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Abstract

Optimal transport is a powerful framework for computing
distances between probability distributions. We unify the
two main approaches to optimal transport, namely Monge-
Kantorovitch and Sinkhorn-Cuturi, into what we define as
Tsallis regularized optimal transport (TROT). TROT inter-
polates a rich family of distortions from Wasserstein to
Kullback-Leibler, encompassing as well Pearson, Neyman
and Hellinger divergences, to name a few. We show that
metric properties known for Sinkhorn-Cuturi generalize to
TROT, and provide efficient algorithms for finding the optimal
transportation plan with formal convergence proofs. We also
present the first application of optimal transport to the prob-
lem of ecological inference, that is, the reconstruction of joint
distributions from their marginals, a problem of large interest
in the social sciences. TROT provides a convenient framework
for ecological inference by allowing to compute the joint dis-
tribution — that is, the optimal transportation plan itself —
when side information is available, which is e.g. typically
what census represents in political science. Experiments on
data from the 2012 US presidential elections display the po-
tential of TROT in delivering a faithful reconstruction of the
joint distribution of ethnic groups and voter preferences.

1 Introduction

Optimal transport (OT) allows to compare probability distri-
butions by exploiting the underlying metric space on their
supports (Kantorovitch 1958; Monge 1781). A number of
prominent applications allow for a natural definition of this
underlying metric space, from image processing (Rubner,
Tomasi, and Guibas 2000) to natural language processing
(Kusner et al. 2015) and computer graphics (Solomon et al.
2015).

One key problem of OT is its processing complexity —
cubic in the support size, ignoring low order terms (on state
of the art LP solvers (Cuturi 2013)). Moreover, the optimal
transportation plan has often many zeroes, which is not de-
sirable in some applications. An important workaround was
found and consists in penalizing the transport cost with a
Shannon entropic regularizer (Cuturi 2013). At the price of
changing the transport distance, for a distortion with met-
ric related properties, comes an algorithm with geometric
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convergence rates (Cuturi 2013; Franklin and Lorenz 1989).
As a result, we can picture two separate approches to OT:
one essentially relies on the initial Monge-Kantorovitch for-
mulation optimizing the transportation cost itself (Villani
2009), but is computationally expensive; the other is based
on tweaking the transportation cost by Shannon regularizer
(Cuturi 2013). The corresponding optimization algorithm,
grounded in a variety of different works (Csiszár 1989;
Sinkhorn 1967; Soules 1991), is fast and can be very effi-
ciently parallelized (Cuturi 2013).

Our paper brings three contributions. (i) We interpolate
these two worlds using a family of entropies celebrated in
nonextensive statistical mechanics, Tsallis entropies (Tsal-
lis 1988), and hence we define the Tsallis regularized opti-
mal transport (TROT). We show that the metric properties
for Shannon entropy still hold in this more general case,
and prove new properties that are key to our application.
(ii) We provide efficient optimization algorithms to compute
TROT and the optimal transportation plan. (iii) Last but not
least, we provide a new application of TROT to a field in
which this optimal transportation plan is the key unknown:
the problem of ecological inference.

Ecological inference deals with recovering information
from aggregate data. It arises in a diversity of applied fields
such as econometrics (Cross and Manski 2002; Cho and
Manski 2008), sociology and political science (King 1997;
King, Tanner, and Rosen 2004) and epidemiology (Wake-
field and Shaddick 2006), with a long history (Robin-
son 1950); interestingly, the empirical software engineering
community has also explored the idea (Posnett, Filkov, and
Devanbu 2011). Its iconic application is inferring electorate
behaviour: given turnout results for several parties and pro-
portions of some population strata, e.g. percentages of ethnic
groups, for many geographical regions such as counties, the
aim is to recover contingency tables for parties × groups for
all those counties. In the language of probability the prob-
lem is isomorphic to the following: given two random vari-
ables and their respective marginal distributions — condi-
tioned to another variable, the geography —, compute their
conditional joint distribution (See Figure 1).

The problem is fundamentally under-determined and any
solution can only either provide loose deterministic bounds
(Duncan and Davis 1953; Cross and Manski 2002; Cho and
Manski 2008) or needs to enforce additional assumptions
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Figure 1: Top: suppose we know (in grey) marginals for the
US presidential election (topmost row) and ethnic break-
downs in the US population (leftmost column). Can we
recover an estimated joint distribution (white cells) ? If
side information is available such as individual level cen-
sus data (bottom, as depicted on a Hilbert manifold with
φ-coordinates), then distances can be computed within the
supports (dashed red), and optimal transport can provide an
estimation of the joint distribution.

and prior knowledge on the data domain (King 1997). More
recently, the problem has witnessed a period of renaissance
along with the publication of a diversity of methods from the
second family, mostly inspired by distributional assumptions
as summarised in (King, Tanner, and Rosen 2004). Closer
to our approach, (Judge, Miller, and Cho 2004) follows the
road of a minimal subset of assumptions and frame the in-
ference as an optimization problem. The method favors one
solution according to some information-theoretic solution,
e.g. the Cressie-Read power divergence, intended as an en-
tropic measure of the joint distribution.

There is an intriguing link between optimal transport and
ecological inference: if we can figure out the computation of
the ground metric, then the optimal transportation plan pro-
vides a solution to the ecological inference problem. This is
appealing because it ties the computation of the joint distri-
bution to a ground individual distance between people. Fig-
ure 1 gives an example. As recently advocated in ecological
inference (Flaxman, Wang, and Smola 2015), it turns out
that we have access to more and more side information that
helps to solve ecological inference — in our case, the com-
putation of this ground metric. Polls, census, social networks
are as many sources of public or private data that can be of
help. It is not our objective to show how to best compute the
ground metric, but we show an example on real world data
for which a simple approach gives very convincing results.

To our knowledge, there is no former application of op-
timal transport (regularized or not) to ecological inference.
The closest works either assume that the joint distribution
follows a random distribution constrained to structural or
marginal constraints (Forcina and Marchetti 2011) (and ref-
erences therein) or modify the constraints to the marginals
and / or add constraints to the problem (Donoso, Marı́n, and
Vila 2005). In all cases, there is no ground metric (or any-

thing that looks like a cost) among supports that ties the
computation of the joint distribution. More importantly, as
noted in (Flaxman, Wang, and Smola 2015), traditional eco-
logical inference would not use side information of the kind
that would be useful to estimate our ground metric.

This paper is organized as follows. In Section § 2, we
present the main definitions for OT. § 3 presents TROT and its
geometric properties. § 4 presents the algorithms to compute
TROT and the optimal transportation plan, and their proper-
ties. § 5 details experiments. A last Section concludes with
open problems. All proofs, related comments, and some ex-
periments are deferred to a Supplementary Material (Muzel-
lec et al. 2017).

2 Basic definitions and concepts
In the following, we let �n

.
= {x ∈ R

n
+ : x�1 = 1}

denote the probability simplex (bold faces like x denote
vectors). 〈P,Q〉 .

= vec(P )�vec(Q) denotes Frobenius
product (vec(.) is the vectorization of a matrix). For any
two r, c ∈ �n, we define their transportation polytope
U(r, c)

.
= {P ∈ R

n×n
+ : P1 = r, P�1 = c}. For any cost

matrix M ∈ R
n×n, the transportation distance between r

and c as the solution of the following minimization problem:
dM (r, c)

.
= min

P∈U(r,c)
〈P,M〉 . (1)

Its argument, P � .
= argminP∈U(r,c)〈P,M〉 is the (optimal)

transportation plan between r and c. Assuming M �= 0, P �

is unique. Furthermore, if M is a metric matrix, then dM is
also a metric (Villani 2009, §6.1).

In current applications of optimal transport, the key un-
known is usually the distance dM (Cuturi 2013; Cuturi
and Doucet 2014; Genevay et al. 2016; Qian et al. 2016;
Solomon et al. 2015) (etc). In the context of ecological
inference (Judge, Miller, and Cho 2004), it is rather P �:
P � describes a joint distribution between two discrete ran-
dom variables R and C with respective marginals r and c,
p�ij = Pr(R = ri ∧ C = cj), for example the support of R
being the votes for year Y US presidential election, and C
being the ethnic breakdown in the US population in year Y ,
see Figure 1. In this case, p�ij denotes an ”ideal” joint dis-
tribution of votes within ethnicities, ideal in the sense that it
minimizes a distance based on the belief that votes correlate
positively with a similarity between an ethnic profile and a
party’s profile. While we will carry out most of our theory
on formal transportation grounds, requiring in particular that
M be a distance matrix, it should be understood that requir-
ing just ”correlation” alleviates the need for M to formally
be a distance for ecological inference.

3 Tsallis Regularized Optimal Transport
For any p ∈ R

n
+, q ∈ R, the Tsallis entropy of p, Hq(p) is:

Hq(p)
.
=

1

1− q
·
∑
i

(pqi − pi) , (2)

and for any P ∈ R
n×n
+ , we let Hq(P )

.
= Hq(vec(P )).

Notably, we have limq→1 Hq(p) = −∑
i pi ln pi

.
= H1(p),

which is just Shannon’s entropy. For any λ > 0, we define
the Tsallis Regularized Optimal Transport (TROT) distance.
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Figure 2: Example of optimal TROT transportation plans
(grey levels) for two marginals (blue), with different val-
ues of q (in K1/q , Cf Lemma 2) that corresponds to square
Hellinger, Kullback-Leibler and Pearson’s χ2 divergence
(top to bottom, conventions follow (Solomon et al. 2015)).

Definition 1 The TROT(q, λ,M ) distance (or TROT dis-
tance for short) between r and c is:

dλ,qM (r, c)
.
= min

P∈U(r,c)
〈P,M〉 − 1

λ
·Hq(P ) . (3)

A simple yet important property is that TROT distance uni-
fies both usual modalities of optimal transport. It generalizes
optimal transport (OT) when q → 0, since Hq converges
to a constant and so the OT-distance is obtained up to a
constant additive term (Kantorovitch 1958; Monge 1781). It
also generalizes the regularized optimal transport approach
of (Cuturi 2013) since limq→1 d

λ,q
M (r, c) = dλM (r, c), the

Sinkhorn distance between r and c (Cuturi 2013). There are
several important structural properties of dλ,qM that motivate
the unification of both approaches. To state them, we respec-
tively define the q-logarithm,

logq(x)
.
= (1− q)−1 · (x1−q − 1) , (4)

the q-exponential, expq(x)
.
= (1 + (1 − q) · x)1/(1−q) and

Tsallis relative q-entropy between P,R ∈ R
n×n
+ as:

Kq(P,R)
.
=

1

1− q
·
∑
i,j

(
qpij + (1− q)rij − pqijr

1−q
ij

)
.(5)

Taking joint distribution matrices P,R and q → 1 allows to
recover the natural logarithm, the exponential and Kullback-
Leibler (KL) divergence, respectively (Amari 2016). Other
notable examples include (i) Pearson’s χ2 statistic (q = 2),
(ii) Neyman’s statistic (q = −1), (iii) square Hellinger dis-
tance (q = 1/2) and the reverse KL divergence if scaled ap-
propriately by q (Judge, Miller, and Cho 2004), which also
allows to span Amari’s α divergences for α = 1−2q (Amari

2016). For any function f : R → R, denoting f(P ) for ma-
trix P as the matrix whose general term is f(pij).

Lemma 2 Let Ũ .
= expq(−1) exp−1

q (λM). Then:

dλ,qM (r, c) =
1

λ
· min
P∈U(r,c)

K1/q(P
q, Ũ q) + g(M) ,(6)

where g(M)
.
= (1/λ) · 〈Ũ q, 1〉 does not play any role in the

minimization of K1/q(.‖.).
Lemma 2 shows that the TROT distance is a divergence in-
volving escort distributions (Amari 2016, § 4), a particular-
ity that disappears in Sinkhorn distances since it becomes an
ordinary KL divergence between distributions. Predictably,
the generalization is useful to create new solutions to the reg-
ularized optimal transport problem that are not captured by
Sinkhorn distances (solution refers to (optimal) transporta-
tion plans, i.e. the argument of the min in eq. (3)).

Theorem 3 Let SM,q(r, c) denote the set of solutions of eq.
(3) when λ ranges over R

+. Then ∀q, q′ such that q �= q′,
SM,q(r, c) �= SM,q′(r, c).

Figure 2 provides examples of solutions. Adding the free pa-
rameter q is not just interesting for the reason that we bring
new solutions to the table: (1/q) · Kq(p, r) turns out to be
Cressie-Read Power Divergence (for q = λ + 1, (Judge,
Miller, and Cho 2004)), and so TROT has an applicability
in ecological inference that Sinkhorn distances alone do not
have. In addition, we also generalize two key facts already
known for Sinkhorn distances (Cuturi 2013). First, the so-
lution to TROT is unique (for q �= 0) and satisfies a simple
analytical expression amenable to convenient optimization.

Theorem 4 There exists exactly one matrix P ∈ U(r, c)
solution to TROT(q, λ,M ). It satisfies:

pij = expq(−1) exp−1
q (αi + λmij + βj) , ∀i, j .(7)

(α,β ∈ R
n are unique up to an additive constant).

Second, we can tweak TROT to meet distance axioms. Let

dM,α,q(r, c)
.
= min

P∈U(r,c)
Hq(P )−Hq(r)−Hq(c)≥α

〈P,M〉 , (8)

where α ≥ 0. For any M, r, c, λ ≥ 0, ∃α ≥ 0 such that
dM,α,q(r, c) = dλ,qM (r, c). Also, the following holds.

Theorem 5 For q ≥ 1, α ≥ 0 and if M is a metric matrix,
function (r, c) → {r �=c}dM,α,q(r, c) is a distance.

Theorem 5 is a generalization of (Cuturi 2013, Theorem 1)
(for q = 1). As we explain more precisely in the supplement
(Muzellec et al. 2017), there is a downside to using dM,α,q as
proof of the good properties of dλ,qM : the triangle inequality,
key to Euclidean geometry, transfers to dλ,qM with varying
and uncontrolled parameters — in the inequality, the three
values of λ may all be different! This does not break down
the good properties of dλ,qM , it just calls for workarounds. We
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now give one, which replaces dM,α,q by the quantity (β ∈ R

is a constant):

dλ,q,βM (r, c)
.
= dλ,qM (r, c) +

β

λ
· (Hq(r) +Hq(c)) .(9)

This has another trivial advantage that dM,α,q does not have:
the solutions (optimal transportation plans) are always the
same on both sides. Also, the right-hand side is lower-
bounded for any r, c and the trick that ensures the identity
of the indiscernibles still works on dλ,q,βM . The good news is
that if q = 1, dλ,q,βM , as is, can satisfy the triangle inequality.

Theorem 6 dλ,1,βM satisfies the triangle inequality, ∀β ≥ 1.

Hence, the solutions to dλ,1M are optimal transport plans for
distortions that meet the triangle inequality. This is new
compared to (Cuturi 2013). For a general q ≥ 1, the proof, in
the supplement (Muzellec et al. 2017), shows more, namely
that dλ,q,1/2M satisfies a weak form of the identity of the in-
discernibles. Finally, there always exist a value β ≥ 0 such
that dλ,q,βM is non negative (dλ,q,βM is lowerbounded ∀β ≥ 0).

4 Efficient TROT optimizers

The key idea behind Sinkhorn-Cuturi’s solution is that the
KKT conditions ensure that the optimal transportation plan
P � satisfies P � = diag(u) exp(−λM)diag(v). Sinkhorn’s
balancing normalization can then directly be used for a fast
approximation of P � (Sinkhorn 1967; 1964). This trick does
not fit at first sight for Tsallis regularization because the
q-exponential is not multiplicative for general q and KKT
conditions do not seem to be as favorable. We give however
workarounds for the optimization, that work for any q ∈ R+.

First, we assume wlog that q �= 0, 1 since in those cases,
any efficient LP solver (q = 0) or Sinkhorn balancing nor-
malization (q = 1) can be used. The task is non trivial be-
cause for q ∈ (0, 1), the function minimized in dλ,qM is not
Lipschitz, which impedes the convergence of gradient meth-
ods. In this case, our workaround is Algorithm 1 (SO–TROT),
which relies on a Second Order approximation of a fun-
damental quantity used in its convergence proof, auxiliary
functions (Della Pietra, Della Pietra, and Lafferty 1997).

Theorem 7 (Convergence of SO–TROT) For any fixed q ∈
(0, 1), matrix P output by SO–TROT converges to P � with:

P � = arg min
P∈R

n×n
+ :P1=r

K1/q(P
q, Ũ q) .

The proof (in the supplement (Muzellec et al. 2017)) is in-
volved but interesting in itself because it represents one of
the rare uses of the theory of auxiliary functions outside the
realm of Bregman divergences in machine learning (Collins,
Schapire, and Singer 2002; Della Pietra, Della Pietra, and
Lafferty 1997). Some important remarks should be made.
First, since SO–TROT uses only one of the two marginal con-
straints, it would need to be iterated (”wrapped”), swapping
the row and column constraints like in Sinkhorn balancing.

Algorithm 1 Second Order Row–TROT (SO–TROT)
Input: marginal r, matrix M , params λ ∈ R+∗, q ∈ (0, 1)

1: A ← λM
2: P ← expq(−1) exp−1

q (A)
3: repeat
4: P1 ← P�A,P2 ← P1�A //� = Kronecker divide
5: d ← r − P1, b ← P11,a ← (2− q)P21
6: for i = 1, 2, ..., n
7: if di ≥ 0 then

8: yi ← −bi+
√

b2i+4aidi

2ai

9: else
10: yi ← di/bi
11: end if
12: if |yi| > q

(6−4q)·maxj p1−q
ij

then

yi ← q · sign(ri −
∑

j pij)

(6− 4q) ·maxj p
1−q
ij

. (10)

13: A ← A− y1�
14: P ← expq(−1) exp−1

q (A)
15: until convergence
Output: P

In practice, this is not efficient. Furthermore, iterating SO–
TROT over constraint swapping does not necessarily con-
verge. For these reasons, we swap constraints in the algo-
rithm, making one iteration of Steps 4-14 over rows, and
then one iteration of Steps 4-14 over columns (this boils
down to transposing matrices in SO–TROT), and so on. This
converges, but still is not the most efficient. To improve ef-
ficiency we perform two modifications, that do not impede
convergence experimentally. First, we remove Step 12. In
doing so, we not only save O(n2) computations for each
outer loop, we essentially make SO–TROT as parallelizable
as Sinkhorn balancing (Cuturi 2013). Second, we remarked
experimentally that convergence is faster when multiplying
yi by 2 in Step 10, and dividing a by 2 in Step 5.

For simplicity, we still refer to this algorithm (balancing
constraints in the algorithm, with the modifications for Steps
5, 10, 12) as SO–TROT in the experiments.

Last, when q ≥ 1, the function minimized in dλ,qM be-
comes Lipschitz. In this case, we take the particular ge-
ometry of U(r, c) into account by using mirror gradient
methods, which are equivalent to gradient methods pro-
jected according to some suitable divergence (Beck and
Teboulle 2003). In our case, we consider Kullback-Leibler
divergence, which can save a factor O(n/

√
log n) itera-

tions (Beck and Teboulle 2003). Furthermore, the Kullback-
Leibler projection can be written in terms of Sinkhorn-
Knopp’s (SK) algorithm with marginals constraints r, c
(Sinkhorn and Knopp 1967), as is shown in Algorithm 2,
named KL–TROT (⊗ is Kronecker product).

Theorem 8 If q > 1 and the gradient steps {tk} are s.t.∑
k tk → ∞ and

∑
k t

2
k � ∞, matrix P output by KL–
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Algorithm 2 KL Projected Gradient –TROT (KL–TROT)

Input: Marginals r, c, Matrix Ũ , Gradient steps {tk}
1: P (0) ← Ũ
2: repeat
3: P (k+1) ← SK(P (k) ⊗ exp(−tk∇f(P (k))), r, c)
4: until convergence

TROT converges to P � with:

P � = arg min
P∈U(r,c)

K1/q(P
q, Ũ q) .

(proof omitted, follows (Beck and Teboulle 2003; Sinkhorn
and Knopp 1967))

5 Experiments

We evaluate empirically the TROT framework with its ap-
plication to ecological inference. The dataset we use de-
scribes about 10 millions individual voters from Florida for
the 2012 US presidential elections, as obtained from (Imai
and Khanna 2016). The data is much richer than is required
for ecological inference: surely we could estimate the joint
distribution of every voters’ available attributes by counting.
This is itself a particularly rare case of data quality in politi-
cal science, where any analysis is often carried out on aggre-
gate measurements. In fact, since ground truth distributions
are effectively available, the Florida dataset has been used to
test methodological advances in the field (Flaxman, Wang,
and Smola 2015; Imai and Khanna 2016). As a demonstra-
tive example, we focus on inferring the distributions of eth-
nicity and party for all Florida counties.

Dataset description and preprocessing. The data contains
the following attributes for each voter: location (district,
county), gender, age, party (Democrat, Republican, Other),
ethnicity (White, African-american, Hispanic, Asian, Na-
tive, Other), 2008 vote (yes, no). About 800K voters with
missing attributes are excluded from the study. Thanks to the
richness of the data, marginal probabilities of ethnic groups
and parties can be obtained by counting: for each county we
obtain marginals r, c for the optimal transport problems.

Evaluation assumptions. Two assumptions are made in
terms of information available for inference. First, the
ground truth joint distributions for one district are known;
we chose district number 3 which groups 9 out of 68 coun-
ties of about 285K voters in total. This information will be
used to tune hyper-parameters. Second, a cost matrix M RBF

is computed based on mean voter’s attributes at state level.
For the sake of simplicity, we retain only age (normalized
in [0, 1]), gender and the 2008 vote; notice that in practice
geographical attributes may encode relevant information for
computing distances between voter behaviours (Flaxman,
Wang, and Smola 2015). We do not use this. For distance
matrix M RBF, we aggregate those features over all Florida for
each party to obtain the vectors μp of the party’s expected
profile and for each ethnic group to obtain the vectors μe of
the ethnicity’s expected profile. The dissimilarity measure

party
ethnicity

white afro. hispanic asian native other

Democrat 0.29 0.38 0.55 0.55 0.37 0.57

Republican 0.18 0.63 0.76 0.84 0.54 0.72

Other 0.74 0.62 0.27 0.24 0.41 0.23

Table 1: Visualization of the cost matrix as M : small values
indicate high similarity. Highest similarity: (white, Republi-
can); lowest similarity: (asian, Republican) followed by (his-
panic, Republican).

Algorithm M q λ KL-divergence ± SD Abs. error ± SD

Florida-Average - - - 0.251 ± 0.187 0.025 ± 0.011

Simplex MRBF - - 0.280 ± 0.108 0.023 ± 0.008

Simplex M sur - - 0.136 ± 0.098 0.013 ± 0.009

Sinkhorn MRBF 1.0† 100 0.054 ± 0.036 0.009 ± 0.005

Sinkhorn M sur 1.0† 101 0.035 ± 0.027 0.007 ± 0.004

TROT MRBF 1.0 100 0.054 ± 0.036 0.009 ± 0.005

TROT M sur 2.8 101 0.007 ± 0.009 0.003 ± 0.002

TROT Mno 0.8 100 0.076 ± 0.048 0.011 ± 0.005

Table 2: Average KL-divergence and absolute error with
standard deviation (SD) of algorithms inferring joint distri-
butions of all Florida counties. Parameters noted with † are
not cross-validated but defined by the algorithm.

relies on a Gaussian kernel between average county profiles:

mRBF
ij

.
=

√
2− 2 exp(−γ · ‖μp

i − μe
j‖2) , (11)

with γ = 10. The given function is actually the Hilbert met-
ric in the RBF space. Table 1 shows the resulting cost matrix.
Notice how it does encode some common-sense knowledge:
White and Republican is the best match, while Hispanic and
Asians are the worst match with Republican profiles. It is
rather surprising that only 3 features such as age, gender and
whether people voted at the last election can reflect so well
those relative political traits; these results are indeed much
in line with survey-based statistics (Gallup 2013). We also
try another cost matrix M , M sur, derived from the ID pro-
portions of parties composition given in (Gallup 2013); msur

ij
is computed as 1−pij , where pij is the proportion of people
registered to party j belonging to ethnic group i. Finally, we
consider a ”no prior” matrix M no, in which mno

ij = 1, ∀i, j.
Cross-validation of q. We study the solution of TROT for a

grid of λ ∈ [0.01, 1000], q ∈ [0.5, 4], inferring the joint dis-
tributions of all counties of district number 3. We measure
average KL-divergence between inferred and ground truth
joint distributions. Notice that each county defines a different
optimal transport problem; inferring the joint distributions
for multiple counties at a time is therefore trivial to paral-
lelize. This is somewhat counter-intuitive since we may be-
lieve that geographically wider spread data should improve
inference at a local level, that is, more data better inference.
Indeed, the implicit coupling of the problem is represented
by cost matrix, which expresses some prior knowledge of
the problem by means of all data from Florida.

Baselines and comparisons with other methods. To eval-
uate quantitatively the solution of TROT is useful to de-

2391



fine a set of baseline methods: i) Florida-average, which
the same state-level joint distribution (assumed prior knowl-
edge) for each of the 67 county; ii) Simplex, that is the solu-
tion of optimal transport with no regularization as given by
the Simplex algorithm; iii) Sinkhorn(-Cuturi)’s algorithm,
which is TROT with q = 1; iv) TROT. ii-iv are tested with
M ∈ {M RBF,M sur}, and we provide in addition the re-
sults for TROT with M = M no. Hyper-parameters are cross-
validated independently for each algorithm.

Table 2 reports a quantitative comparison. From the most
general to the most specific, there are three remarks to make.
First, optimal transport can be (but is not always) better
than the default distribution (Florida average). Second, regu-
larizing optimal transport consistently improves upon these
baselines. Third, TROT successfully matches Sinkhorn’s ap-
proach when q = 1 is be the best solution in TROT’s range of
q (M = M RBF), and manages to tune q to significantly beat
Sinkhorn’s when better alternatives exist: with M = M sur,
TROT divides the expected KL divergence by more than
seven (7) compared to Sinkhorn. This is a strong advo-
cacy to allow for the tuning of q. Notice that in this case,
λ is larger compared to M = M RBF, which makes sense
since M = M sur is more accurate for the optimal trans-
port problem (see the Simplex results) and so the weight of
the regularizer predictably decreases in the regularized opti-
mal transport distance. We conjecture that M = M sur beats
M = M RBF in part because it is somehow finer grained:
M RBF is computed from sufficient statistics for the marginals
alone, while M sur exploits information computed from the
cartesian product of the supports. Figure 3 compares all 1
836 inferred probabilities (3× 6 per county) with respect to
the ground truth for Sinkhorn vs TROT using M = M sur.
Remark that the figures in Table 2 translate to per-county
ecological inference results that are significantly more in fa-
vor of TROT, which basically has no ”hard-to-guess” coun-
ties compared to Sinkhorn for which the absolute difference
between inference and ground truth can exceed 10%.

To finish up, additional experiments, displayed in the sup-
plement (Muzellec et al. 2017) also show that TROT with
M = M sur manages to have a distribution of per county er-
rors extremely peaked around zero error, compared to the
simplest baselines (Florida average and TROT with M =
M no). These are good news, but there are some local dis-
crepancies. For example, there exists one county on which
TROT with M = M sur is beaten by TROT with M = M no.

6 Discussion and conclusion

In this paper, we have bridged Shannon regularized opti-
mal transport and unregularized optimal transport, via Tsal-
lis entropic regularization. There are three main motivations
to the generalization, the two first have already been dis-
cussed: TROT allows to keep the properties of Sinkhorn
distances, and fields like ecological inference bring natu-
ral applications for the general TROT family. The applica-
tion to ecological inference is also interesting because the
main unknown is the optimal transportation plan and not
necessarily the transportation distance obtained. The third
and last motivation is important for applications at large

Figure 3: Correlation between TROT vs Sinkhorn inferred
probabilities and ground truth for all Florida counties (the
closer to y = x, the better).

and ecological inference in particular. TROT spans a sub-
set of f -divergences, and f -divergences satisfy the infor-
mation monotonicity property that coarse graining does not
increase the divergence (Amari 2016, § 3.2). Furthermore,
f -divergences are invariant under diffeomorphic transfor-
mations (Qiao and Minematsu 2010, Theorem 1). This is a
powerful statement: if the ground metric is affected by such
a transformation h (for example, we change the underlying
manifold coordinate system, e.g. for privacy reasons), then,
from the optimal TROT transportation plan P �, the trans-
portation plan corresponding to the initial coordinate system
can be recovered from the sole knowledge of h−1.

The algorithms we provide allow for the efficient opti-
mization of the regularized optimal transport for all values
of q ≥ 0, and include notable cases for which conventional
gradient-based approaches would probably not be the best
approaches due to the fact that the function to optimize is not
Lipschitz for the q chosen. In fact, the main notable down-
side of the generalization is that we could not prove the same
(geometric) convergence rates as the ones that are known
for Sinkhorn’s approach (Franklin and Lorenz 1989). This is
an important avenue for future work, as recent related work
on generalizations of regularized optimal transport (Dessein,
Papadakis, and Rouas 2016) also remain far from such rates
— our second order approximation of the auxiliary function
for the convergence proof should provide an uplift for better
convergence rates (Muzellec et al. 2017) than just linear or
quadratic (Dessein, Papadakis, and Rouas 2016) .

Our results display that there can be significant discrep-
ancies in the regularized optimal transport results depend-
ing on how cost matrix M is crafted, yet the information
we used for our best experiments is readily available from
public statistics (matrices M RBF,M sur). Even the instantia-
tion without prior knowledge (M = 11�) does not strictly
fail in returning useful solutions (compared e.g. to Florida
average and unregularized optimal transport). This may be
a strong advocacy to use TROT even on domains for which
little prior knowledge is available.
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