the hunman face image data
sets, objective image data set and the hand-writing digit
data, respectively. All the six data sets are often adopted
as benchmark data sets for distance metric learning in
recent works. Since the dimensionality of some data sets
is very high, principal component analysis (PCA) is used
for feature reduction (with score 95%), both to speed up
the model training and avoid overfitting. The details of the
those data sets are shown in Table 3.

Experiment setting

We conduct two series of experiments. Firstly, we con-
sider the PFLMNN not using the kernelized technique.
We compare it with several state-of-the-art supervised
distance metric learning methods, i.e. large margin nearest
neighbor algorithm (LMNN) and sparse compositional
metric learning (SCML) (Yuan, Bellet, and Fei 2014), local
distance metric learning (LDML) (Yang and Sukthankar
2006), information theory metric learning(ITML) (Davis,
Kulis, and Jain 2007), and regressive virtual metric learning

1http://www.uk.research.att.com/facedatabase.html
2http://www.ics.ucl.edu/ mlean/MLRepository.html
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Table 4: Comparison of our approach PFLMNN with several baselines in the linear case.

Base kNN LMNN ITML LDML SCML RVML FLMNN

Iris 92.12±2.31 94.23±1.54 93.42±2.52 92.15±2.47 94.32±2.48 93.43±1.34 96.41±1.23

Wine 94.18±1.59 98.36±1.03 97.42±1.21 95.56±1.79 96.91±1.93 97.82±1.45 98.55±1.67

Isolet 88.97±2.41 95.83±3.21 94.83±2.67 93.42±1.49 89.61±2.37 91.40±3.41 97.45±1.21

Letter 94.74±1.27 96.43±1.21 95.43±1.28 95.57±1.12 961.3±1.45 90.25±1.61 97.92±1.54

Coil-100 94.63±1.34 96.84±1.56 96.21±2.32 95.32±2.46 95.44±1.54 95.55±1.51 98.89±1.33

USPS 86.32±1.32 98.28±1.25 96.43±1.21 97.32±2.21 97.46±1.32 98.21±1.21 99.42±1.22

AT&T 91.13±3.22 96.81±1.41 97.12±2.21 96.45±2.11 96.52±1.63 96.42±1.34 97.21±2.34

Table 5: Comparison of our approach KPFLMNN with several baselines in the non-linear case.

Base LMNN-KPCA ITML-KPCA LDML-KPCA GBLMNN SCMLLOCAL KRVML KPFLMNN

Iris 95.21±1.43 94.56±2.11 93.24±1.43 96.24±1.26 94.31±1.21 94.32±2.32 97.23±2.12

Wine 95.82±1.29 97.43±1.31 92.18±2.12 98.00±1.21 96.55±2.11 96.82±2.24 98.91±1.73

Isolet 96.28±2.31 95.44 ±1.76 88.57±2.11 96.02 ±1.92 91.40±2.03 95.96±1.11 97.24±1.21

Letter 97.17±1.58 96.35±1.93 95.39±1.47 96.51±2.34 96.63±2.13 91.26±1.59 98.43±1.47

Coil-100 96.42 ±1.78 96.31±1.73 95.43±2.12 97.52±1.26 96.21 ±1.21 94.92±2.31 97.43±1.12

USPS 98.56±0.43 97.43±0.82 87.42±2.96 98.72±0.43 97.13 ±1.03 97.92±0.52 98.62±0.46

AT&T 97.21 ±2.21 97.51±1.75 92.32±2.14 98.12 ±1.76 96.42±1.82 96.82±1.12 98.51±1.31

(RVML)(Perrot and A. 2015). In addition, we also compare
FPLMNN with k-nearest neighbor classification without
metric learning.

In the second series, we consider the kernelized PFLMNN
(KPFLMNN) which adopts kernelized technique to im-
prove its performance. Since LMNN, ITML, IDML, are
not kernelized, we adopt kernelized PCA as a pro-progress
to transform them to kenerlized methods. Some kernelized
metric learning methods, i.e. GBLMNN (Kedem 2012), a
non-linear version of LMNN and KRVML (Perrot and A.
2015), the kernelized version of RVML, are considered. We
also report the results of SCMLOCAL which is the local
version of SCML.

In all of the experiments reported here, the parameter
λ of LMNN is tuned by 5-fold cross validation (For the
purpose of cross-validation, the training sets would be
partitioned into training and validation sets at 80/20),
and the searching grid is set at {0.02, 0.04, · · · , 1}. The
nearest neighbors’ number, i.e. k is set by cross-validation
as recommended in (Weinberger and Saul 2009) for all
the methods in our experiment. For KPFLMNN, KPCA,
KRVML, the Gaussian RBF kernel is adopted, and the
variance of the RBF kernel is set as the mean of Euclidean
distances between all pairwise samples in the training set.
All of the experiment results are averaged over several
runs of randomly generated 70/30 splits of the data. Each
experiment runs 50 times independently.

Experiment results

The classification results for PFLMNN and KPLMNN are
presented in Table 4 and Table 5. As seen from the Ta-

ble 4, the proposed method, i.e. PFLMNN has achieved the
best performance compared with other methods, which is
highlighted by bold words. There is the same conclusion in
the Table 5. In Table 5, KPLMNN achieves the best perfor-
mance. Those results can prove the effective of the proposed
methods.

Conclusion
In this paper, we have proposed a novel large margin nearest
neighbor algorithm, i.e. PFLMNN. Different from LMNN,
our algorithm only considered the action of pushing the
imposters apart from the neighborhood, so that there is no
parameter needed to be tuned in our model, which is more
convenient to use in practice. To compensate the abandon of
the cost term for penalizing large distances between target
neighbors, we developed a novel framework which utilizes
the geometry information of imposters, to make the action
to push the imposters more effectively. As a result, there
are less constraints considered in the corresponding SDP
transformation, compared with LMNN. We evaluated our
algorithm on several data sets with various sizes and diffi-
culties. Compared with state-of-the-art methods, PFLMNN
achieved comparative classification results. In the future
works, we would apply our method to the application such
as computer version(Lu and Yuan 2013; Lu and Wu 2014;
Han et al. 2015; Cheng et al. 2015).
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