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Abstract

We consider the problem of online active learning to collect
data for regression modeling. Specifically, we consider a deci-
sion maker with a limited experimentation budget who must
efficiently learn an underlying linear population model. Our
main contribution is a novel threshold-based algorithm for
selection of most informative observations; we characterize
its performance and fundamental lower bounds. We extend
the algorithm and its guarantees to sparse linear regression in
high-dimensional settings. Simulations suggest the algorithm
is remarkably robust: it provides significant benefits over pas-
sive random sampling in real-world datasets that exhibit high
nonlinearity and high dimensionality — significantly reducing
both the mean and variance of the squared error.

1 Introduction

This paper studies online active learning for estimation of
linear models. Active learning is motivated by the premise
that in many sequential data collection scenarios, labeling
or obtaining output from observations is costly. Thus ongo-
ing decisions must be made about whether to collect data
on a particular unit of observation. Active learning has a
rich history; see, e.g., (Cohn, Ghahramani, and Jordan 1996;
Cohn, Atlas, and Ladner 1994; Castro and Nowak 2007;
Koltchinskii 2010; Balcan, Hanneke, and Vaughan 2010).

As a motivating example, suppose that an online marketing
organization plans to send display advertising promotions
to a new target market. Their goal is to estimate the rev-
enue that can be expected for an individual with a given
covariate vector. Unfortunately, providing the promotion and
collecting data on each individual is costly. Thus the goal
of the marketing organization is to acquire first the most
“informative” observations. They must do this in an online
fashion: opportunities to display the promotion to individuals
arrive sequentially over time. In online active learning, this is
achieved by selecting those observational units (target indi-
viduals in this case) that provide the most information to the
model fitting procedure.

Linear models are ubiquitous in both theory and practice—
often used even in settings where the data may exhibit strong
nonlinearity—in large part because of their interpretability,
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flexibility, and simplicity. As a consequence, in practice, peo-
ple tend to add a large number of features and interactions to
the model, hoping to capture the right signal at the expense
of introducing some noise. Moreover, the input space can
be updated and extended iteratively after data collection if
the decision maker feels predictions on a held-out set are
not good enough. As a consequence, often times the number
of covariates becomes higher than the number of available
observations. In those cases, selecting the subsequent most
informative data is even more critical. Accordingly, our focus
is on actively choosing observations for optimal prediction
of the resulting high-dimensional linear models.

Our main contributions are as follows. We initially focus
on standard linear models, and build the theory that we later
extend to high dimensional settings. First, we develop an
algorithm that sequentially selects observations if they have
sufficiently large norm, in an appropriate space (dependent
on the data-generating distribution). Second, we provide a
comprehensive theoretical analysis of our algorithm, includ-
ing upper and lower bounds. We focus on minimizing mean
squared prediction error (MSE), and show a high probability
upper bound on the MSE of our approach (cf. Theorem 3.1).
In addition, we provide a lower bound on the best possible
achievable performance in high probability and expectation
(cf. Section 4). In some distributional settings of interest we
show that this lower bound structurally matches our upper
bound, suggesting our algorithm is near-optimal.

The results above show that the improvement of active
learning progressively weakens as the dimension of the data
grows, and a new approach is needed. To tackle our original
goal and address this degradation, under standard sparsity as-
sumptions, we design an adaptive extension of the threshold-
ing algorithm that initially devotes some budget to learn the
sparsity pattern of the model, in order to subsequently apply
active learning to the relevant lower dimensional subspace.
We find that in this setting, the active learning algorithm
provides significant benefit over passive random sampling.
Theoretical guarantees are given in Theorem 3.3.

Finally, we empirically evaluate our algorithm’s perfor-
mance. Our tests on real world data show our approach is
remarkably robust: the gain of active learning remains signif-
icant even in settings that fall outside our theory. Our results
suggest that the threshold-based rule may be a valuable tool
to leverage in observation-limited environments, even when
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the assumptions of our theory may not exactly hold.
Active learning has mainly been studied for classifica-

tion; see, e.g., (Balcan, Beygelzimer, and Langford 2006;
Dasgupta, Monteleoni, and Hsu 2007; Balcan, Broder, and
Zhang 2007; Wang and Singh 2014; Dasgupta and Hsu
2008). For regression, see, e.g., (Krause and Guestrin 2007;
Sugiyama and Nakajima 2009; Cai, Zhang, and Zhou 2013)
and the references within. A closely related work to our set-
ting is (Sabato and Munos 2014): they study online or stream-
based active learning for linear regression, with random de-
sign. They propose a theoretical algorithm that partitions the
space by stratification based on Monte-Carlo methods, where
a recently proposed algorithm for linear regression (Hsu and
Sabato 2014) is used as a black box. It converges to the
globally optimal oracle risk under possibly misspecified mod-
els (with suitable assumptions). Due to the relatively weak
model assumptions, they achieve a constant gain over passive
learning. As we adopt stronger assumptions (well-specified
model), we are able to achieve larger than constant gains,
with a computationally simpler algorithm. Suppose covariate
vectors are Gaussian with dimension d; the total number of
observations is n; and the algorithm is allowed to label at
most k of them. Then, we beat the standard σ2d/k MSE to
obtain σ2d2/[kd+ 2(δ − 1)k log k] when n = kδ , so active
learning truly improves performance when k = Ω(exp(d))
or δ = Ω(d). While (Sabato and Munos 2014) does not tackle
high-dimensional settings, we overcome the exponential data
requirements via l1-regularization.

The remainder of the paper is organized as follows. We
define our setting in Section 2. In Section 3, we introduce
the algorithm and provide analysis of a corresponding upper
bound. Lower bounds are given in Section 4. Simulations are
presented in Section 5, and Section 6 concludes.

2 Problem Definition

The online active learning problem for regression is defined
as follows. We sequentially observe n covariate vectors in
a d-dimensional space Xi ∈ Rd, which are i.i.d. When
presented with the i-th observation, we must choose whether
we want to label it or not, i.e., choose to observe the outcome.
If we decide to label the observation, then we obtain Y i ∈ R.
Otherwise, we do not see its label, and the outcome remains
unknown. We can label at most k out of the n observations.

We assume covariates are distributed according to some
known distribution D, with zero mean EX = 0, and co-
variance matrix Σ = EXXT . We relax this assumption
later. In addition, we assume that Y follows a linear model:
Y = XTβ∗ + ε, where β∗ ∈ Rd and ε ∼ N (0, σ2) i.i.d.
We denote observations by X,Xi ∈ Rd, components by
Xj ∈ R, and sets in boldface: X ∈ Rk×d,Y ∈ Rk.

After selecting k observations, (X,Y), we output an esti-
mate β̂k ∈ Rd, with no intercept.1 Our goal is to minimize
the expected MSE of β̂k in Σ norm, i.e. E‖β̂k − β∗‖2Σ, un-
der random design; that is, when the Xi’s are random and
the algorithm may be randomized. This is related to the A-
optimality criterion, (Pukelsheim 1993). We use the experi-

1We assume covariates and outcome are centered.

mentation budget to minimize the variance of β̂k by sampling
X from a different thresholded distribution. Minimizing ex-
pected MSE is equivalent to minimizing the trace of the
normalized inverse of the Fisher information matrix XTX,

E[(Y −XT β̂k)
2] = E[‖β̂k − β∗‖2Σ] + σ2

= σ2 E
[
Tr(Σ(XTX)−1)

]
+ σ2

where expectations are over all sources of randomness. In
this setting, the OLS estimator is the best linear unbiased esti-
mator by the Gauss–Markov Theorem. Also, for any set X of
k i.i.d. observations, β̂k := β̂OLS

k has sampling distribution
β̂k | X ∼ N (β∗, σ2(XTX)−1), (Hoerl and Kennard 1970).
In Section 3, we tackle high-dimensionality, where k ≤ d,
via Lasso estimators within a two-stage algorithm.

3 Algorithm and Main Results

In this section we motivate the algorithm, state the main re-
sult quantifying its performance for general distributions, and
provide a high-level overview of the proof. A corollary for
the Gaussian distribution is presented, and we also extend
the algorithm by making the threshold adaptive. Finally, we
show how to generalize the results to sparse linear regression.
In Appendix E2, we derive a CLT approximation with guar-
antees that is useful in complex or unknown distributional
settings.

Without loss of generality, we assume that each observa-
tion is white, that is, E[XXT ] is the identity matrix. For
correlated observations X ′, we apply X := D−1/2UTX ′
to whiten them, Σ = UDUT (see Appendix A). Note that
Tr(Σ(X′TX′)−1) = Tr((XTX)−1).

We bound the whitened trace as

d

λmax(XTX)
≤ Tr((XTX)−1) ≤ d

λmin(XTX)
. (1)

To minimize the expected MSE, we need to maximize the
minimum eigenvalue of XTX with high probability. The
thresholding procedure in Algorithm 1 maximizes the min-
imum eigenvalue of XTX through two observations. First,
since the sum of eigenvalues of XTX is the trace of XTX,
which is in turn the sum of the norm of the observations,
the algorithm chooses observations of large (weighted) norm.
Second, the eigenvalues of XTX should be balanced, that is,
have similar magnitudes. This is achieved by selecting the
appropriate weights for the norm.

Let ξ ∈ Rd
+ be a vector of weights defining the norm

‖X‖2ξ =
∑d

j=1 ξjX
2
j . Let Γ > 0 be a threshold. Algo-

rithm 1 simply selects the observations with ξ-weighted
norm larger than Γ. The selected observations can be thought
as i.i.d. samples from an induced distribution D̄: the orig-
inal distribution conditional on ‖X‖ξ ≥ Γ. Suppose k ob-
servations are chosen and denoted by X ∈ Rk×d. Then
EXTX =

∑k
i=1 EXiXiT =

∑k
i=1 H

i = kH , where H
is the covariance matrix with respect to D̄. This covariance

2The Appendix can be found in the Arxiv version of the paper.

2507



matrix is diagonal under density symmetry assumptions, as
thresholding preserves uncorrelation; its diagonal terms are

Hjj = ED̄X2
j = ED[X2

j | ‖X‖ξ ≥ Γ] =: φj . (2)

Hence, λmin(EXTX) = kminj φj , and λmax(EXTX) =
kmaxj φj . The main technical result in Theorem 3.1 is to
link the eigenvalues of the random matrix XTX to its deter-
ministic counter part EXTX. From the above calculations,
the goal is to find (ξ,Γ) such that minj φj ≈ maxj φj , and
both are as large as possible. The first objective is achieved
when there exists some φ such that

ED[X2
j | ‖X‖ξ ≥ Γ] = φj = φ, for all j. (3)

We note that if X has independent components with the same
marginal distribution (after whitening), then it suffices to
choose ξj = 1 for all j. It is necessary to choose unequal
weights when the marginal distributions of the components
are different, e.g., some are Gaussian and some are uniform,
or components are dependent. For joint Gaussian, whitening
removes dependencies, so we set ξj = 1.

Thresholding Algorithm

The algorithm is simple. For each incoming observation Xi

we compute its weighted norm ‖Xi‖ξ (possibly after whiten-
ing if necessary). If the norm is above the threshold Γ, then
we select the observation, otherwise we ignore it. We stop
when we have collected k observations. Note that random
sampling is equivalent to setting Γ = 0.

We want to catch the k largest observations given our
budget, therefore we require that Γ satisfies

PD (‖X‖ξ ≥ Γ) = k/n. (4)

If we apply this rule to n independent observations coming
from D, on average we select k of them: the ξ−largest. If
(ξ,Γ) is a solution to (3) and (4), then (c ξ,

√
c Γ) is also a

solution for any c > 0. So we require
∑

i ξi = d.

Algorithm 1 Thresholding Algorithm.
1: Set (ξ,Γ) ∈ Rd+1 satisfying (3) and (4).
2: Set S = ∅.
3: for observation 1 ≤ i ≤ n do
4: Observe Xi.
5: Compute Xi = D−1/2UTXi.
6: if ‖Xi‖ξ > Γ or k − |S| = n− i+ 1 then

7: Choose Xi: S = S ∪Xi.
8: if |S| = k then
9: break.

10: end if
11: end if
12: end for
13: Return OLS estimate β̂ based on observations in S.

Algorithm 1 can be seen as a regularizing process similar to
ridge regression, where the amount of regularization depends
on the distribution D and the budget ratio k/n; it improves
the conditioning of the problem.

Guarantees when Σ is unknown can be derived as follows:
we allocate an initial sequence of points to estimation of

the inverse of the covariance matrix, and the remainder to
labeling (where we no longer update our estimate). In this
manner observations remain independent. Note that O(d) ob-
servations are required for accurate recovery when D is sub-
gaussian, and O(d log d) if subexponential, (Vershynin 2010).
Errors by using the estimate to whiten and make decisions are
bounded, small with high probability (via Cauchy–Schwarz),
and the result is equivalent to using a slightly worse threshold.

Algorithm 1 b Adaptive Thresholding Algorithm.
1: Set S = ∅.
2: for observation 1 ≤ i ≤ n do

3: Observe Xi, estimate Σ̂i = ÛiD̂iÛ
T
i .

4: Compute Xi = D̂
−1/2
i ÛT

i Xi.
5: Let (ξi,Γi) satisfy (3) and (5).
6: if ‖Xi‖ξi > Γi or k − |S|=n− i+ 1 then

7: Choose Xi: S = S ∪Xi.
8: if |S| = k then
9: break.

10: end if
11: end if
12: end for
13: Return OLS estimate β̂ based on observations in S.

Algorithm 1 keeps the threshold fixed from the beginning,
leading to a mathematically convenient analysis, as it gen-
erates i.i.d. observations. However, Algorithm 1b, which is
adaptive and updates its parameters after each observation,
produces slightly better results, as we empirically show in
Appendix K. Before making a decision on Xi, Algorithm 1b
finds (ξi,Γi) satisfying (3) and

PD

(‖Xi‖ξi ≥ Γi

)
=

k − |Si−1|
n− i+ 1

, (5)

where |Si−1| is the number of observations already labeled.
The idea is identical: set the threshold to capture, on average,
the number of observations still to be labeled, that is k −
|Si−1|, out of the number still to be observed, n− i+ 1.

Importantly, active learning not only decreases the ex-
pected MSE, but also its variance. Since the variance of the
MSE for fixed X depends on

∑
j 1/λj(X

TX)2 (Hoerl and
Kennard 1970), it is also minimized by selecting observations
that lead to large eigenvalues of XTX.

Main Theorem

Theorem 3.1 states that by sampling k observations from
D̄ where (ξ,Γ) satisfy (3), the estimation performance is
significantly improved, compared to randomly sampling k
observations from the original distribution. Section 4 shows
the gain in Theorem 3.1 essentially cannot be improved and
Algorithm 1 is optimal. A sketch of the proof is provided at
the end of this section (see Appendix B).
Theorem 3.1 Let n > k > d. Assume observations X ∈ Rd

are distributed according to subgaussian D with covariance
matrix Σ ∈ Rd×d. Also, assume marginal densities are sym-
metric around zero after whitening. Let X be a k × d matrix
with k observations sampled from the distribution induced
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by the thresholding rule with parameters (ξ,Γ) ∈ Rd+1
+ sat-

isfying (3). Let α > 0, so that t = α
√
k − C

√
d > 0, then,

with probability at least 1− 2 exp(−ct2)

Tr(Σ(XTX)−1) ≤ d

(1− α)2 φk
, (6)

where constants c, C depend on the subgaussian norm of D̄.

While Theorem 3.1 is stated in fairly general terms, we
can apply the result to specific settings. We first present the
Gaussian case where white components are independent. The
proof is in Appendix D.

Corollary 3.2 If the observations in Theorem 3.1 are jointly
Gaussian with covariance matrix Σ ∈ Rd×d, ξj = 1 for all
j = 1, . . . , d, and Γ = C̄

√
d+ 2 log(n/k), for some con-

stant C̄ ≥ 1, then with probability at least 1− 2 exp(−ct2)
we have that

Tr(Σ(XTX)−1) ≤ d

(1− α)2
(
1 + 2 log(n/k)

d

)
k
. (7)

The MSE of random sampling for white Gaussian data is
proportional to d/(k − d − 1), by the inverse Wishart dis-
tribution. Active learning provides a gain factor of order
1/(1 + 2 log(n/k)/d) with high probability (a very similar
1 − α term shows up for random sampling). Note that our
algorithm may select fewer than k observations. Then, when
the number of observations yet to be seen equals the remain-
ing labeling budget, we should select all of them (equiva-
lent to random sampling). The number of observations with
‖X‖ξ > Γ has binomial distribution, is highly concentrated
around its mean k, with variance k(1− k/n). By the Cher-
noff Bounds, the probability that the algorithm selects fewer
than k − C ′√k decreases exponentially fast in C ′. Thus,
these deviations are dominated in the bound of Theorem 3.1
by the leading term. In practice, one may set the threshold in
(4) by choosing k(1 + ε) observations for some small ε > 0,
or use the adaptive threshold in Algorithm 1b.

Sparsity and Regularization

The gain provided by active learning in our setting suffers
from the curse of dimensionality, as it diminishes very fast
when d increases, and Section 4 shows the gain cannot be
improved in general. For high dimensional settings (where
k ≤ d) we assume s-sparsity in β, that is, we assume the
support of β contains at most s non-zero components, for
some s � d. In Appendix J, we also provide related results
for Ridge regression.

We state the two-stage Sparse Thresholding Algorithm (see
Algorithm 2) and show this algorithm effectively overcomes
the curse of dimensionality. For simplicity, we assume the
data is Gaussian, D = N (0,Σ). Based, for example, on the
results of Tropp (2005) and Theorem 1 in Joseph (2013) we
could extend our results to subgaussian data via the Orthogo-
nal Matching Pursuit algorithm for recovery. The two-stage
algorithm works as follows. First, we focus on recovering
the true support, S = S(β), by selecting the very first k1 ob-
servations (without thresholding), and computing the Lasso

estimator β̂1. Second, we assign the weights ξ: for i ∈ S(β̂1),
we set ξi = 1, otherwise we set ξi = 0. Then, we apply the
thresholding rule to select the remaining k2 = k − k1 obser-
vations. While observations are collected in all dimensions,
our final estimate β̂2 is the OLS estimator computed only
including the observations selected in the second stage, and
exclusively in those dimensions in S(β̂1).

Note that, in general, the points that end up being selected
by our algorithm are informational outliers, while not neces-
sarily geometric outliers in the original space. After apply-
ing the whitening transformation, ignoring some dimensions
based on the Lasso results, and then thresholding based on a
weighted norm possibly learnt from data (say, if components
are not independent, and we recover the covariance matrix
in a online fashion), the algorithm is able to identify good
points for the underlying data distribution and β.

Algorithm 2 Sparse Thresholding Algorithm.
1: Set S1 = ∅, S2 = ∅. Let k = k1 + k2, n = k1 + n2.
2: for observation 1 ≤ i ≤ k1 do
3: Observe Xi. Choose Xi: S1 = S1 ∪Xi.
4: end for
5: Set γ = 1/2, λ =

√
4σ2 log(d)/γ2k1.

6: Compute Lasso estimate β̂1 on S1, regularization λ.
7: Set weights: ξi = 1 if i ∈ S(β̂1), ξi = 0 otherwise.
8: Set Γ = C

√
s+ 2 log(n2/k2).

9: Factorize ΣS(β̂1)S(β̂1)
= UDUT .

10: for observation k1 + 1 ≤ i ≤ n do
11: Observe Xi ∈ Rd. Restrict to Xi

S := Xi
S(β̂1)

∈ Rs.

12: Compute Xi
S = D−1/2UTXi

S .
13: if ‖Xi

S‖ξ > Γ or k2 − |S2| = n− i+ 1 then

14: Choose Xi
S : S2 = S2 ∪Xi

S .
15: if |S2| = k2 then
16: break.
17: end if
18: end if
19: end for
20: Return OLS estimate β̂2 based on observations in S2.

Theorem 3.3 summarizes the performance of Algorithm
2; it requires the standard assumptions on Σ, λ and mini |βi|
for support recovery (see Theorem 3 in (Wainwright 2009)).

Theorem 3.3 Let D = N (0,Σ). Assume Σ, λ and mini |βi|
satisfy the standard conditions given in Theorem 3 of (Wain-
wright 2009). Assume we run the Sparse Thresholding algo-
rithm with k1 = C ′s log d observations to recover the sup-
port of β, for an appropriate C ′ ≥ 0. Let X2 be k2 = k− k1
observations sampled via thresholding on S(β̂1). It follows
that for α > 0 such that t = α

√
k2 − C

√
s > 0, there exist

some universal constants c1, c2, and c, C that depend on the
subgaussian norm of D̄ | S(β̂1), such that with probability
at least

1− 2e−min(c2 min(s,log(d−s))−log(c1),ct
2−log(2))
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it holds that

Tr(ΣSS(X
T
2 X2)

−1) ≤ s

(1− α)2
(
1 + 2 log(n2/k2)

s

)
k2

.

Performance for random sampling with the Lasso estimator is
O(s log d/k). A regime of interest is s � d, k = C1s log d,
and n = C2 d, for large enough C1, and C2 > 0. In that
case, Algorithm 2 leads to a bound of order smaller than
1/ log(d), as opposed to a weaker constant guarantee for
random sampling. The gain is at least a log d factor with
high probability. The proof is in Appendix H. In practice, the
performance of the algorithm is improved by using all the k

observations to fit the final estimate β̂2. However, in that case,
observations are no longer i.i.d. Also, using thresholding to
select the initial k1 observations decreases the probability
of making a mistake in support recovery. In Section 5 we
provide simulations comparing different methods.

Proof of Theorem 3.1

The complete proof of Theorem 3.1 is in Appendix B. We
only provide a sketch here. The proof is a direct application
of spectral results in (Vershynin 2010), which are derived
via a covering argument using a discrete net N on the unit
Euclidean sphere Sd−1, together with a Bernstein-type con-
centration inequality that controls deviations of ‖Xw‖2 for
each element w ∈ N in the net. Finally, a union bound is
taken over the net. Importantly, the proof shows that if our
algorithm uses (ξ,Γ) which are approximate solutions to (3),
then (6) still holds with minj ED̄X2

j in the denominator of
the RHS, instead of φ. This fact can be quite useful in prac-
tice, when F is unknown. We can devote some initial budget
X1, . . . , XT to recover F, and then find (ξ,Γ) approximately
solving (3) and (4) under F̂. Note that no labeling is required.

Also, the result can be extended to subexponential distribu-
tions. In this case, the probabilistic bound will be weaker (in-
cluding a d term in front of the exponential). More generally,
our probabilistic bounds are strongest when k ≥ Cd log d
for some constant C ≥ 0, a common situation in active
learning (Sabato and Munos 2014), where super-linear re-
quirements in d seem unavoidable in noisy settings. A sim-
ple bound for the parameter φ can be calculated as fol-
lows. Assume there exists (ξ,Γ) such that φj = φ and con-
sider the weighted squared norm Zξ =

∑d
j=1 ξjX

2
j . Then

ED̄ [Zξ] =
∑d

j=1 ξjED̄

[
X2

j

]
=

∑d
j=1 ξjφj = dφ, and

φ = ED

[
Zξ | Zξ ≥ Γ2

]
/d ≥ Γ2/d = F−1

Zξ
(1− k/n)/d,

which implies that 1/λmin(EXTX) = 1/kφ ≤ d/kΓ2. For
specific distributions, Γ2/d can be easily computed. The
last inequality is close to equality in cases where the condi-
tional density decays extremely fast for values of

∑d
j=1 ξjX

2
j

above Γ2. Heavy-tailed distributions allocate mass to signifi-
cantly higher values, and φ could be much larger than Γ2/d.

4 Lower Bound

In this section we derive a lower bound for the k > d setting.
Suppose all the data are given. Again choose the k observa-
tions with largest norms, denoted by X′. To minimize the

prediction error, the best possible X′TX′ is diagonal, with
identical entries, and trace equal to the sum of the norms.
No selection algorithm, online or offline, can do better. Al-
gorithm 1 achieves this by selecting observations with large
norms and uncorrelated entries (through whitening if neces-
sary). Theorem 4.1 captures this intuition.
Theorem 4.1 Let A be an algorithm for the problem we
described in Section 2. Then,

EA Tr(Σ(XTX)−1) ≥ d2

E
[∑k

i=1 ||X(i)||2
] (8)

≥ d

k E
[
1
d maxi∈[n] ||Xi||2

] ,
where X(i) is the white observation with the i-th largest norm.
Moreover, fix α ∈ (0, 1). Let F be the cdf of maxi∈[n] ||Xi||2.
Then, Tr(Σ(XTX)−1) ≥ d2/k F−1(1− α) with probabil-
ity at least 1− α.

The proof is in Appendix E. The upper bound in Theo-
rem 3.1 has a similar structure, with denominator equal to
kφ. By Theorem 3.1, φ = ED[X2

j | ‖X‖2ξ ≥ Γ2] for every
component j. Hence, summing over all components: kφ =
kED̄

[‖X‖2/d]. The latter expectation is taken with respect
to D̄, which only captures the k expected ξ-largest observa-
tions out of n, as opposed to k ED[(1/k)

∑k
i=1 ||X(i)||2/d]

in (8). The weights ξ simply account for the fact that, in
reality, we cannot make all components have equal norm,
something we implicitly assumed in our lower bound.

We specialize the lower bound to the Gaussian setting,
for which we computed the upper bound of Theorem 3.1.
The proofs are based on the Fisher-Tippett Theorem and the
Gumbel distribution; see Appendix F.
Corollary 4.2 For Gaussian observations Xi ∼ N (0,Σ)
and large n, for any algorithm A

EA Tr(Σ(XTX)−1) ≥ d

k
(

2 logn
d + log log n

) .

Moreover, let α ∈ (0, 1). Then, for any A with probability at
least 1− α and C = 2 log Γ(d/2)/d,

Tr(Σ(XTX)−1) ≥ d/k
2 logn

d
+ log log n− 1

d
log log 1

1−α
− C

The results from Corollary 3.2 have the same structure as
the lower bound; hence in this setting our algorithm is near
optimal. Similar results and conclusions are derived for the
CLT approximation in Appendix I.

5 Simulations

We conducted experiments in various settings: regularized
estimators in high-dimensions, and the basic thresholding
approach in real-world data to explore its performance on
strongly non-linear environments.

Regularized Estimators. We compare the performance in
high-dimensional settings of random sampling and Algorithm
1 —both with an appropriately adjusted Lasso estimator—

2510



(a) Zooming out. (b) Zooming in.

Figure 1: Sparse Linear Regression (700 iters). We fix the effective dimension to s = 7, and increase the ambient dimension
from d = 100 to d = 500. The budget scales as k = Cs log d for C ≈ 3.4, while n = 4d. We set k1 = 2k/3 and k2 = k/3.

(a) Protein Structure; 150 iters. (b) Bike Sharing; 300 iters. (c) YearPredictionMSD; 150 iters

Figure 2: MSE of β̂OLS . The (0.05, 0.95) quantile conf. int. displayed. Solid median; Dashed mean.

against Algorithm 2, which takes into account the structure
of the problem (s � d). For completeness, we also show
the performance of Algorithm 2 when all observations are
included in the final OLS estimate, and that of random sam-
pling (RS) and Algorithm 1 (Thr) when the true support S is
known in advance, and the OLS computed on S. In Figure 1
(a), we see that Algorithm 2 dramatically reduces the MSE,
while in Figure 1 (b) we zoom-in to see that, quite remark-
ably, Algorithm 2 using all observations for the final estimate
outperforms random sampling that knows the sparsity pat-
tern in hindsight. We used k1 = (2/3)k for recovery. More
experiments are provided in Appendix K.

Real-World Data. We show the results of Algorithm 1b
(online Σ estimation) with the simplest distributional assump-
tion (Gaussian threshold, ξj = 1) versus random sampling on
publicly available real-world datasets (UCI, (Lichman 2013)),
measuring test squared prediction error. We fix a sequence of
values of n, together with k =

√
n, and for each pair (n, k)

we run a number of iterations. In each one, we randomly split
the dataset in training (n observations, random order), and
test (rest of them). Finally, β̂OLS is computed on selected
observations, and the prediction error estimated on the test
set. All datasets are initially centered to have zero means
(covariates and response). Confidence intervals are provided.

We first analyze the Physicochemical Properties of Protein
Tertiary Structure dataset (45730 observations), where we
predict the size of the residue, based on d = 9 variables, in-
cluding the total surface area of the protein and its molecular
mass. Figure 2 (a) shows the results; Algorithm 1b outper-

forms random sampling for all values of (n, k). The reduction
in variance is substantial. In the Bike Sharing dataset (Fanaee-
T and Gama 2013) we predict the number of hourly users
of the service, given weather conditions, including tempera-
ture, wind speed, humidity, and temporal covariates. There
are 17379 observations, and we use d = 12 covariates. Our
estimator has lower mean, median and variance MSE than
random sampling; Figure 2 (b). Finally, for the YearPredic-
tionMSD dataset (Bertin-Mahieux et al. 2011), we predict the
year a song was released based on d = 90 covariates, mainly
metadata and audio features. There are 99799 observations.
The MSE and variance did strongly improve; Figure 2 (c).

In the examples we see that, while active learning leads
to strong improvements in MSE and variance reduction for
moderate values of k with respect to d, the gain vanishes
when k grows large. This was expected; the reason might be
that by sampling so many outliers, we end up learning about
parts of the space where heavy non-linearities arise, which
may not be important to the test distribution. However, the
motivation of active learning are situations of limited labeling
budget, and hybrid approaches combining random sampling
and thresholding could be easily implemented if needed.

6 Conclusion
Our paper provides a comprehensive analysis of thresholding
algorithms for online active learning of linear regression mod-
els, which are shown to perform well both theoretically and
empirically. Several natural open directions suggest them-
selves. Additional robustness could be guaranteed in other
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settings by combining our algorithm as a “black box” with
other approaches: for example, some addition of random
sampling or stratified sampling could be used to determine
if significant nonlinearity is present, and to determine the
fraction of observations that are collected via thresholding.
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