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Abstract

Similarity-based image hashing represents crucial technique
for visual data storage reduction and expedited image search.
Conventional hashing schemes typically feed hand-crafted
features into hash functions, which separates the procedures
of feature extraction and hash function learning. In this paper,
we propose a novel algorithm that concurrently performs fea-
ture engineering and non-linear supervised hashing function
learning. Our technical contributions in this paper are two-
folds: 1) deep network optimization is often achieved by gra-
dient propagation, which critically requires a smooth objec-
tive function. The discrete nature of hash codes makes them
not amenable for gradient-based optimization. To address this
issue, we propose an exponentiated hashing loss function and
its bilinear smooth approximation. Effective gradient calcu-
lation and propagation are thereby enabled; 2) pre-training is
an important trick in supervised deep learning. The impact
of pre-training on the hash code quality has never been dis-
cussed in current deep hashing literature. We propose a pre-
training scheme inspired by recent advance in deep network
based image classification, and experimentally demonstrate
its effectiveness. Comprehensive quantitative evaluations are
conducted. On all adopted benchmarks, our proposed algo-
rithm generates new performance records by significant im-
provement margins.

Introduction

Recent years have witnessed spectacular progress on sim-
ilarity based hash code learning in a variety of computer
vision tasks, such as image search (Chum, Philbin, and
Zisserman 2008), object recognition (Torralba, Fergus, and
Weiss 2008) and local descriptor compression (C. Strecha
and Fua 2012) etc. The hash codes are highly compact
(e.g., several bytes for each image) in most cases, which
significantly reduces the overhead of storing visual big
data and also expedites similarity-based image search. The
theoretic ground of similarity-oriented hashing is rooted
from Johnson-Lindenstrause theorem (Dasgupta and Gupta
2003), which elucidates that for arbitrary n samples, some
O(log(n))-dimensional subspace exists and can be found in
polynomial time complexity. When embedded into this sub-
space, pairwise affinities among these n samples are pre-
served with tight approximation error bounds. This seminal
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theoretic discovery sheds light on trading similarity preser-
vation for high compression of large data set. The classic
locality-sensitive hashing (LSH) (Indyk and Motwani 1998)
is a good demonstration for above tradeoff, instantiated in
various similarity metrics such as Hamming distance (Indyk
and Motwani 1998), cosine similarity (Charikar 2002), £,
distance with p € (0, 2] (Datar et al. 2004), and Euclidean
distance (Andoni et al. 2013).

Images are often accompanied with supervised informa-
tion in various forms, such as semantically similar / dissim-
ilar data pairs. Supervised hash code learning (Mu, Shen,
and Yan 2010; Wang, Kumar, and Chang 2012) harnesses
such supervisory information during parameter optimiza-
tion and has demonstrated superior image search accu-
racy compared with unsupervised hashing algorithms (An-
doni and Indyk 2008; Weiss, Torralba, and Fergus 2008;
Gong et al. 2013). Exemplar supervised hashing schemes in-
clude LDAHash (C. Strecha and Fua 2012), two-step hash-
ing (Lin, Shen, and van den Hengel 2015), and kernel-based
supervised hashing (Liu et al. 2012) etc. Importantly, two
factors crucially affect the accuracy of a supervised hash-
ing algorithm: the discriminative power of the features and
the choice of hashing functions. Conventionally, these two
factors are separately treated. Images are often represented
by hand-crafted visual features (such as SIFT-based bag-of-
words feature or sparse codes). Regarding hash functions, a
large body of existing works have adopted linear functions
owing to the simplicity. More recently, researchers have also
explored a number of non-linear hashing functions, such as
anchor-based kernalized hashing function (Liu et al. 2012)
and decision tree based function (Lin, Shen, and van den
Hengel 2015).

This paper attacks supervised hashing by concurrently
conducting visual feature engineering and hash function
learning. Most of existing image features are designated
for generic computer vision tasks. Intuitively, by unifying
these two sub-tasks in the same formulation, one can expect
the extracted image features to be more amenable for the
hashing purpose. Our work is inspired by recent prevalence
and success of deep learning techniques (Lecun et al. 1998;
Bengio 2009; Krizhevsky, Sutskever, and Hinton 2012).
Though the unreasonable effectiveness of deep learning has
been successfully demonstrated in tasks like image classi-
fication (Krizhevsky, Sutskever, and Hinton 2012) and face



analysis (Sun, Wang, and Tang 2014), deep learning for su-
pervised hashing still remains inadequately explored in the
literature.

Xia et al. (Xia et al. 2014) adopted a two-step hashing
strategy similar to (Lin, Shen, and van den Hengel 2015).
It firstly factorizes the data similarity matrix to obtain the
target binary code for each image. In the next stage, the
target codes and the image labels are jointly utilized to
guide the network parameter optimization. Since the tar-
get codes are not updated once approximately learned in
the first stage, the final model is only sub-optimal. Lai et
al. (Lai et al. 2015) developed a convolutional deep network
for hashing, comprised of shared sub-networks and a divide-
and-encode module. However, the parameters of these two
components are still separately learned. After the shared
sub-networks are initialized, their parameters (including all
convolutional/pooling layers) are frozen during optimiz-
ing the divide-and-encode module. Intrinsically, the method
in (Lai et al. 2015) shall be categorized to two-step hashing,
rather than simultaneous feature / hashing learning. Liong et
al. (Liong et al. 2015) presented a binary encoding network
built with purely fully-connected layers. The method essen-
tially assumes that the visual features (e.g., GIST as used
in the experiments therein) have been learned elsewhere
and fed into its first layer as the input. (Zhang et al. 2015;
Zhao et al. 2015) adopt deep networks for learning hash
functions in a supervised fashion. However, both methods
only support triplets as the source of supervision informa-
tion, which indicates less efficacy on large data.

The key contributions of this work include: 1) We propose
a novel deep hashing algorithm, which takes pairwise sim-
ilar/dissimilar pairs as inputs and performs concurrent fea-
ture and hash function learning over a unified network; 2)
We investigate the key pitfalls in designing such deep net-
works. Particularly, there are two major obstacles: the gradi-
ent calculation from non-differentiable binary hash codes,
and network pre-training in order to eventually stay at a
“good” local optimum. To address the first issue, we pro-
pose an exponentiated hashing loss function and devise its
bilinear smooth approximation. Effective gradient calcula-
tion and propagation are thereby enabled. Moreover, an ef-
ficient pre-training scheme is proposed and verified through
comprehensive evaluations on real-world visual data.

The proposed method establishes new performance
records on four image benchmarks which are widely used
in this research area. For instance, on the CIFAR10 dataset,
our method achieves a mean average precision of 0.73 for
Hamming ranking based image search, which represents
some drastic improvement compared with the state-of-the-
art methods (0.58 for (Lai et al. 2015) and 0.36 for (Liu et
al. 2012)).

The Proposed Method

Throughout this paper we will use bold symbols to denote
vectors or matrices, and italic ones for scalars unless oth-
erwise instructed. Suppose a data set X = {x1,...,X,}
with supervision information is provided as the input. Prior
works on supervised hashing have considered various forms
of supervision, including triplet of items (x,x", x~) where
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the pair (x,x") is more alike than the pair (x,x7) as
in (Mu, Shen, and Yan 2010; Lai et al. 2015), pairwise sim-
ilar/dissimilar relations as in (Liu et al. 2012) or specifying
the label of each sample. Observing that triplet-type super-
vision incurs tremendous complexity during hashing func-
tion learning and semantic-level sample labels can be effort-
lessly converted into pairwise relations, hereafter the discus-
sion focuses on supervision in pairwise fashion. Let S, D
collect all similar / dissimilar pairs respectively. For nota-
tional convenience, we further introduce a supervision ma-
trix Y € {—1,0,1}"*" as

1, (xi,x;)€S
Yi,j = _15 (Xiaxj) eD (1)
0, otherwise.

Figure 1 illustrates our proposed pipeline of learning a
deep convolutional network for supervised hashing. The
network is comprised of two components: a topmost layer
meticulously-customized for the hashing task and other con-
ventional layers. The network takes a p x g-sized images
with ¢ channels as the inputs. The K neurons on the top
layer output either -1 or 1 as the hash code. Formally, each
top neuron represents a hashing function hy (x) : RP*7%¢ —
{=1,1}, k = 1... K, where x denotes the 3-D raw image.
For notational clarity, let us denote the response vector on
the second topmost layer as z = ¢(x), where ¢(+) implicitly
defines the highly non-linear mapping from the raw data to
a specified intermediate layer.

For the topmost layer, we adopt a simple linear transfor-
mation, followed by a signum operation, which is formally
presented as

hi(x) = sign [w), z] = sign [w ¢(x)] . )

Exponentiated Code Product Optimization

The key purpose of supervised hashing is to elevate the im-
age search accuracy. The goal can be intuitively achieved
by generating discriminative hash codes, such that similar
data pairs can be perfectly distinguished from dissimilar
pairs according to the Hamming distances calculated over
the hash codes. A number of hashing loss functions have
been devised by using above design principal. In particular,
(Norouzi and Fleet 2011) proposed a hinge-like loss func-
tion. Critically, hinge loss is known to be non-smooth and
thus complicates gradient-based optimization. Two other
works in (Liu et al. 2012; Lin, Shen, and van den Hengel
2015) adopted smooth Ly loss defined on the inner product
between hash codes.

It largely remains unclear for designing optimal hashing
loss functions in perceptron-like learning. The major com-
plication stems from the discrete nature of hash codes, which
prohibits direct gradient computation and propagation as in
typical deep networks. As such, prior works have investi-
gated several tricks to mitigate this issue. Examples include
optimizing a variational upper bound of the original non-
smooth loss in (Norouzi and Fleet 2011), or simply com-
puting some heuristic-oriented sub-gradients in (Lai et al.
2015). In this work we advocate an exponential discrete loss
function which directly optimizes the hash code product and
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Figure 1: Illustration of our proposed deep network and the pre-training / fine-tuning process. Due to space limit, non-linear
activation layers are not plotted in the diagram. See text for more explanations.

enjoys a bilinear smoothed approximation. Compared with
other alternative hashing losses, here we first show the pro-
posed exponential loss arguably more amenable for mini-
batch based iterative update and later exhibit its empirical
superiority in the experiments.

Letb; = (h1(x;),...,hr(x;))" € {—1,1}¥ denote K
hash bits in vector format for data object x;. We also use the
notations b;(k), b;(\k) to stand for bit k of b, and the hash
code with bit k absent respectively. As a widely-known fact
in the hashing literature (e.g., (Liu et al. 2012)), code product
admits a one-to-one correspondence to Hamming distance
and comparably easier to manipulate. A normalized version
of code product ranging over [—1, 1] is described as

biob; = £ 35 bi(k)b;(k), 3)

and when bit £ is absent, the code product using partial hash
codes is

b;(\k) ob;(\k) = b; ob; — £b;(k)b; (k). “)

Exponential Loss: Given the observation that b; o b; faith-
fully indicates the pairwise similarity, we propose to mini-
mize an exponentiated objective function Q defined as the
accumulation over all data pairs:

&)

where 6 represents the collection of parameters in the deep
networks excluding the hashing loss layer. The atomic loss
term is

(0", w}) = argming v, Q = > bxin %),

Y ;(biob;) (6)

This novel loss function enjoys some elegant traits de-
sired by deep hashing compared with those in BRE (Kulis
and Darrell 2009), MLH (Norouzi and Fleet 2011) and
KSH (Liu et al. 2012). It establishes more direct connec-
tion to the hashing function parameters by maximizing the
correlation of code product and pairwise labeling. In com-
parison, BRE and MLH optimize the parameters by aligning
Hamming distance with original metric distances or enforc-
ing the Hamming distance larger/smaller than pre-specified
thresholds. Both formulations incur complicated optimiza-
tion procedures, and their optimality conditions are unclear.

0x;,x5) =e”
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KSH adopts a least-squares formulation for regressing code
product onto the target labels, where a smooth surrogate for
gradient computation is proposed. However, the surrogate
heavily deviates from the original loss function due to its
high non-linearity.

Gradient Computation: A prominent advantage of expo-
nential loss is its easy conversion into multiplicative form,
which elegantly simplifies the derivation of its gradient. For
presentation clarity, we hereafter only focus on the calcula-
tion conducted over the topmost hashing loss layer. Namely,
hi,(x) = sign [w), z] for bit k, where z = ¢(x) are the re-
sponse values at the second top layer and w, are parameters
to be learned forbit k (k =1,..., K).

Following the common practice in deep learning, two
groups of quantities 0Q/0wy, k = 1--- K and 0Q/0z;
(¢ ranges over the index set of current mini-batch) need to
be estimated on the hashing loss layer at each iteration.
The former group of quantities are used for updating wy,
k =1--- K, and the latter are propagated backwards to the
bottom layers. The additive algebra of hash code product in
Eqn. (3) inspires us to estimate the gradients in a leave-one-
out mode. For atomic loss in Eqn. (6), it is easily verified

— e Yij(bioby)

=Y i3 (bi(\k)ob; (\K))

where only the latter factor is related to wy,. Since the prod-
uct b;(k)b;(k) can only be -1 or 1, we can linearize the
latter factor through exhaustively enumerating all possible
values, namely

emwYraiBbs () — ¢ ;4 ol (bi(mbj(k)), (7)

where ¢; j, ¢} ; are two sample-specific constants, calculated
byc; = %(e*%Y”’ + B%Yi*j) and c;’j = %(e’%Yivi —
e%Yw). Since the hardness of calculating the gradient of
Eqn. (7) lies in the bit product b, (k)b;(k), we replace the
signum function using the sigmoid-shaped function o (x) =

1/(1 + exp(—x)), obtaining

E(Xl', Xj)
i (bi(k)b; (k))

—_lvy.
- e K 7, s

bi(k)b;(k) = sign(w) z;) - sign(w} z;)
= sign(wsziijwk)
~ 2- a(w,;rziijwk) —1. )



Algorithm 1 DeepHash Algorithm

1: Input: Training set X', data labels, and step size 7 > 0;

2: Output: network parameters wi, k = 1 - - - K for the hashing-
loss layer, and @ for other layers;
pre-training stage #1: initialize 6

3: Concatenate all layers (excluding top hashing-loss layer) with
a softmax layer that defines an image classification task;

4: Apply AlexNet (Krizhevsky, Sutskever, and Hinton 2012))
style supervised parameter learning algorithm, obtaining 6.

5: Calculate neuron responses on second topmost layer through
z = ¢(x;0);
pre-training stage #2: initialize wy

6: Replicate all z’s from previous stage;

7: while not converged do

8:  Forward computation starting from z;

9: fork=1to K do
10: Update wj, by minimizing the image classification error;
11:  end for
12: end while

simultaneous supervised fine-tuning

13: while not converged do

14:  Forward computation starting from the raw images;
15: fork =1to K do

16: Estimate 0Q/0wy o« 3°, ;1 U™ (z;,25) ) Own;
17: Update wi, < wy — 1 - 0Q/0wg;

18:  end for
19:  Estimate 0Q/0z; o« }_, oU*) (z;,2;) )0z, Vi
20:  Propagate 0Q/dz; to bottom layers, updating 6;
21: end while

Freezing the partial code product b;(\k) ob;(\k), we de-
fine an approximate atomic loss with only bits & active:

00 (x;,%;) 2 e~ Yia(bi(\k)ob;(\k)) . (cw. n
(2 a(w;—ziz;wk) — 1)), 9)

where the first factor e~ Y4 (Pi(\F)°b; (\K)) plays a role of re-
weighting specific data pair, conditioned on the rest K—1
bits. Iterating over all £’s, the original loss function can now
be approximated by

U(xiyx5) = = S 09 (x4, %;). (10)

Compared with other sigmoid-based approximations in
previous hashing algorithms (e.g., KSH (Liu et al. 2012)),
ours only requires |w,Iz7;z;-rwk| (rather than both |w/ z;]|
and ‘W;ZjD is sufficiently large. This bilinearity-oriented
relaxation is more favorable for reducing approximation er-
ror, which will be corroborated by the subsequent experi-
ments.

Since the objective Q in Eqn. (5) is a composition of
atomic losses on data pairs, we only need to instantiate the
gradient computation on specific data pair (x;,x;). Apply-
ing basic calculus rules and discarding some scaling factors,
we first obtain

8£(k) (Xi, Xj)

T

e~ Yii(bi(\k)ob; (\R)) | s
ow] ziz] wi,

2,7

. (1 — cr(w,jziijwk)) . J(wsziijwk),
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and further using calculus chain rule brings

B xivxg) Ok x5) 7y T
144 7

)Wk7

Owy, 8w,jziijwk
(%(k) (Xi,Xj) 8€(k) (Xi7Xj) T
0z; - aW];rZiZ;er (Wiwy 2)

Importantly, the formulas below obviously hold by the
construction of £%) (x;,x;):

") (x;. % ®)(x,; %
00 xixy) _ D0 X)) _ g ok g 4,5 (1)
8wk1 8zq

Gradient computations on other network layers simply
follow the regular calculus rules. We thus omit the introduc-
tion.

Two-Stage Supervised Pre-Training

Deep hashing algorithms (including ours) mostly strive to
optimize pairwise (or even triplet as in (Lai et al. 2015)) sim-
ilarity in Hamming space. This raises an intrinsic distinction
compared with conventional applications of deep networks
(such as image classification via AlexNet (Krizhevsky,
Sutskever, and Hinton 2012)). The total count of data pairs
quadratically increases with regard to the training sample
number, and in conventional applications the number of
atomic losses in the objective only linearly grows. This en-
tails a much larger mini-batch size in order to combat nu-
merical instability caused by under-sampling!, which unfor-
tunately often exceeds the maximal memory space on mod-
ern CPU/GPUs.

We adopt a simple two-stage supervised pre-training ap-
proach as an effective network pre-conditioner, initializing
the parameter values in the appropriate range for further
supervised fine-tuning. In the first stage, the network (ex-
cluding the hashing loss layer) is concatenated to a regular
softmax layer. The network parameters are learned through
optimizing the objective of a relevant semantics learning
task (e.g., image classification). After stage one is com-
plete, we extract the neuron outputs of all training samples
from the second topmost layer (i.e., the variable z’s in Sec-
tion ), feed them into another two-layer shallow network as
shown in Figure 1 and initialize the hashing parameters wy,
k = 1--- K. Finally, all layers are jointly optimized in a
fine-tuning process, minimizing the hashing loss objective
Q. The entire procedure is illustrated in Figure 1 and de-
tailed in Algorithm 1.

Experiments

This section reports the quantitative evaluations between our
proposed deep hashing algorithm and other competitors.

Description of Datasets: We conduct quantitative compar-
isons over four image benchmarks which represent differ-
ent visual classification tasks. They include MNIST (Le-
cun et al. 1998) for handwritten digits recognition, CI-
FAR10 (Krizhevsky 2009) which is a subset of 80 million

"For instance, a training set with 100,000 samples demands a
mini-batch of 1,000 data for 1% sampling rate in image classifica-
tion. In contrast, in deep hashing, capturing 1% pairwise similarity
requires a tremendous mini-batch of 10,000 data.



Dataset Train/Query Set #Class #Dim Feature
MNIST 50,000 / 10,000 10 500 CNN
CIFAR10 50,000 / 10,000 10 1,024 CNN
Kaggle-Face 315,799 /17,178 7 2,304 CNN
SUN397 87,003 /21,751 397 9,216 CNN

Table 1: Summary of the experimental benchmarks. Feature
dimensions correspond to the neurons on the second topmost
layer.

Tiny Images dataset and consists of images from ten ani-
mal or object categories, Kaggle-Face, which is a Kaggle-
hosted facial expression classification dataset to stimulate
the research on facial feature representation learning, and
SUN397 (Xiao et al. 2010) which is a large scale scene im-
age dataset of 397 categories. For all selected datasets, dif-
ferent classes are completely mutually exclusive such that
the similarity/dissimilarity sets as in Eqn. (1) can be calcu-
lated purely based on label consensus. Table 1 summarizes
the critical information of these experimental data, wherein
the column of feature dimension refers to the neurons on the
second topmost layers (i.e., dimensions of vector z).
Implementation and Model Specification: We have im-
plemented a substantially-customized version of the open-
source Caffe (Jia 2013). The proposed hashing loss layer is
patched to the original package and we also largely enrich
Caffe’s model specification grammar. Moreover, To ensure
that mini-batches more faithfully represent the real distribu-
tion of pairwise affinities, we re-shuffle the training set at
each iteration. This is approximately accomplished by skip-
ping the next few samples (parameterized by a random inte-
ger uniformly drawn from [0, 200]) in the image database af-
ter adding one into the mini-batch. We designate the network
layers for each dataset by referring to Caffe’s model zoo (Jia
2013). All network configuration information is provided in
the supplemental material.

Baselines and Evaluation Protocol: All the evaluations are
conducted on a large-scale private cluster, equipped with
12 NVIDIA Tesla K20 GPUs and 8 K40 GPUs. We re-
fer to the proposed algorithm as DeepHash. On the se-
lected benchmarks, DeepHash is compared against clas-
sic or state-of-the-art competing hashing schemes, includ-
ing unsupervised methods such as random projection-based
LSH (Charikar 2002), PCAH, SH (Weiss, Torralba, and Fer-
gus 2008), ITQ (Gong et al. 2013), and supervised methods
like LDAH (C. Strecha and Fua 2012), MLH (Norouzi and
Fleet 2011), BRE (Kulis and Darrell 2009), and KSH (Liu
et al. 2012). LSH and PCAH are evaluated using our own
implementations. For the rest aforementioned baselines,
we thank the authors for publicly sharing their code and
adopt the parameters as suggested in the original software
packages. Moreover, to make the comparisons comprehen-
sive, four previous deep hashing algorithms are also con-
trasted, denoted as DH-1 and DHx*-1 from (Xia et al. 2014),
DH-2 (Liong et al. 2015), DH-3 (Lai et al. 2015) and
DRSCH (Zhang et al. 2015). Since the authors do not share
the source code or model specifications, we instead cite their
reported accuracies under identical (or similar) experimental

2384

settings.

The performance of a hashing algorithm critically hinges
on the semantic discriminatory power of its input features.
Previous deep hashing works (Xia et al. 2014; Lai et al.
2015) use traditional hand-crafted features (e.g., GIST and
SIFT bag-of-words) for all baselines, which is not an opti-
mal setting for fair comparison with deep hashing. To rule
out the effect of less discriminative features, we strictly feed
all baselines (except for five deep hashing baseline algo-
rithms) with features extracted from some intermediate layer
of the corresponding networks used in deep hashing. Specif-
ically, after the first supervised pre-training stage in Algo-
rithm 1 is completed, we re-arrange the neuron responses on
the layer right below the hashing loss layer into vector for-
mats (namely the variable z’s) and feed them into baselines.

All methods share identical training and query sets. Af-

ter the hashing functions are learned on the training set, all
methods produce binary hash codes for the querying data re-
spectively. There exist multiple search strategies using hash
codes for image search, such as hash table lookup (An-
doni and Indyk 2008) and sparse coding style criterion (Lin,
Shen, and van den Hengel 2015). Following recent hash-
ing works, we only carry out Hamming ranking once the
hashing functions are learned, which refers to the process of
ranking the retrieved samples based on their Hamming dis-
tances to the query. Under Hamming ranking protocol, we
measure each algorithm using both mean-average-precision
(mAP) scores and precision-recall curves.
Investigation of Hamming Ranking Results: Table shows
the mAP scores for our proposed DeepHash algorithms
(with supervised pre-training and fine-tuning) and all base-
lines. Due to space limit, we defer more quantitative com-
parisons (such as the precision-recall curves) to the supple-
mental material. There are three key observations from these
experimental results that we would highlight:

1) On all datasets, our proposed DeepHash algorithm sig-
nificantly perform better than all baselines in terms of mAP.
For all non-deep-network based algorithm, KSH achieves
the best accuracies on MNIST, CIFAR10 and Kaggle-Face,
and ITQ shows top performances on SUN397. Using 48
hash bits, the best mAP scores obtained by KSH or ITQ
are 0.9817, 0.5482, 0.4132, and 0.0471 on MNIST / CI-
FARI10 / Kaggle-Face / SUN397 respectively. In compar-
ison, our proposed DeepHash performs nearly perfect on
MNIST (0.9938), and defeat KSH and ITQ by very large
margins, scoring 0.7410, 0.5615, and 0.1293 on other three
datasets respectively.

2) We also include five deep hashing algorithms by re-
ferring to the accuracies reported in the original publi-
cations. Recall that the evaluations in (Xia et al. 2014,
Lai et al. 2015) feed baseline algorithms with non-CNN fea-
tures (e.g., GIST). Interestingly, our experiments reveal that,
when conventional hashing algorithms take CNN features as
the input, the relative performance gain of prior deep hash-
ing algorithms becomes marginal. For example, under 48
hash bits, KSH’s mAP score 0.5482 is comparable with re-
gard to DH-3’s 0.581. We attribute the striking superiority
of our proposed deep hashing algorithm to the importance
of jointly conducting feature engineering and hash function



MNIST CIFAR10 Kaggle-Face SUN397
12bits 24 bits 48 bits | 12bits | 24 bits 48 bits | 12bits 24 bits 48 bits | 12bits 24 bits 48 bits
LSH 0.3717 | 0.4933 | 0.5725 | 0.1311 | 0.1619 | 0.2034 | 0.1911 | 0.2011 | 0.1976 | 0.0057 | 0.0060 | 0.0071
ITQ 0.7578 | 0.8132 | 0.8293 | 0.2711 | 0.2825 | 0.2909 | 0.2435 | 0.2513 | 0.2514 | 0.0268 | 0.0361 | 0.0471
PCAH 0.4997 | 0.4607 | 0.3641 | 0.2056 | 0.1867 | 0.1695 | 0.2169 | 0.2058 | 0.1991 | 0.0218 | 0.0261 | 0.0315
SH 0.5175 | 0.5330 | 0.4898 | 0.1935 | 0.1921 | 0.1750 | 0.2117 | 0.2054 | 0.2015 | 0.0210 | 0.0236 | 0.0273
LDAH 0.5052 | 0.3685 | 0.3093 | 0.2187 | 0.1794 | 0.1587 | 0.2154 | 0.2032 | 0.1961 | 0.0224 | 0.0262 | 0.0306
BRE 0.6950 | 0.7498 | 0.7785 | 0.2552 | 0.2668 | 0.2864 | 0.2414 | 0.2522 | 0.2587 | 0.0226 | 0.0293 | 0.0372
MLH 0.6731 | 0.4404 | 0.4258 | 0.1737 | 0.1675 | 0.1737 | 0.2000 | 0.2115 | 0.2162 | 0.0070 | 0.0100 | 0.0210
KSH 0.9537 | 0.9713 | 0.9817 | 0.3441 | 0.4617 | 0.5482 | 0.2862 | 0.3668 | 0.4132 | 0.0194 | 0.0261 | 0.0325
DH-1 0.957 0.963 0.960 | 0.439 | 0.511 0.522 — — — - — -
DHx-1 0.969 0.975 0.975 0.465 0.521 0.532 — — — - — —
DH-2 0.4675 | 0.5101 | 0.5250 | 0.1880 | 0.2083 | 0.2251 — — — — — —
DH-3 — — — | 0552 | 0.566 0.581 — — — — — —
DRSCH 0.9692 | 0.9737 | 0.9791 | 0.6246 | 0.6219 | 0.6305 - - - - - -
DeepHash || 0.9918 | 0.9931 | 0.9938 | 0.6874 | 0.7289 | 0.7410 | 0.5487 | 0.5552 | 0.5615 | 0.0748 | 0.1054 | 0.1293

Table 2: Experimental results in terms of mean-average-precision (mAP) under various hash bits. The mAP scores are calculated
based on Hamming ranking. Best scores are highlighted in bold. Note that the mAP scores are in the numerical range of [0, 1].
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We directly cite the performance In the table,

indicates the corresponding scores are not available. Refer to text for more

details.
MNIST CIFAR10 Kaggle-Face SUN397
12 bits 24 bits 48 bits | 12 bits 24 bits 48 bits | 12 bits 24 bits 48 bits | 12 bits 24 bits 48 bits
random init. || 0.9806 | 0.9862 | 0.9873 | 0.5728 | 0.6503 | 0.6585 | 0.4125 | 0.4473 | 0.4620 | 0.0211 | 0.0384 | 0.0360
pre-training 0.9673 | 09753 | 0.9796 | 0.4986 | 0.5588 | 0.5966 | 0.4282 | 0.4484 | 0.4589 | 0.0335 | 0.0430 | 0.0592
fine-tuning 0.9918 | 0.9931 | 0.9938 | 0.6874 | 0.7289 | 0.7410 | 0.5487 | 0.5552 | 0.5615 | 0.0748 | 0.1054 | 0.1293

Table 3: Comparisons of three strategies of parameter initialization and learning for the proposed DeepHash. See text for more

details.

learning (i.e., the fine-tuning process in Algorithm 1).

3) Elevating inter-bit mutual complementarity is overly
crucial for the final performance. For those methods that
generate hash bits independently (such as LSH) or by en-
forcing performance-irrelevant inter-bit constraints (such as
LDAH), the mAP scores only show slight gains or even drop
when increasing hash code length. Among all algorithms,
two code-product oriented algorithm, KSH and our pro-
posed DeepHash, show steady improvement by using more
hash bits. Moreover, our results also validate some known
insights exposed by previous works, such as the advantage
of supervised hashing methods over the unsupervised alter-
natives.

Effect of Supervised Pre-Training: We now further high-
light the effectiveness of the two-stage supervised pre-
training process. To this end, in Table we show the mAP
scores achieved by three different strategies of learning the
network parameters. The scheme “random init.” refers to ini-
tializing all parameters with random numbers without any
pre-training. A typical supervised gradient back-propagation
procedure as in AlexNet (Krizhevsky, Sutskever, and Hinton
2012) is then used. The second scheme ““pre-training” refers
to initializing the network using two-stage pre-training in
Algorithm 1, without any subsequent fine-tuning. It serves
as an appropriate baseline for assessing the benefit of the
fine-tuning process as in the third scheme “fine-tuning”. In
all cases, the learning rate in gradient descent drops at a con-
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stant factor (0.1 in all of our experiments) until the training
converges.

There are two major observations from Table . First, si-
multaneous tuning all the layers (including the hashing loss
layer) often significantly boosts the performance. As a key
evidence, “random init.”” demonstrates prominent superior-
ity on MNIST and CIFAR10 compared with “pre-training”.
The joint parameter tuning of “random init.” is supposed to
compensate the low-quality random parameter initialization.
Secondly, positioning the initial solution near a “good” local
optimum is crucial for learning on challenging data. For ex-
ample, the dataset of SUN397 has as many as 397 unique
scene categories. However, due to the limitation of GPU
memory, even a K40 GPU with 12GB memory only support
a mini-batch of 600 samples at maximum. State differently,
each mini-batch only comprises 1.5 samples per category on
average, which results in a heavily biased sampling. We at-
tribute the relatively low accuracies of “random init.” to this
issue. In contrast, training deep networks with supervised
pre-training and fine-tuning (i.e., the third scheme in Table )
exhibit robust performances over all datasets.

Concluding Remarks

We accredit the success of deep hashing to the joint fea-
ture / hash function learning, and a novel exponential loss
function whose approximation in Eqn. (10) excellently fits
the mini-batch based optimization. To combat the under-



sampling issue during training, we introduce two-stage su-
pervised pre-training and validate its effectiveness by com-
parisons. Our comprehensive quantitative evaluations con-
sistently demonstrate the power of deep hashing for the data
hashing task. The proposed algorithm enjoys both scalability
to large training data and millisecond-level testing time for
processing a new image. We thus believe that deep hashing
is promising for efficiently analyzing visual big data.
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