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Abstract

Semi-supervised domain adaptation (SDA) is a typi-
cal setting when we face the problem of domain adap-
tation in real applications. How to effectively utilize
the unlabeled data is an important issue in SDA. Pre-
vious work requires access to the source data to mea-
sure the data distribution mismatch, which is ineffec-
tive, when the size of the source data is relatively large.
In this paper, we propose a new paradigm, called Gener-
alized Distillation Semi-supervised Domain Adaptation
(GDSDA). We show that without accessing the source
data, GDSDA can effectively utilize the unlabeled data
to transfer the knowledge from the source models. Then
we propose GDSDA-SVM which uses SVM as the base
classifier and can efficiently solve the SDA problem.
Experimental results show that GDSDA-SVM can ef-
fectively utilize the unlabeled data to transfer the knowl-
edge between different domains under the SDA setting.

Introduction
Domain adaptation can be used in many real applications,
which addresses the problem of learning a target domain
with the help of a different but related source domain. In
real applications, it can be expensive to obtain sufficient la-
beled examples while there are abundant unlabeled ones.
Semi-supervised domain adaptation (SDA) tries to exploit
the knowledge from the source domain and use a certain
number of unlabeled examples and a few labeled ones from
the target domain to learn a target model. Typically, the
labeled examples in the target domain are too few to con-
struct a good classifier alone. Therefore, an important issue
in SDA is how to effectively utilize the unlabeled examples.

Previous work in SDA required access to the source
data to measure the data distribution mismatch between the
source and target domains (Duan et al. 2009; Donahue et al.
2013; Daumé III, Kumar, and Saha 2010; Yao et al. 2015).
However, in some situations, we may not be able to access
each of the source examples, for many reasons. When we
use a large dataset as our source domain, for example, it is
ineffective to compare each of the source examples with the
target data to estimate the data distribution mismatch.
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Recently, a framework called Generalized Distillation
(GD)(Lopez-Paz et al. 2016) was proposed, which allows
the knowledge to be transferred between different models
effectively. GD contains two different models, the teacher
model and the student model. The student model tries to
learn from the teacher model by mimicking the outputs of
the teacher model on the training data. Remarkably, in GD,
the knowledge can be directly transferred from the teacher
model to the student model without accessing the data used
to train the teacher. Moreover, GD can be used to exploit
the information of the unlabeled data in a semi-supervised
scenario(Lopez-Paz et al. 2016). Given that GD has such
ability, it is natural to ask the following two questions: (1)
Can the GD framework be applied to solve the SDA prob-
lem? (2) How can we improve its effectiveness when we
apply GD to real SDA applications?

To answer these two questions, in this paper, we first pro-
pose a new paradigm, called Generalized Distillation Semi-
supervised Domain Adaptation (GDSDA), to solve the SDA
problem. To answer the first question, we show that with
GDSDA, the knowledge of the source models can be effec-
tively transferred to the target domain using the unlabeled
data. Specifically, the target model is trained with the help of
the soft labels, which are the predictions of the target domain
examples given by the source models. Therefore, without
accessing each of the source examples, GDSDA is more ef-
ficient, especially when the source domain is relatively large
and the source model is well-trained.

For the second question, we argue that the imitation pa-
rameter of GDSDA which controls the amount of knowl-
edge transferred from the source model can greatly affect
the performance of the target model. However, according to
the previous work(Lopez-Paz et al. 2016; Tzeng et al. 2015),
the imitation parameter is the hyperparameter which was de-
termined by either a brute force search or domain knowledge
in previous work. Therefore, we propose a novel imitation
parameter estimation method for GDSDA, called GDSDA-
SVM, which uses SVM as the base classifier and determines
the imitation parameter efficiently. In particular, we use the
Mean Square Error loss for GDSDA-SVM and show that the
Leave-one-out cross validation (LOOCV) loss can be calcu-
lated in a closed form. By minimizing the LOOCV loss on
the target data, we can find the optimal imitation parame-
ter. In our experiments, we show that GDSDA-SVM can
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effectively find the optimal imitation parameter and achieve
competitive performance compared to methods using brutal
force search but with faster speed.

To summarize, the main contributions of this paper are:
(1) we propose the paradigm of GDSDA that can directly
transfer the knowledge from the source model with the help
of unlabeled data for the SDA problems. (2) We propose the
GDSDA-SVM which can effectively find the optimal imita-
tion parameter for real SDA applications.

Related Work
As we use GD to solve SDA problem, we introduce related
work in both GD and SDA areas.

In SDA, previous work tried to utilize the unlabeled data
to improve the performance. (Yao et al. 2015) introduced
a framework named Semi-supervised Domain Adaptation
with Subspace Learning (SDASL) to correct data distribu-
tion mismatch and leverage unlabeled data. (Donahue et
al. 2013) proposed a framework for adapting classifiers by
“borrowing” the source data to the target domain using a
combination of available labeled and unlabeled examples.
(Daumé III, Kumar, and Saha 2010) show that augmenting
the feature space of the data can compensate the domain
shift. (Duan et al. 2009) proposed a method using the un-
labeled data to measure the mismatch between different do-
mains based on the maximum mean discrepancy.

There are also many studies related to GD for computer
vision tasks. (Sharmanska, Quadrianto, and Lampert 2013)
proposed a Rank Transfer method that uses attributes, anno-
tator rationales, object bounding boxes, and textual descrip-
tions as the privileged information for object recognition.
(Motiian et al. 2016) proposed the information bottleneck
method with privileged information (IBPI) that leverage the
auxiliary information such as supplemental visual features,
bounding box annotations and 3D skeleton tracking data to
improve visual recognition performance. (Tzeng et al. 2015)
proposed a CNN architecture for domain adaptation to lever-
age the knowledge from limited or no labeled data using the
soft label. (Urban et al. 2016) used a small shallow net to
mimick the output of a large deep net while using layer-
wised distillation with �2 loss of the outputs of the student
and teacher net. Similarly, (Luo et al. 2016) used �2 loss to
train a compressed student model from the teacher model for
face recognition.

Compared to previous work on SDA, our method only re-
quires the output of the source models, which is more effec-
tive when the size of the source domain is relatively large
and the source model is well-trained. Compared to other
work in GD, our method GDSDA-SVM can effectively esti-
mate the imitation parameter while previous work was lim-
ited to using either a brutal force search or domain knowl-
edge.

Generalized Distillation for Semi-supervised
Domain Adaptation

As previously mentioned, GDSDA is a paradigm using gen-
eralized distillation for semi-supervised domain adaptation.

Figure 1: Illustration of Generalized Distillation training
process.

In this section, we first give a brief review of generalized dis-
tillation. Then we show the process of GDSDA and demon-
strate the reason why GDSDA can work for the SDA prob-
lem. Finally, we show the importance of the imitation pa-
rameter.

An overview of Generalized Distillation and
GDSDA
Distillation (Hinton, Vinyals, and Dean 2014) and Learning
Using Privileged Information (LUPI) (Vapnik and Izmailov
2015) are two paradigms that enable machines to learn from
other machines. Both methods address the problem of how
to build a student model that can learn from the advanced
teacher models. Recently, (Lopez-Paz et al. 2016) proposed
a framework called generalized distillation that unifies both
methods and show that it can be applied in many scenarios.

In GD, the training data can be represented as a collection
of the triples:

{(x1, x
∗
1, y1) , (x2, x

∗
2, y2) . . . (xn, x

∗
n, yn)}

x∗ is the privileged information for data x, which is only
available in the training set and y is the corresponding label.
Therefore, the goal of GD is to train a model, called stu-
dent model with the guidance of the privileged information
to predict the unseen example pair (x, y).

The process of generalized distillation is as follows: in
step 1, a teacher model f (t) is trained using the input-output
pairs {x∗

i , yi}ni=1. In step 2, use f (t) to generate the soft la-
bel si for each training example xi using the softmax func-
tion σ:

si = σ(f (t)(xi)/T ) (1)
where T is a parameter called temperature to control the
smoothness of the soft label. In step 3, learn the student
f (s) from the pairs {(xi, yi) , (xi, si)}ni=1 using:

f (s) =argmin
f(s)∈F(s)

1

n

n∑
i=1

[
λ�

(
yi, σ(f

(s)(xi))
)

+ (1− λ)�
(
si, σ(f

(s)(xi))
)] (2)

Here, �(·, ·) is the loss function and λ is the imitation param-
eter to balance the importance between the hard label yi and
the soft label si.

GD can be used in many scenarios such as multi-task
learning, semi-supervised learning, and reinforcement learn-
ing. In domain adaptation, when we consider the source
model as the teacher and the predictions of the target data
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Figure 2: Illustration of GDSDA training process and our
“fake label” strategy.

given by the source models as the privileged information,
GD can be naturally applied to SDA. This leads to Gen-
eralized Distillation Semi-supervised Domain Adaptation
(GDSDA). Moreover, in GDSDA, we also consider the
multi-source scenario and extend the GD paradigm to fit
this scenario. To be consistent with other work of domain
adaptation, we use the source model and the target model to
denote the teacher model and the student model.

Technically, when we apply GD to SDA, according to Eq.
(2), each example is assigned with a hard label y (true la-
bel) and a soft label s (class probabilities from the teacher).
However, in SDA, we are not able to obtain the hard labels
of the unlabeled data. Here we follow the GD work(Lopez-
Paz et al. 2016) and use the “fake label” strategy to label
the unlabeled data: for the labeled examples, we use one-
hot strategy to encode their labels while using all 0s as the
label of the unlabeled examples (see Fig 2). Thus, each ex-
ample in the target domain is assigned with a label. It is
arguable that the “fake label” strategy would introduce extra
noise and degrade the performance. However, we will show
in our experiment that this noise can be well controlled by
setting a proper value to the imitation parameter and we can
still achieve improved performance (See the single source
experiment).

Suppose we have M − 1 source domains denoted as
D

(j)
s = {X(j), Y (j)}M−1

j=1 and the target domain Dt =

{X,Y } encoded with the “fake label” strategy. The process
of GDSDA is as follows:

1. Train the source models f∗
j for each of the M−1 domains

with {X(j), Y (j)}.

2. For each of the training example xi in the target domain,
generate the corresponding soft label y∗ij with each of the
source model f∗

j and the temperature T > 0.

3. Learn the target model ft using the (M + 1)-tuples
{xi, yi, y

∗
i1, . . . , y

∗
i(M−1)}Li=1 with the imitation parame-

ters {λi}Mi=1 using (3):

ft(λ) =argmin
ft∈F

1

L

L∑
i=1

[
λ1� (yi, ft(xi))+

M−1∑
j=1

λj+1�
(
y∗ij , ft(xi)

) ]
s.t.

∑
i

λi = 1

(3)
Compared to other studies on SDA where each example
of the source domain was used, by either re-weighting
(Donahue et al. 2013; Duan et al. 2012) or augmentation
(Daumé III, Kumar, and Saha 2010), GDSDA only requires
the trained model from the source domain to generate the
soft labels. Considering that it is more convenient to access
the source model than each of the examples of the source do-
main, GDSDA can be more useful than those previous meth-
ods. For example, if we want to use ImageNet (Deng et al.
2009) as the source domain, it is almost impossible to access
each of the millions of examples while there are many well
trained models publicly available online that can be used for
GDSDA. Also, GDSDA is able to handle the multi-class sce-
nario while previous methods, such as SHFA(Duan, Xu, and
Tsang 2012) only solved the binary classification problem
of SDA. Moreover, GDSDA is compatible with any type of
source model that is able to output the soft label (i.e., the
class probabilities).

Why does GDSDA work
In this section, we demonstrate the scenarios where GDSDA
can work. Before we provide our analysis, we first introduce
two basic assumptions for GDSDA: the assumption of dis-
tillation and the assumption of the source model.

Assumption of Distillation: The capacity (or VC dimen-
sion) of the target model ft is smaller than the capacity of
source model f∗. This assumption is inherited from distil-
lation (Lopez-Paz et al. 2016). Assumption of the source
model: The source model f∗ should work better than a tar-
get model f ′

t trained only with the hard labels. This as-
sumption is common, especially in SDA where the labeled
examples are often too few to build a good target model.
For example, when we only have one labeled example from
each class in the target training set, it is reasonable to as-
sume that the source model trained from another domain can
perform better than the model trained only with the target
training data on the target task. Based on these two assump-
tions, we will show that GDSDA can effectively leverage the
source model and transfer the knowledge between different
domains under the SDA setting.

According to the ERM principle(Vapnik 1999), a simple
model has better generalization ability than the complex one,
if they both have the same training error. As long as the
target model ft can achieve similar training error to that of
the source model f∗ on the target domain, considering the
fact that the VC dimension of ft is smaller than f∗, we can
expect that the target model has better generalization abil-
ity. This process can be achieved by letting the target model
mimick the output of the source model on the training data.
It is worthy to notice that in this process, the target model
only has to mimick the output of the source model (soft la-
bel) without considering the hard labels of the examples. In
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another word, GDSDA provide an effective way to utilize
the unlabeled data.

Arguably, because of the domain shift, the source model
is biased towards the source domain when we apply it to
the target task. However, as suggested in (Hinton, Vinyals,
and Dean 2014), we can use labeled data from the target
domain to compensate for the domain shift and achieve a
better performance on the target task with Eq. (3). Specifi-
cally, we use the imitation parameter λ to control the relative
importance between the soft label and the hard label, which
in turn reflects the similarity between the source and target
tasks. For example, in Figure 2, when we set λ2 = 0, we
actually ignore the knowledge from source domain 1. As a
result, GDSDA can compensate for the domain shift under
the setting of SDA (for more details, please see the experi-
ment section).

Key parameter: the imitation parameter
From the above analysis, we can see that GDSDA can effec-
tively transfer the knowledge from the source to the target
domain. In this section, we demonstrate that the imitation
parameter can greatly affect the performance of the target
model.

In GDSDA, we must decide the values of 2 parame-
ters, the temperature T and the imitation parameter λ. The
temperature T controls the smoothness of the soft label
and the imitation parameter λ controls how much knowl-
edge can be transferred from the source model. Previ-
ous work has addressed the importance of knowledge con-
trol in domain adaptation (Duan, Xu, and Tsang 2012;
Duan et al. 2012). Without carefully controlling the amount
of knowledge transferred from the source domain, the tar-
get model may suffer from degraded performance or even
negative transfer (Pan and Yang 2010). How to choose the
imitation parameter is crucial for GDSDA. In previous work,
however, the imitation parameter was determined by either
a brute force search (Lopez-Paz et al. 2016) or background
knowledge (Tzeng et al. 2015). Meanwhile, in real appli-
cations, it is common that multiple source domains can be
exploited. As suggested by (Tommasi, Orabona, and Ca-
puto 2014), learning from multiple related sources simul-
taneously can significantly improve the performance of the
target model. However, these previous methods become
more difficult to apply when there are multiple sources and
imitation parameters to be determined. For these reasons, it
is ideal to find an approach that can determine the imitation
parameter automatically.

GDSDA-SVM
As previously mentioned, it is important to find an approach
that can effectively determine the imitation parameter. In
this section, we propose our method GDSDA-SVM which
uses SVM as the base classifier and can effectively estimate
the imitation parameter by minimizing the cross-validation
error on the target domain.

Distillation with multiple sources
As suggested in (Vapnik and Izmailov 2015), the optimal
imitation parameter should be the one that can minimize the

training error on the target domain. Based on that, we pro-
pose our method GDSDA-SVM which can effectively esti-
mate the imitation parameter.

Instead of using hinge loss in our GDSDA-SVM, we
use Mean Squared Error (MSE) as our loss function for
the following two reasons: (1) several recently studies (Ba
and Caruana 2014; Luo et al. 2016; Romero et al. 2015;
Urban et al. 2016) show that MSE is also an efficient mea-
surement for the target model to mimick the output of the
source model. (2) MSE can provide a closed form cross-
validation error estimation which allows us to estimate the
imitation parameter effectively.

Suppose we have L examples {xj , yj}Lj=1 from N classes
in the target domain where X ∈ RL×d, Y ∈ RL×N . Mean-
while, there are M − 1 source (teacher) models providing
the soft labels Y ∗ = {y∗ij |j = 1, ..., L; i = 1, ...,M − 1}
for each of the L examples. For simplicity, we concatenate
the hard label Y and soft label Y ∗ into a new label matrix S,
where:

S = [Y ;Y ∗] = [S1; ...;SM ];Si ∈ RL×N

To solve this N -class classification problem, we adopt the
One-vs-All strategy to build N binary SVMs. To build the
nth binary SVM, we have to solve the following optimiza-
tion problem:

min
wn

1

2
||wn||2 + C

∑
j

e2jn

s.t. ejn =
∑
i

λiSijn − wnxj
(4)

We use the KKT theorem (Cristianini and Shawe-Taylor
2000) and add dual sets of variables to the Lagrangian of
the optimization problem:

L =
1

2
||wn||2 + C

∑
j

e2jn

+
∑
j

ηjn

(∑
i

λiSijn − wnxj − ejn

) (5)

To find the saddle point,

∂L
∂wn

= 0 → wn =
∑

j

ηjnxj ;
∂L
∂ejn

= 0 → ηjn = 2Cejn

(6)
For each example xj and its constraint of label Sijn, we have
ejn + wnxj =

∑
i λiSijn. Replacing wn and ejn, we have:∑

j

ηjnxjxi +
ηin
2C

=
∑
i

λiSijn (7)

Here we use Ω to denote the matrix Ω = [K + I
2C ] where

K is the linear kernel matrix K = {xixj |i, j ∈ 1 . . . L}. Let
Ω−1 be the inverse of matrix Ω and Ω−1

jj be the jth diagonal
element of Ω−1. We have η =

∑
i λiΩ

−1Si =
∑

i λiη
′
i.

According to (Cawley 2006), the Leave-one-out (LOO) es-
timation of the example xj for the nth binary SVM can be
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written as:

ŷjn =
∑
i

λi

(
Sijn − η′ijn

Ω−1
jj

)
(8)

Now for any given λ, we have found an efficient way to
estimate the LOO prediction of each binary target model for
example xj . In the following section, we will introduce how
to find the optimal λi for each of the source models.

Cross-entropy loss for imitation parameter
estimation
From the previous section, we have already found an effec-
tive solution to estimate the output of the SVM. The optimal
imitation parameters can be found by solving the following
optimization problem:

min Lc (λ) =
1

2

M∑
i

||λi||2 + 1

L

∑
j,n

� (yin, ŷjn (λ))

s.t.
∑

λi = 1

(9)

Here we use the �-2 regularization term to control the com-
plexity of λs so that the target model can achieve better gen-
eralization performance. For the loss function �(·, ·), We
choose the cross-entropy loss function.

� (yin, ŷjn (λ)) = yin log(Pjn) Pjn =
eŷjn∑
h e

ŷjh
(10)

Cross-entropy pays less attention to a single incorrect pre-
diction which reduces the affect of the outliers in the train-
ing data. Moreover, cross-entropy works better for the unla-
beled data with our “fake label” strategy. As we mentioned
in our “fake label” strategy, we use 0s to encode the hard
labels of the unlabeled examples. From (10) we can see that
cross-entropy loss can automatically ignore penalties of the
unlabeled examples and reduce the noise introduced by our
“fake label” strategy. Let:

μijn := Sijn − η′ijn
Ω−1

jj

(11)

The derivative can be written as:

∂�(λ)

∂λi
=

∑
n

μijn (Pjn − yjn) (12)

We describe GDSDA-SVM in Algorithm 1. As the opti-
mization problem (9) is strongly convex, it is easy to prove
that Algorithm 2 can converge to the optimal λ with the rate
of O(log(t)/t) where t is the optimization iteration. Due to
the space limit, we are not able to provide the proof here.

Experiments
In this section, we show the empirical performance of our
algorithm GDSDA-SVM on the Office benchmark dataset.
Specifically, we provide the empirical results under two
transfer scenarios: single source and multi-source transfer
scenarios for GDSDA-SVM.

Algorithm 1 GDSDA-SVM

Input: Input examples X = {x1, ..., xL}, number of
classes N , number of sources M , 3D label matrix, S =
[Y1, Y2, ..., YM ] with size L×M ×N , temperature T

Output: Target model ft = Wx
Ω = [K + I

2C ]
Find the imitation parameter λ with Algorithm 2
Generate new label Ynew =

∑
i λiSi

Calculate η = Ω−1Ynew

Calculate wn =
∑

j ηjnxj

Algorithm 2 λ Optimization

Input: Input examples X , number of classes N , size of
sources M , 3D label matrix S, temperature T , optimiza-
tion iteration iter, Kernel matrix Ω

Output: Imitation parameter λ
Initialize λ = 1

M ,
Let Sn be the label matrix of S for class n
for Each label Sn do

Calculate η′n = Ω−1Sn

end for
Calculate μ using (11)
for it ∈ {1, ..., iter} do

Compute ŷjn and Pjn with (8) and (10)
Δλ ← 0
for each xj in X do

Δλ = Δλ +
∑

n μijn (Pjn − yjn)
end for
Δλ = Δλ/L, λ = λ− 1

it (Δλ + λ)
λ = λ/

∑
λi

end for

Dataset: We use the domain adaptation benchmark
dataset Office as our experiment dataset. There are 3 subsets
in Office dataset, Webcam (795 examples), Amazon (2817
examples) and DSLR (498 examples), sharing 31 classes.
We denote them as W, A and D respectively. In our exper-
iments, we use DSLR and Webcam as the source domains
and Amazon as the target domain. We use the features ex-
tracted from Alexnet (Krizhevsky, Sutskever, and Hinton
2012) FC7 as the input feature for both source and target
domain. The source models are trained with multi-layer per-
ception (MLP) on the whole source dataset.

Single Source for Office datasets
In this experiment, we compare our algorithm under the sce-
nario where the source model is trained from a single source
dataset. Specifically, we have two groups of experiments,
transferring from Webcam to Amazon and from DSLR to
Amazon. As we mentioned, there are significantly fewer
labeled examples than unlabeled ones in real SDA applica-
tions. Therefore, in each group of experiment, there are only
31 labeled examples (1 per class) and some unlabeled exam-
ples (10, 15 and 20 per class) in the target domain.

To demonstrate the effectiveness of GDSDA-SVM, we
show the performance of GDSDA using brute force to search
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the imitation parameter as the baseline. As there are two im-
itation parameters in this experiment, we use λ1 and 1− λ1

to denote the imitation parameter for hard and soft label
respectively. Specifically, we search the imitation parame-
ter λ1 in the range [0, 0.1, ..., 1] with different temperature
T . Meanwhile, we show the performance of the source
model (denoted as “Source”) and the performance of a tar-
get model (denoted as “No transfer” using LIBLINEAR(Fan
et al. 2008)) trained with only labeled examples of the tar-
get domain on the target task. We run each experiment 10
times and report the average result. For GDSDA-SVM, as
we are not able to tune the temperature T , we empirically
set T = 20 for all experiments in this subsection. The ex-
perimental results are shown in Figure 3.

From the results of the brutal force search we can see that,
the value of imitation parameter can greatly affect the per-
formance of the target model. As we expected, without us-
ing any true label information of the target data, i.e. λ1 = 0,
GDSDA can still slightly outperform the source model. This
means GDSDA can effectively transfer the knowledge be-
tween different domains with the unlabeled data. As we
increase the value of imitation parameter, i.e. considering
the hard labels from the target domain, the performance of
GDSDA can be further improved. As we mentioned before,
even though our “fake label” strategy would introduce ex-
tra noise, the noise can be limited by setting a proper value
to imitation parameter and the target model can still achieve
improved performance compared to the baselines.

Moreover, we can see that GDSDA-SVM can achieve
competitive results compared to baselines using brutal force
search in D→A experiments. In W→A experiments, it
achieves the best performances on all 3 different unlabeled
sizes. This indicates that we can efficiently (about 6 times
faster than the brutal force search) obtain a good target
model with GDSDA-SVM.

Multi-Source for Office datasets
In this experiment, we show the performance of GDSDA-
SVM under the multi-source SDA scenario. Specifically,
we use Amazon as the target domain which can leverage
the knowledge of two source models trained from Web-
cam and DSLR. We use the similar settings as our single
source experiment and perform 2 groups of experiments us-
ing 1 labeled and 2 labeled examples per class respectively.
We use temperature T = 5. The results of multi-source
GDSDA-SVM are denoted as SVM Multi. Here we also in-
clude two single source GDSDA-SVMs obtained from the
experiments above (SVM w and SVM d trained using Web-
cam and DSLR as the source respectively) as the baselines.
Moreover, we show the best performance of the brutal force
search model (SVM BF). For SVM BF, we search temper-
ature in range T = [1, 2, 5, 10, 20, 50] and each imitation
parameter in range [0, 0.1, ..., 1]. The experiment results are
shown in Figure 4.

From the results, we can see that, given 2 source mod-
els, SVM Multi can outperform any single source model
trained with GDSDA. This indicates GDSDA-SVM can still
exploit the knowledge even in the complex multi-source sce-
nario. Even though SVM Multi performs slightly worse

(a) D → A, 10 unlabeled (b) D → A, 15 unlabeled

(c) D → A, 20 unlabeled (d) W → A, 10 unlabeled

(e) W → A, 15 unlabeled (f) W → A, 20 unlabeled

Figure 3: Experiment results on DSLR→Amazon and
Webcam→Amazon when there are just one labeled exam-
ples per class. The X-axis denotes the imitation parameter
of the hard label (i.e. λ1 in Fig 2) and the corresponding
imitation parameter of the soft label is set to 1− λ1.

Figure 4: D+W→A, Multi-source results comparison.

than the best result found by brutal force search in some
experiments, considering their time consumption (GDSDA-
SVM is around 30 times faster than brutal force search),
SVM Multi still has its advantage in real applications.

Conclusion
In this paper, we propose a novel framework called Gen-
eralized Distillation Semi-supervised Domain Adaptation
(GDSDA) that can effectively leverage the knowledge from
the source domain for SDA problem without accessing to the
source data. To make GDSDA more effective in real appli-
cations, we proposed our method called GDSDA-SVM and
show that GDSDA-SVM can effectively determine the imi-
tation parameter for GDSDA. In our future work, we plan to
use a more advanced hyperparameter optimization method,
which can optimize the imitation parameter λ and the tem-
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perature T in GDSDA simultaneously, and expect further
performance improvement
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