Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Compressed K-Means for Large-Scale Clustering

Xiaobo Shen, Weiwei Liu,’ Ivor Tsang,! Fumin Shen,’ Quan-Sen Sun*
¥School of Computer and Engineering, Nanjing University of Science and Technology
iCentre for Artificial Intelligence, University of Technology Sydney
“School of Computer Science and Engineering, University of Electronic Science and Technology of China
{njust.shenxiaobo, liuweiwei863, fumin.shen} @ gmail.com, ivor.tsang @uts.edu.au, sunquansen @njust.edu.cn

Abstract

Large-scale clustering has been widely used in many ap-
plications, and has received much attention. Most existing
clustering methods suffer from both expensive computation
and memory costs when applied to large-scale datasets. In
this paper, we propose a novel clustering method, dubbed
compressed k-means (CKM), for fast large-scale clustering.
Specifically, high-dimensional data are compressed into short
binary codes, which are well suited for fast clustering. CKM
enjoys two key benefits: 1) storage can be significantly re-
duced by representing data points as binary codes; 2) distance
computation is very efficient using Hamming metric between
binary codes. We propose to jointly learn binary codes and
clusters within one framework. Extensive experimental re-
sults on four large-scale datasets, including two million-scale
datasets demonstrate that CKM outperforms the state-of-the-
art large-scale clustering methods in terms of both computa-
tion and memory cost, while achieving comparable clustering
accuracy.

Introduction

Clustering is a fundamental technique in machine learning
and pattern recognition. The aim of clustering is to parti-
tion a data set into different groups with similar data points
being assigned into one group. Until now many cluster-
ing algorithms (Hartigan and Wong 1979; Ng et al. 2001;
Lietal. 2009; Wang et al. 2011b; Ding et al. 2015) have been
proposed, including the widely used k-means clustering
(Hartigan and Wong 1979; Arthur and Vassilvitskii 2007;
Ding et al. 2015) and spectral clustering (Shi and Malik
2000; Ng et al. 2001).

There has been a dramatic growth in the volume of
data with the advent of Internet in the recent decades.
For instance, Flickr has more than 5 billion images avail-
able, YouTube receives more than 100 hours of videos up-
loaded per minute. Conventional clustering methods such
as spectral clustering cannot be directly applied to large-
scale datasets due to their high computation cost. Recently,
increased attention has been paid to large-scale clustering
(Chen and Cai 2011; Chen et al. 2011; Li et al. 2015;

*Corresponding author.
Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2527

Gong et al. 2015; Zhang and Lu 2016), which aims to de-
velop clustering methods with high scalability. For example,
several variants, e.g., Nystrom (Chen et al. 2011), large-scale
clustering (LSC) (Chen and Cai 2011), large-scale multi-
view spectral clustering (Li et al. 2015) have been proposed
to reduce the high computation of spectral clustering.

In contrast, k-means clustering has been more often ap-
plied to large-scale clustering because of its simplicity and
general applicability. Two steps are employed in each it-
eration: updating the cluster centers, and updating the as-
signments of each point. The computation cost of k-means
in each iteration is O(nkd), where n, k, d are the size of
the dataset, the number of clusters, and the dimensional-
ity, respectively. For such large values, even a single iter-
ation is very slow. For example, we show in the experi-
ment on MINIST8M dataset where n = 8.1M, d = 784,
k = 1000, k-means takes around 6500s to update in
each iteration. In addition, 50.80G is needed to store this
dataset. Basically, it is very challenging to directly apply k-
means over this scale of dataset in a single machine. Sev-
eral variants (Elkan 2003; Arthur and Vassilvitskii 2007;
Hamerly 2010; Drake and Hamerly 2012; Ding et al. 2015;
Bachem et al. 2016) of k-means have been proposed to im-
prove the clustering efficiency. They can decrease the num-
ber of iterations, but the running time of each iteration and
memory usage are unchanged. Therefore, two main chal-
lenges remain to be solved in large-scale clustering: 1) how
to reduce the storage of huge data, and 2) how to reduce the
computational cost of the clustering methods.

Binary code learning (Wang et al. 2016) has gained in-
creased interests in many large-scale applications. The ba-
sic idea of binary code learning is to encode the origi-
nal high-dimensional data into a set of short binary codes
with similarity preservation. The advantage of binary cod-
ing is that it can perform an effective search in Hamming
space at very low cost of both storage and computation.
Many binary code learning methods (Gionis et al. 1999;
Gong and Lazebnik 2011; Norouzi, Fleet, and Salakhutdi-
nov 2012; Zhou et al. 2016; Song, Liu, and Meyer 2016;
Shen et al. 2017) have been developed, all of which are pro-
posed to facilitate large-scale retrieval and classification, in-
stead of clustering. A pioneering work (Gong et al. 2015)
to perform clustering over binary codes was recently pro-
posed. This is a naive two-step approach, which generates

binary codes and performs clustering separately. Apparently,
the binary codes may not be optimal for clustering in this
two-step approach, and we show in our experiments that it
performs poorly on some datasets. To the best of our knowl-
edge, learning binary codes for clustering has been less well
studied and remains a very challenging area.

Inspired by the great success of binary code learning,
we propose a novel compressed k-means (CKM) for large-
scale clustering. CKM aims to simultaneously learn binary
codes and clusters. The advantages of CKM over conven-
tional clustering methods lie in the low cost of computation
and storage. Taking the MINIST8M dataset as an example,
CKM reduces the storage around 392 times from 50.80G
to 129.60M; meanwhile, the running time of CKM in one
iteration is 25s, which is nearly 260 times faster than con-
ventional k-means. The main contributions of this work are
summarized below:

e We propose a novel binary coding based clustering
method, named compressed k-means (CKM), which com-
presses high-dimensional data into short binary codes.
CKM can be applied to large-scale clustering at low com-
putational and storage costs.

e The proposed CKM is formulated to jointly perform bi-
nary coding function learning and clustering, such that the
learned binary codes are optimal for clustering. Inspired
by the recent advances in structural prediction (Yu and
Joachims 2009; Norouzi, Fleet, and Salakhutdinov 2012),
an upper bound of the empirical loss of the optimization
algorithm is presented, for which an efficient optimization
algorithm is devised.

e Extensive experiments on four large-scale datasets,
demonstrate that the proposed CKM is faster and has
lower memory usage than the state-of-the-art large-scale
clustering methods.

Notations and Background

Given a dataset X = {x; € R4}™ |, we can write X =
[x1,...,Xy], and the goal of clustering is to group the data
points {x1,...,X,} into k clusters {C;}¥_,, such that simi-
lar data points can be grouped together. We use the partition
matrix G = [g1, ..., 8] € {0,1}¥*" to represent the clus-
tering results. Let g;; = 1 if x; belongs to cluster C; and
gi; = 0 otherwise; we call G the cluster indicator matrix
because each column, i.e., g; (1 < ¢ < n), has one and only
one element equal to 1 to indicate the cluster membership,
while the remaining elements are 0. We denote the set of
such indicator matrices as W.

The k-means method is the most popular clustering
method because of its simplicity. It has been identified as
one of the top 10 algorithms in data mining (Wu et al. 2008).
Formally, k-means aims to minimize the following objective
function:

k n
2
=3 gijllxi — ¢l

j=11i=1

Z > lxi =l

j=1x,€C;

st. G e wkxn

ey

2528

where || - || denotes ¢> norm of a vector, and c; is the j-th
centroid of the dataset. Because G € VU is a cluster indica-
tor matrix, k-means is a combinatorial optimization problem
that is generally difficult to resolve.

A simple yet popular algorithm for finding a local opti-
mum of the k-means problem starts with a random set of
k centers and is as follows: each data point is repeatedly
assigned to its nearest center, and the centers are recom-
puted given the point assignments. This local search, called
Lloyd’s iteration, continues until a stable set of centers is
obtained. In each iteration, k-means requires the time com-
plexity of O(nkd). For a large-scale dataset in which both
n and k are large, k-means will be computationally expen-
sive even with medium-length d. It is also very challenging
to store the whole dataset and cluster centers in a single ma-
chine. Generally, directly applying k-means on a large-scale
dataset is inefficient.

A challenging problem naturally raises how to efficiently
perform k-means on large-scale datasets. In the following
sections, we introduce the binary coding technique to ad-
dress this issue.

Compressed K -means
Problem Formulation

Given the data matrix X € R%*™, we aim to learn a mapping
b(x) that projects d-dimensional real-valued input x € RY
onto a r-dimensional binary code h € H = {—1,1}", where
k-means clustering can be efficiently performed. The map-
ping, referred to as binary coding function, is defined as:

b (x; W) = sign (f (x, W) @)
where sign(;i) is the element-wise sign function, and
f(x, W) : R* — R" is a real-valued transformation, where
W € RY¥", A variety of mathematical forms of f can be
used for domain specific practical applications. In this work,
we consider a linear transformation f(x) = W 'x for its
simplicity.

The distance between binary codes h,e € H can be de-
noted as:
pr(h,e) = [h—e|? 3)
For k-means clustering in the Hamming space, we define the
loss function of the i-th data point:

Z gij PH Xu))

= pu (b(x;; W), Cg;)

where C = [cq,...,cx] € {—1,1}"*". Thus the objective
function of the proposed compressed k-means (CKM) is de-
fined as:

“4)

min £ W C G ZZ X1 ZPH XH Cgl)
= Z [b(xi; W) — Cg|? (5)
s.t. ||WJH §1/,Vj €e{l,...,k},and

Ce{-1,1}"* G e ukx»

where v € R is a positive regularization parameter that is
used to constrain the scale of W. This is because the scale of
‘W does not affect the objective function value. We impose
the binary constraints on the cluster centers C. In constrst to
the conventional k-means, the data points and cluster cen-
ters are both hashed into binary codes, which enables us to
perform fast distance calculation in clustering.

Direct global optimization of £ is challenging because 1)
the objective function is highly non-convex; 2) b(x; W) is a
discrete mapping. In the following section, we will present
the technique to address these difficulties.

Upper Bound on Empirical Loss

Inspired by latent structural SVMs (Yu and Joachims 2009;
Liu and Tsang 2015), we develop the optimization technique
to optimize an upper bound of £. We first re-express the
binary coding function as a form of structured prediction
(Norouzi, Fleet, and Salakhutdinov 2012):

b(x; W) = sign (f(x; W))

= h' f(x; W
arg max f(x; W)

6)

—argmax h' W'x
heH

Here, (6) holds because that the optimal code should be +1
for the positive entries of W Tx, and -1 otherwise.

Based on the structure prediction form of binary coding
function, we present a theorem on the upper bound of the
loss function of the i-th data point.

Theorem 1. For arbitrary o > 0, the loss function of the
i-th data point, i.e., {(x;), is upper bounded by:

£(x;) < max (p (e;,Cg;) + ae] f(x;; W) (7)
— amax (b f(xi; W)

Proof. This upper bound is easily derived via structural
SVM. O

Based on Theorem 1, we can obtain the following surro-
gate objective function:
n
min
W,C,G 4

T T
(mass (s — Ceil + e/ W)

— a max (b Wx;)) ®)

h,eH
Iwjll < v.¥j € {1,....k},and

Ce{-1,1}"* G e ukx»

S.t.

Optimization

Loss-augmented Inference. To evaluate and use the surro-
gate objective in (8) for optimization, we must solve a loss-
augmented inference problem to find the binary code that
maximizes the sum of the score and loss term:

max |le; — Cgil|® + ae] W'x;
e;

©))

st. e e {—1,1}7"

2529

%105

w
&

Upper Bound
Empirical Loss |

w

N
N o

g

Objective Function Value
& &

Bl R I N W

R 4]

400 500

o

0 100 200 300

lterations

Figure 1: The upper bound and empirical loss with respect
to different iterations on RCV1 dataset.

With simple matrix transformations, the solution to e; can
easily be obtained:
e; = sign (—2Cg; + aW ' x;) (10)

Cluster Learning. We next optimize the sub-objective func-
tion of clustering in the Hamming space. The sub-objective
function with respect to C, G is as follows:

n
. _C . 2
min Z}Hm gl
p

Ce{-1,1}"* G e ukx»

Y

s.t.

The optimization of (11) is similar to conventional k-means.
To obtain the locally optimal {C, G}, it is necessary to it-
eratively update one variable while fixing the other variable
until convergence. Below we show that, in each iteration,
{C, G} can be solved via the following theorem.

Theorem 2. In each iteration, {c;,g;} that minimizes the
optimization problem in (11) is given by:

c; =sign (Zgn_l el) (12)
ij=
1 j=argmin;|e; — ¢
- : 13
Jid {0 otherwise (13)

wherei=1,...,n,j=1,... k.

Proof. The proof can be easily obtained similar to the con-
ventional k-means. O

Binary Coding Function Learning. Optimizing the ob-
jective function with respect to W is difficult because
it is a convex-concave problem. In this work, inspired
by (Norouzi, Fleet, and Salakhutdinov 2012), we employ
stochastic gradient descent (SGD) to update W. In each iter-
ation, we randomly sample a data point, i.e., X, and then take
a step in the direction that decreases the objective function
value. The updating rule of W can be represented as

W=W-—nx(e—h)" (14)

Algorithm 1 Compressed k-means

Input: Training set X € R%*"; code length r; cluster num-
ber k; parameters «, v.
Output: W, C, G.
1: Initialize W via Locality Sensitive Hashing (LSH);
2: Initialize B = sign(W ' X);
3: Initialize C by randomly selecting k binary codes;
4: repeat
5: Update e; via (10),72 =1,...,n;
6 Iteratively update C, G via (12), (13);
7 Update W using (14) on a small batch;
8 Project W back to the feasible region via (15);
9: until convergence

where 7 is the learning rate, which is set as 0.001 in this
work, h, e are obtained by the loss inference (6), (10), re-
spectively. As there is a norm constraint on W, we need to
project W back to the feasible region, thus we perform the
following operation

w; = min {1, /v/|wil } w;

wheres =1,...,r.

In our implementation, we propose a two-stage scheme.
We start the optimization algorithm by initializing W as
a random Gaussian matrix by Locality Sensitive Hashing
(LSH) (Gionis et al. 1999). In the first stage, we jointly
learn the binary coding function and clustering on a ran-
domly selected subset with n’ = (n data points, where (3
is the proportion of the selected data points. In the second
stage, we perform clustering on the binary codes of the entire
dataset. Here the subset selection is used to speed up the bi-
nary function learning. We will show in the experiment that
it is enough to learn a good binary function on a small subset
for large-scale clustering. In addition, we use mini-batches
rather than single data point to compute the gradient, and the
batch size is set as 128. The detailed optimization procedure
of CKM is described in Algorithm 1.

The theoretical convergence of this update rule has been
explored (Hazan, Keshet, and McAllester 2010). In this
work, we empirically verify that the update rule lowers both
the upper bound and the empirical loss, and converges to a
local minimum. Fig. 1 shows the curves of the upper bound
and the empirical loss, from where we can clearly see that
both converge within a few iterations.

(15)

Computational Complexity and Memory Usage

The computational complexity of the proposed CKM con-
sists of the following parts. Loss-augmented inference re-
quires O(dr) for updating each data point. Updating binary
coding function requires O(drp), where p is the mini-batch
size. The most time-consuming part lies on cluster learn-
ing, which takes O(nk) Hamming distance calculation for
r-bit codes. In constrast, k-means takes O(nk) Euclidean
distance calculation for d-dimensional real-valued vectors.
Thus, CKM is more efficient than k-means, especially when
r < d.

2530

Table 1: Statistics of four large-scale datasets.

Datasets | #Sample #Feature #Classes
RCV1 | 193844 1979 103
CovType | 581012 54 7
ILSVRC2012 | 1331167 4096 1000
MNIST8M | 8100000 784 10

To calculate memory usage, CKM needs to store the trans-
formation matrix W, which counts for the storage of O(rd)
real-valued numbers. The data points and cluster centroids
are stored by CKM at the cost of O((n + k)r) bits. k-
means requires the storage of O((n+ k)d) real-valued num-
bers. Therefore, CKM has much lower memory cost than
k-means.

Experiments

In this section, we evaluate the proposed clustering method
on four large-scale datasets. All the computations reported
in this study are performed on a Red Hat Enterprise 64-Bit
Linux workstation with 18-core Intel Xeon CPU E5-2680
2.80 GHz and 256 GB memory.

Datasets

We conduct experiments on four large-scale datasets, whose
statistics are summarized in Table 1.

e RCV1': a subset (Chen et al. 2011) of an archive
of 804414 manually categorized newswire stories from
Reuters Ltd. It has 193844 documents in 103 categories.
Following previous studies (Wang et al. 2011a), we re-
move the keywords (features) appearing less than 100
times in the corpus, which results in 1979 (out of 47236)
keywords in our experiment.

e CovType’: consists of 581012 instances for predicting
forest cover type from cartographic variables. Each sam-
ple belongs to one of seven types (classes).

e ILSVRC2012%: a subset of ImageNet (Deng et al. 2009).
It contains 1000 object categories and more than 1.2 mil-
lion images. As in (Lin, Shen, and van den Hengel 2015),
we use the 4096-dimensional features extracted by the
convolution neural networks (CNN) model (Krizhevsky,
Sutskever, and Hinton 2012) to represent the images.

e MNIST8M*: consists of around 8.1 million images of
handwritten digits from O to 9. The feature is the same
as MNIST dataset: 784-dimensional original pixel values.

Comparison Methods

To demonstrate the effectiveness of the proposed CKM, we
compare it with five state-of-the-art large-scale clustering
methods, consisting of two k-means methods, two spectral
clustering methods, and a naive two-step clustering method

"http://alumni.cs.ucsb.edu/~wychen/sc.html
Zhttps://archive.ics.uci.edu/ml/
3http://www.image-net.org/challenges/LSVRC/2012/
*http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 2: Running time (in seconds) of clustering on four large-scale datasets.

Dataset k-means k-means++ Nystrom LSC-K LSH+bk-means CKM
Time Speedup | Time Speedup | Time Speedup | Time Speedup | Time Speedup | Time Speedup
RCVI | 191s 1% 254s 0.75% 61s 3.13x 206s 0.93 % 4s 47.75% 16s 11.94x
CovType | 17s 1x 11s 1.55% 39s 0.44x 65s 0.26 % Is 17.00x 3s 5.67x%
ILSVRC2012 | 8523s 1% 18469s 0.46x | 2626s 3.25x | 22173s 0.38x 89s 95.76x | 250s 34.09x
MINISTSM | 9718s 1x 2578s 3.777x | 1418s 6.85x 5107s 1.90x 101s 96.22x | 248s 39.19x

0.5

0.4

[]
| | .
=
[
[LSH+bk-means
I CKM

0.3

ACC

0.2

0.1 |

RCV1

CovType ILSVRC2012
Dataset

MINIST8M

Figure 2: Clustering accuracy (ACC) on four large-scale
data sets.

using LSH plus bk-means (Gong et al. 2015). The details of
these methods are given below.

e k-means: is the conventional k-means method based on
Euclidean distance. It can be seen as a baseline method.

e k-means++ (Arthur and Vassilvitskii 2007): a variant of
k-means, which provides a good initialization that is prov-
ably close to the optimal solution.

e Nystrom (Chen et al. 2011): a parallel large-scale spec-
tral clustering method based on Nystrom approximation.
The code is available online®, and we choose the Matlab
version with orthogonalization.

e LSC-K (Chen and Cai 2011): the landmark-based large-
scale spectral clustering method using k-means for land-
mark selection. We download the Matlab code from the
authors’ website®.

o LSH+bk-means (Gong et al. 2015): first uses Locality
Sensitive Hashing (LSH) (Gionis et al. 1999) to gener-
ate a random Gaussian matrix, by which data points are
hashed into binary codes. bk-means (Gong et al. 2015) is
then applied to the generated binary codes for clustering.
This naive two-step method can be viewed as a baseline
for binary coding based clustering methods.

We empirically set the number of landmarks in LSC-K
and Nystrom as 500 according to the parameter setting in
(Chen and Cai 2011), and the number of neighbors in LSC-
K as 6. For the binary coding based methods, the binary code
length 7 is set as 32 for CovType, and 128 for the other three
high-dimensional datasets. For the proposed CKM, we em-
pirically set the ratio of the selected subset 3 as 0.01, param-
eter v as 10, and v as 1.

Shttp://alumni.cs.ucsb.edu/~wychen/sc.html
Shttp://www.cad.zju.edu.cn/home/dengcai/

Table 3: Memory usage of k-means and CKM on four large-
scale datasets. ‘Mem.” denotes memory usage. ‘Red.” de-
notes the times of memory reduction compared to k-means.

Dataset k-means CKM
Mem. Red. Mem. Red.
RCV1 | 3.07GB 1x 3.10MB 988 x
CovType | 0.25GB 1x 2.32MB 432 %
ILSVRC2012 | 43.62GB 1x 21.30MB 2048x
MINISTS8M | 50.80GB 1x | 129.60MB 392x

2531

Evaluation Metric

We evaluate clustering quality by Accuracy (Chen and Cai
2011). Given the data point x;, let o; and s; be its resultant
clustering label and ground-truth label, respectively. The ac-
curacy is defined as ACC = w, where §(a, b)
denotes the delta function that returns 1 if @ = b and 0 oth-
erwise, and map(r;) is the best mapping function for per-
muting the cluster labels to match the ground-truth labels. A
larger ACC value indicates better clustering performance.

In addition, we also conduct the comparisons in terms of
computation and memory costs.

Results

Accuracy: The accuracy results of all the methods on four
datasets are reported in Fig. 2. We find several interesting
points as follows: 1) Among the comparisons, k-means is
stable on four datasets, and k-means++ generally outper-
forms k-means. LSC-K performs best on MINIST8M, but
fails to work well on ILSVRC2012. LSC-K performs bet-
ter than Nystrom. 2) The proposed CKM clearly outper-
forms LSH+bk-means. LSH+bk-means is a naive two-step
method, thus the generated binary codes may not be optimal
for clustering. The accuracy of LSH+bk-means is very low
on RCV1, ILSVRC2012. 3) CKM generally achieves com-
parable accuracy to the best results.

Time: Table 2 shows the running time of all the methods on
four datasets. We can see from this table that 1) LSH+bk-
means is the fastest among all the methods. It is faster than
CKM, because CKM needs the additional time to learn the
binary coding function, while the binary function is LSH is
random. 2) The proposed CKM takes the second place. It
is more efficient than conventional clustering methods. In
particular, CKM is nearly 39 times faster than k-means on
MINIST8M. 3) k-means++ is generally faster than k-means
on CovType and MINIST8M, but slower than k-means on
RCV1 and ILSVRC2012. Among the spectral clustering
methods, Nystrom is faster than LSC-K.

WOGV/V/V/F/—V V |

—v—k-means
—e—CKM

Time (in Seconds) per Iteration
Time (in Seconds) per lteration

—¥—k-means
—6—CKM

Time (in Seconds) per lteration

—F—k-means
—6—CKM

Time (in Seconds) per lteration
=)
™

—¥—k-means
—6—CKM

102

10 100 200 500

Cluster Number

(a) RCV1

1000 10 100 200 500

Cluster Number

(b) CovType

1000

10°

10°
10 100 200 500 10 100 200

Cluster Number

(c) ILSVRC2012

1000 500

Cluster Number

(d) MNIST8M

1000

Figure 3: Running time (in seconds) of k-means and CKM for one iteration on (a) RCV1, (b) CovType, (¢) ILSVRC2012, (d)

MNIST8M. Y axis is in log scale.

0.45 .
04 r —
0.35
] ! —6—RCV1
2 0.3 —+—CovType
ILSVRC2012
0.25 —7—MINIST8M
0.2 [o
——
0.15 .
0.01 0.05
B

Figure 4: Clustering accuracy with respect to different 5. X
axis is in log scale.

In addition, we compare the running time of k-means and
CKM in one iteration. The running time of the two methods
in one iteration with respect to different numbers of clusters
is shown in Fig. 3. As can be seen, CKM is clearly much
faster than k-means among all the cases. This is because
CKM uses Hamming metric for distance calculation, which
is more efficient than the conventional Euclidean distance
calculation in k-means.

Memory Usage: Table 3 reports the memory usage of k-
means and CKM. We clearly observe that compared with
k-means, CKM significantly reduce the memory storage of
data. Particularly, CKM only needs to store 21.30M of bi-
nary codes to represent ILSVRC2012, which is nearly 2048
times memory reduction to k-means. This result implies that
CKM can perform clustering over very large-scale dataset in
a single machine.

Sensitivity Study: We now provide a more careful analysis
of the proposed CKM on the sensitivity to the key parame-
ters in the clustering tasks. The ratio (3 is ranged from [0.01,
0.05, 0.1, 0.5, 1], and clustering accuracy with respect to dif-
ferent (3 is shown in Table 4. From Table 4, we observe that
the clustering accuracy slightly improves as /3 increases, that

2532

el i‘ﬂw
@MM@M@ 1 28
[T T

Figure 5: Illustration of cluster samples of ILSVRC2012
dataset generated by the proposed CKM. Each row illus-
trates several representative images of one cluster.

is, 8 does not heavily influence the clustering performance.
This reveals that the binary coding function in CKM is well
learned even on a small subset of large-scale datasets. The
sensitivtiy results on other paramaters are presented in sup-
plementary materials.

Case Study: We present a case study in which the proposed
CKM is applied to a large-scale image clustering applica-
tion. Fig. 5 shows sample clusters of ILSVRC2012 gener-
ated by CKM. Each row illustrates several representative
images of one cluster. We observe from this figure that sim-
ilar images are well clustered. This case study suggests that
CKM works well in practical large-scale clustering applica-
tions.

Conclusion

This work focuses on the challenging problem of fast clus-
tering over large-scale datasets. We propose a novel com-
pressed k-means (CKM) to generate optimal binary codes
for clustering. Compared to existing clustering methods,
CKM enjoys both computational and memory efficiency.
Extensive experiment results on four large-scale datasets,
including two million-scale datasets, suggests that CKM is
able to cluster very fast with limited memory, yet achieves

comparable accuracy to the state-of-the-art methods.

Acknowledgments

This research is supported by the National Science Foun-
dation of China (Grant No. 61273251, 61673220), the
ARC Future Fellowship FT130100746, and ARC grant
LP150100671.

References

Arthur, D., and Vassilvitskii, S. 2007. k-means++: The ad-
vantages of careful seeding. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms, 1027-1035.

Bachem, O.; Lucic, M.; Hassani, S. H.; and Krause, A. 2016.
Approximate k-means++ in sublinear time. In AAAI, 1459—
1467.

Chen, X., and Cai, D. 2011. Large scale spectral clustering
with landmark-based representation. In AAAI 313-318.

Chen, W.-Y,; Song, Y.; Bai, H.; Lin, C.-J.; and Chang, E. Y.
2011. Parallel spectral clustering in distributed systems.
TPAMI 33(3):568-586.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR, 248-255.

Ding, Y.; Zhao, Y.; Shen, X.; Musuvathi, M.; and Mytkow-
icz, T. 2015. Yinyang k-means: A drop-in replacement of
the classic k-means with consistent speedup. In ICML, 579—
587.

Drake, J., and Hamerly, G. 2012. Accelerated k-means with
adaptive distance bounds. In 5th NIPS workshop on opti-
mization for machine learning, 42-53.

Elkan, C. 2003. Using the triangle inequality to accelerate
k-means. In ICML, volume 3, 147-153.

Gionis, A.; Indyk, P; Motwani, R.; et al. 1999. Similarity
search in high dimensions via hashing. In VLDB, 518-529.
Gong, Y., and Lazebnik, S. 2011. Iterative quantization: A
procrustean approach to learning binary codes. In CVPR,
817-824.

Gong, Y.; Pawlowski, M.; Yang, F.; Brandy, L.; Bourdev, L.;
and Fergus, R. 2015. Web scale photo hash clustering on a
single machine. In CVPR, 19-27.

Hamerly, G. 2010. Making k-means even faster. In SDM,
130-140.

Hartigan, J. A., and Wong, M. A. 1979. Algorithm as 136: A
k-means clustering algorithm. Applied Statistics 28(1):100—
108.

Hazan, T.; Keshet, J.; and McAllester, D. A. 2010. Direct
loss minimization for structured prediction. In NIPS, 1594—
1602.

Krizhevsky, A.; Sutskever, 1.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1097-1105.

Li, Y.-F; Tsang, I. W.; Kwok, J. T.-Y.; and Zhou, Z.-H. 2009.

Tighter and convex maximum margin clustering. In AIS-
TATS, 344-351.

2533

Li, Y.; Nie, F.; Huang, H.; and Huang, J. 2015. Large-scale
multi-view spectral clustering via bipartite graph. In AAAI,
2750-2756.

Lin, G.; Shen, C.; and van den Hengel, A. 2015. Supervised
hashing using graph cuts and boosted decision trees. TPAMI
37(11):2317-2331.

Liu, W,, and Tsang, I. W. 2015. Large margin metric learn-
ing for multi-label prediction. In AAAI, 2800-2806.

Ng, A. Y.; Jordan, M. L.; Weiss, Y.; et al. 2001. On spectral
clustering: Analysis and an algorithm. In NIPS, 849-856.

Norouzi, M.; Fleet, D. J.; and Salakhutdinov, R. R. 2012.
Hamming distance metric learning. In NIPS, 1061-10609.
Shen, X.; Shen, F.; Sun, Q.-S.; Yang, Y.; Yuan, Y.-H.; and
Shen, H. T. 2017. Semi-paired discrete hashing: Learn-
ing latent hash codes for semi-paired cross-view retrieval.
TCYB.

Shi, J., and Malik, J. 2000. Normalized cuts and image
segmentation. TPAMI 22(8):888-905.

Song, D.; Liu, W.; and Meyer, D. A. 2016. Fast structural
binary coding. In IJCAI, 2018-2024.

Wang, H.; Nie, F.; Huang, H.; and Makedon, F. 2011a. Fast
nonnegative matrix tri-factorization for large-scale data co-
clustering. In IJCAI, 1553—1558.

Wang, Y.; Jiang, Y.; Wu, Y.; and Zhou, Z.-H. 2011b. Local
and structural consistency for multi-manifold clustering. In
IJCAI, 1559-1564.

Wang, J.; Liu, W.; Kumar, S.; and Chang, S.-F. 2016. Learn-
ing to hash for indexing big data-a survey. Proceedings of
the IEEE 104(1):34-57.

Wu, X.; Kumar, V.; Quinlan, J. R.; Ghosh, J.; Yang, Q.; Mo-
toda, H.; McLachlan, G. J.; Ng, A.; Liu, B.; Philip, S. Y;;
et al. 2008. Top 10 algorithms in data mining. Knowledge
and Information Systems 14(1):1-37.

Yu, C.-N. J., and Joachims, T. 2009. Learning structural
svms with latent variables. In ICML, 1169-1176.

Zhang, R., and Lu, Z. 2016. Large scale sparse clustering.
In IJCAI, 2336-2342.

Zhou, J. T.; Xu, X.; Pan, S. J.; Tsang, I. W.; Qin, Z.; and
Goh, R. S. M. 2016. Transfer hashing with privileged infor-
mation. In IJCAI, 2414-2420.

