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Abstract

Multi-task learning is a paradigm, where multiple tasks are
jointly learnt. Previous multi-task learning models usually
treat all tasks and instances per task equally during learn-
ing. Inspired by the fact that humans often learn from easy
concepts to hard ones in the cognitive process, in this pa-
per, we propose a novel multi-task learning framework that
attempts to learn the tasks by simultaneously taking into con-
sideration the complexities of both tasks and instances per
task. We propose a novel formulation by presenting a new
task-oriented regularizer that can jointly prioritize tasks and
instances. Thus it can be interpreted as a self-paced learner
for multi-task learning. An efficient block coordinate descent
algorithm is developed to solve the proposed objective func-
tion, and the convergence of the algorithm can be guaran-
teed. Experimental results on the toy and real-world datasets
demonstrate the effectiveness of the proposed approach, com-
pared to the state-of-the-arts.

Introduction

The paradigm of multi-task learning (MTL) involves learn-
ing several prediction tasks simultaneously. One basic as-
sumption in MTL is that there exists common or related in-
formation among tasks, and learning such information can
result in better prediction performance than learning each
task independently (Caruana 1997). It is particularly desir-
able to share such information across tasks, when there are
many related tasks but the available training data are limited.
Due to its empirical success and good theoretical founda-
tions, MTL has been applied to various domains, including
disease modeling and prediction (Zhou et al. 2011), web im-
age and video search (Wang, Zhang, and Zhang 2009), and
relative attributes learning (Chen, Zhang, and Li 2014).

Many MTL methods have been proposed, which in gen-
eral can be categorized into two classes based on the prin-
cipal way to learn the relatedness (Kang, Grauman, and
Sha 2011; Pu et al. 2013; 2016; Zhong et al. 2016). The
first class assumes that all the tasks share common yet low-
rank feature representations (Argyriou, Evgeniou, and Pon-
til 2008; Zhang, Yeung, and Xu 2010; Yang et al. 2014;
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Kim and Xing 2010), and the other class of methods as-
sumes that the model parameters used by the tasks are re-
lated to each other (Schwaighofer, Tresp, and Yu 2004;
Ando and Zhang 2005; Yang et al. 2016; Zhang and Ye-
ung 2010). In these methods, the assumption that common
information is shared across all tasks is strong in certain
cases. Thus recent methods propose to group tasks or de-
tect outlier tasks, which assume that there exists common
information only within a subset of tasks, or exist outlier
tasks having no relation with other tasks (Jalali et al. 2010;
Kumar and Daume III 2012). However, when learning the
related information across tasks, the algorithms above treat
all tasks equally and all instances per task equally, in other
words, there is no mechanism to control the order of the
tasks and the instances to learn among these methods.

Different from previous methods, in this paper, we pro-
pose a novel MTL framework by simultaneously taking into
consideration the complexities of both instances and tasks
during learning. This idea is inspired by the fact that humans
often learn from easy concepts to hard ones in the cognitive
process (Elman 1993; Bengio et al. 2009). For example, a
student often starts with easier concepts (e.g. recognizing
objects in simple scenes where an object is clearly visible)
and builds up to more complex ones (e.g. cluttered images
with occlusions). Such a learning process is inherently es-
sential for human education and cognition. Similarly, in the
regime of MTL, not only do there exist ‘easy’ to ‘hard’ in-
stances, but also ‘easy’ to ‘hard’ tasks. For instance, rec-
ognizing monkeys from the image set consisting of mon-
keys and tigers is a relatively ‘easy’ task, while recogniz-
ing baboons from the image set consisting of baboons and
orangutans is a relatively ‘hard’ task. In the first task, an im-
age of monkey with plain background is a relatively ‘easy’
positive instance, while one with complex background is rel-
atively ‘hard’ positive. If a multi-task learner can learn the
related information among tasks by first using ‘easy’ tasks
and instances and then gradually involving ‘hard’ ones, as
human brain does, then it can benefit more with less effort.

We name the proposed MTL framework, Self-Paced
Multi-Task Learning (SPMTL), which aims to learn the
multi-task model in a self-paced regime. The contributions
of this paper are threefold:

• It is the first work, to our best knowledge, where a princi-
pled MTL model jointly takes into consideration the com-
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plexities of both training instances and tasks. Our model
can be interpreted as a self-paced MTL model to explore
common information among tasks.

• We propose a new regularizer, which can set priorities for
both tasks and instances in each iteration, and use smooth
weights for such priorities. To the best of our knowledge,
this is also the first task-oriented self-paced regularizer
tailored to MTL in literature.

• An efficient block coordinate descent algorithm is devel-
oped to solve the proposed objective function, and the
convergence of the algorithm can be guaranteed. Exper-
imental results on the toy and real-world datasets demon-
strate the effectiveness of the proposed approach.

Related Work

Multi-task learning (MTL) aims to learn the related in-
formation across tasks, so as to improve the prediction
performance of the model. However, most of the existing
multi-task models learn such information by treating all
tasks and instances equally. Recently, an active online MTL
method (Ruvolo and Eaton 2013) is proposed, which can
actively select the next task to learn, so as to maximize
prediction performance on future learning tasks. In addi-
tion, two task selection algorithms (Pang et al. 2014) are
also proposed for active online MTL, which are based on
the QR-decomposition and minimal-loss principles, respec-
tively. Although these two methods consider the order of
the tasks during training, but they do not adopt the strategy
learning from ‘easy’ tasks to ‘hard’ tasks.

More recently, a novel task selection method (Pentina,
Sharmanska, and Lampert 2015) based on curriculum learn-
ing (Bengio et al. 2009) is proposed for batch MTL. The
method aims to solve tasks in a sequential manner by trans-
ferring information from a previously learned task to the
next one instead of solving all of them simultaneously. How-
ever, this method transfers information unidirectionally, i.e.,
once one task is learned, it will be not affected by the sub-
sequent tasks to learn. In a dynamic and complex learning
process of multi-task model, such an information propaga-
tion way may be not optimal. In addition, this method ig-
nores the ‘easiness’ and ‘hardness’ properties of instances.

Recently, a new learning regime, called self-paced learn-
ing (SPL) (Kumar, Packer, and Koller 2010), is proposed
for several learning problems (Zhang et al. 2015; Xu, Tao,
and Xu 2015). Different from curriculum learning usually
designing curriculums based on certain heuristical ‘easi-
ness’ measurements, SPL can automatically and dynami-
cally choose the order in which training instances are pro-
cessed for solving a non-convex learning problem (Jiang et
al. 2014). Although SPL has been studied for single task
learning (Kumar, Packer, and Koller 2010; Jiang et al. 2014),
there has been no effort put on MTL until now.

Self-Paced Multi-Task Learning

Suppose we are given m learning tasks {Ti}mi=1. For the
i-th task Ti, the training set Di consists of ni data points
{(xij , yij)}ni

j=1 , where xij ∈ R
d is the feature representa-

tion of the j-th instance and yij is its corresponding output,

such as yij ∈ R for regression and yij ∈ {−1, 1} for binary
classification problem. The total number of the training in-
stances is n =

∑m
i=1 ni. The prediction model for the i-th

task is defined as g(pi,xij) = pT
i xij . Generally speaking,

the objective of multi-task learning (MTL) is to derive op-
timal prediction models for all m tasks simultaneously. In-
spired by the fact that humans often learn concepts from the
easiest to the hardest, we incorporate the easy-to-hard strat-
egy operated on tasks and instances simultaneously into the
learning process of MTL. Thus, we propose a new objective
function:

min
w,U,V

m∑
i=1

1

ni

ni∑
j=1

w
(i)
j L(yij ,vT

i U
Txij) + α‖U‖2F

+ β‖V‖1 + f(w, λ, γ) (1)

s.t. w
(i)
j ∈ [0, 1], ∀j = 1, . . . ni, i = 1, . . . ,m,

where V = [v1, . . . ,vm] ∈ Rk×m. w =

[w
(1)
1 , . . . , w

(1)
n1 , w

(2)
1 , . . . , w

(2)
n2 , . . . , w

(m)
nm ] ∈ R

n de-
notes the importance weights imposed on all the instances.
f(w, λ, γ) denotes the self-paced regularizer that dynami-
cally determines which instances and tasks used for training.
L(yij ,vT

i U
Txij) is the empirical loss on the training data

points (xij , yij). U is a d × k matrix with each column
representing a basis. V is a k × m matrix whose columns
contain the coefficients of the linear combination of the
basis for the corresponding tasks. α ≥ 0 and β ≥ 0 are two
trade-off parameters.

Next, let us have a closer look at the objective function
(1). Different from the traditional empirical loss on the train-
ing data, the first term in (1) is a weighted loss term on all
the training instances and tasks. The second term is used
to control the complexity of U, and the third term aims to
make V sparse. In (1), we assume that the weight vector pi

of each task can be represented as a linear combination of a
subset of k basis tasks, i.e., pi = Uvi. Since we expect vi

is sparse, a subset of k basis tasks is used for representing
the weight vector pi. By this means, the tasks with the same
basis can be seen as belonging to the same group, while the
tasks whose basis are orthogonal are sure to belong to dif-
ferent groups. The partial overlapping of bases enables the
algorithm to model those tasks which are not in the same
group but still share some common information. The last
term is our proposed self-paced regularizer to control which
tasks and instances first to be involved in the learning pro-
cess, and which ones to be gradually taken into considera-
tion. Next, we will introduce the last term in detail.

In order to simultaneously perform the easy-to-hard strat-
egy on both instances and tasks, we propose a new self-
paced regularizer defined as:

f(w, λ, γ) = −λ
m∑
i=1

ni∑
j=1

w
(i)
j +γ

m∑
i=1

√√√√ 1

ni

ni∑
j=1

(w
(i)
j )2

= −λ

m∑
i=1

‖w(i)‖1+γ

m∑
i=1

‖w(i)‖2√
ni

, (2)
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where w(i) = [w
(i)
1 , . . . , w

(i)
ni ] ∈ [0, 1]ni , and thus w =

[w(1), . . . ,w(m)]. λ and γ are two self-paced parameters to
control the learning pace on instances and tasks.

There are two terms in Eq. (2): The first term is the neg-
ative l1-norm, which favors selecting the easy instances to
the hard ones per task. Combining this term with (1), we
can know that when the empirical loss L on the training data
point (xij , yij) is small, the weight w(i)

j tends to be high.
Thus this optimization process fits the intuitive concept of
starting with the simplest instances (having low empirical
error) well. When gradually increasing λ as the learning
proceeds, the weights will generally become increasingly
higher. This can gradually involve harder instances for train-
ing. The second term is an adaptive l2,1-norm of a matrix,
which favors selecting the easy tasks to the hard ones. We
use 1√

ni
in the second term to avoid task imbalance, when

one task has so many data points that it dominates the norm.
As we know, minimizing the l2,1 norm of a matrix can make
the matrix sparse in rows or columns (Argyriou, Evgeniou,
and Pontil 2008) in contrast to the l1 sparsity e.g. (Yan et al.
2010; Yan and Tong 2011). When combining this term with
(1), minimizing them will make the w(i)’s corresponding to
large empirical loss L (i.e., hard tasks) be close to or equal
to zero vectors. In other words, this group-sparsity represen-
tation is expected to select the easiest tasks at the beginning
of learning. By gradually reducing γ, this group sparsity will
become weaker, thus harder tasks will be gradually involved
for training. In the later experiment, we demonstrate that
when the loss on the task level is high (hard task), group
sparsity will make the weight of the task be small, i.e., this
task will be not selected.

Plugging (2) into (1), we obtain the final objective func-
tion:

min
w,U,V

m∑
i=1

1

ni
w(i)L̂(i) + α‖U‖2F + β‖V‖1

− λ

m∑
i=1

‖w(i)‖1 + γ

m∑
i=1

‖w(i)‖2√
ni

(3)

s.t. w(i) ∈ [0, 1]ni , ∀i = 1, . . . ,m,

where the vector L̂(i) = [L(i)
1 , . . . ,L(i)

ni ]
T . In this pa-

per, we focus on regression tasks, and define L(i)
j =

L(yij ,vT
i U

Txij) = (yij − vT
i U

Txij)
2. Note that our

method can be naturally applied to classification tasks by
adopting a classification loss function.

Discussion

In this section, we discuss the relation or differences be-
tween our model and some previously proposed methods:

The method in (Pentina, Sharmanska, and Lampert 2015)
aims to propagate information unidirectionally, i.e., the in-
formation from the learned tasks will be transferred to the
subsequent tasks to learn, while the information from the
unlearned tasks will be not propagated back into the learned
tasks. Different from them, our method can jointly learn the
model using all the selected tasks and the selected instances

as the learning proceeds. Since it depends on the current
learner that a task or an instance is ‘easy’ or ‘hard’, the cur-
rent ‘easy’ and ‘hard’ tasks may change when the learner is
updated. Thus it is necessary to re-evaluate all tasks and in-
stances once the learner is updated, such that the dynamic
and complex learning process can be well fitted. The results
in the experiment part also demonstrate that our method is
better than (Pentina, Sharmanska, and Lampert 2015).

The task-oriented self-paced regularizer proposed in this
paper is motivated by SPLD (Jiang et al. 2014). SPLD aims
to select the training instances from the view of both easiness
and diversity, but it does not consider the order of tasks at
all. Thus directly applying the regularizer of SPLD is not
optimal for MTL. Differently, our task-oriented regularizer
can reach the goal that only several easy tasks are selected
for training in the beginning and hard tasks are gradually
involved. Therefore, our regularizer is tailored to MTL.

GO-MTL (Kumar and Daume III 2012) is a task grouping
method that assumes model parameters in the same group
lying in a low-dimensional subspace, and allows the tasks
from different groups to have overlapping information in
common. However, GO-MTL learns model parameters us-
ing all tasks and instances simultaneously without consider-
ing their orders during training. When setting λ = 0, γ = 0,
and w = 1 in (3), our method is reduced to GO-MTL.

Optimization

In this section, we discuss how to solve problem (3). The
objective function in (3) is non-convex, so it is difficult to
find the global optimal solution. We develop a block coor-
dinate descent method to solve (3), and can guarantee the
convergence of the algorithm.

For solving block wt+1 with fixed blocks Ut and Vt,
the optimization problem can be formulated as m individ-
ual problems for m tasks respectively. For the i-th task Ti,
the objective function becomes:

min
w(i)∈[0,1]ni

1

ni
w(i)L̂(i)

t − λ‖w(i)‖1 + γ√
ni

‖w(i)‖2. (4)

In order to solve (4), we first assume L(i)
1,t ≤ L(i)

2,t ≤
· · · ≤ L(i)

ni,t. Let p(i)t =
∑

k0<j<k1

(λ − L(i)
j,t

ni
)2, and q

(i)
t =

∑
k0<j<k1

(λ− L(i)
j,t

ni
). For each i and arbitrary k1 > k0, we de-

fine c∗t (k0, k1), Lt(k0, k1), G∗
i,t, S

∗
i,t for later computation:

1.

c∗t (k0, k1)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
k0ni/(γ2 − nip

(i)
t ), if γ2

ni
�= p

(i)
t(

λ−L(i)
k0+1,t/ni

)−1

, if γ2

ni
=p

(i)
t , γ2

ni
<q

(i)
t

0, if γ2

ni
=p

(i)
t , γ2

ni
≥ q

(i)
t .

2. Lt(k0, k1) =
∑k0

j=1

L(i)
j,t

ni
− λ(k0 + c∗t (k0, k1)q

(i)
t ) +

γ√
ni

√
k0 + c∗t (k0, k1)2p

(i)
t .

3. G∗
i,t be the smallest j such that L(i)

j,t ≥ λni.
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4. S∗
i,t be the largest j such that L(i)

j,t ≤ niλ−√
niγ.

The following theorem gives the global optimum of (4) (see
the proof in supplementary materials).
Theorem 1 Let k1 = G∗

i,t, and k0 be obtained by optimiz-
ing the following objective function:

k0 = arg min
S∗
i,t≤k0<k1

Lt(k0, k1) (5)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ2

ni
− p

(i)
t ≥ 0, or

γ2

ni
− p

(i)
t > 0 if k0 > 0

c∗t (k0, k1)(λ−L(i)
k0+1,t/ni)<1, if k0 + 1<k1

L(i)
k0,t

ni
+

γ√
ni

(
k0+c

∗
t (k0, k1)

2
p
(i)
t

)− 1
2 ≤λ, if k0+1<k1.

Then, the optimal w(i)
t+1 is given by,

w
(i)
j,t+1 =

⎧⎪⎨
⎪⎩
1, if j ≤ k0,

0, if j ≥ k1,

c∗t (k0, k1)(λ− L(i)
j,t

ni
), if k0 < j < k1.

(6)

Thus it takes only linear time O(ni) to compute w
(i)
t+1.

For solving Ut+1 with fixed wt+1 and Vt, the optimiza-
tion problem is formulated as:

Ut+1 = argmin
U

m∑
i=1

1

ni
w

(i)
t+1L̂(i)

t + α‖U‖2F . (7)

The necessary optimality condition is that the derivative of
(7) with respective to U is zeros. Thus, we have

m∑
i=1

ni∑
j=1

w
(i)
j,t+1

ni
xijx

T
ijUvi,tv

T
i,t + αU

=
m∑
i=1

ni∑
j=1

w
(i)
j,t+1

ni
yijxijv

T
i,t

⇒(

m∑
i=1

ni∑
j=1

w
(i)
j,t+1

ni
(vi,tv

T
i,t)⊗ (xijx

T
ij) + αI)vec(U)

=
m∑
i=1

ni∑
j=1

w
(i)
j,t+1

ni
yijvec(xijv

T
i,t), (8)

where ⊗ denotes the Kronecker product and vec(·) is an
operator that reshapes a d × k matrix into a dk × 1 vec-
tor. This is the standard form of system of linear equations
that is full rank and thus has a unique solution. We can
solve it use the iterative methods, such as the Gauss-Seidel
method (Courant and Hilbert 1966), which are much faster
and numerically more stable than matrix inverse (Kumar and
Daume III 2012).

For solving Vt+1 with fixed wt+1 and Ut+1, the op-
timization problem can be decomposed into m individual
problems. For the i-th task, we have

vi,t+1 = argmin
vi

ni∑
j=1

w
(i)
j,t+1

ni
L(yij ,vT

i U
T
t+1xij) + β‖vi‖1.

Algorithm 1 Self-Paced Multi-Task Learning (SPMTL)
Input: Data matrix {Di}mi=1, number of latent tasks k,

regularization parameters α and β,
iterations Tmax, and tolerance ε, μ1 = μ2 > 1;

1. InitializeP=[p1,. . . ,pm]by standard ridge regression;
2. Initialize U0 using top-k singular vectors of P;
3. Initialize V0 = pinv(U0)P, where pinv(U0) is the

Moore-Penrose pseudoinverse of U0;
4. Initialize self-paced parameters λ and γ;
5. for t = 1, . . . , Tmax do
6. Update wt by solving (4);
7. Update Ut by solving (8);
8. Update Vt by using (10);
9. λ ← λμ1, γ ← γ/μ2; % update the learning pace
10. if ‖wt −wt−1‖2 ≤ ε and ‖Ut −Ut−1‖F ≤ ε

and ‖Vt −Vt−1‖F ≤ ε
11. break;
12. end if
13. end for
Output: wt,Ut,Vt.

It is hard to obtain the exact solution of the above prob-
lem directly, so we introduce an approximation scheme for
efficiently solving it. It can guarantee our algorithm is con-
vergent. The approximation is written as:

vi,t+1 =argmin
z

f(vi,t) +∇f(vi,t)
T (z− vi,t)

+
1

2st
‖z− vi,t‖22 + h(z)

= argmin
z

1

2st
‖z− (vi,t − st∇f(vi,t)

T )‖22 + h(z),

where f(vi,t) = 1
ni

∑ni

j=1 w
(i)
j,t+1L(yij ,vT

i,tU
T
t+1xij).

∇f(vi,t) is the derivative of f(vi) around vi,t, and h(z) =
β‖z‖1. st > 0 is a step size. In this paper, st is determined
by a line search method (Beck and Teboulle 2009).

Because of h(z) = β‖z‖1, we adopt the following lemma
(Yang et al. 2009) to solve the above optimization problem.
Lemma 1 For μ > 0, and K ∈ R

s×t, the solution of the
problem

min
L∈Rs×t

μ‖L‖1 + 1

2
‖L−K‖2F ,

is given by Lμ(K) ∈ R
s×t, which is defined component-

wisely by

(Lμ(K))ij := max{|Kij | − μ, 0} · sgn(Kij), (9)

where sgn(t) is the signum function of t ∈ R.
Based on the above lemma, we can obtain the solution

(vi,t+1)j :=max{|(vi,t−st∇f(vi,t)
T )j |−βst, 0}

· sgn((vi,t − st∇f(vi,t)
T )j) (10)

The key steps of the proposed SPMTL are summarized
in Algorithm 1. In Algorithm 1, the computational complex-
ity of updating wt is of order O(ndk). Updating Ut using
Gauss-Seidel costs O(nd2k2 + td2k2), where t denotes the
number of iterations. Updating Vt needs O(mdk2). There-
fore, the total complexity of SPTML is O(nd2k2 + td2k2).

2178



Table 1: Results (mean±std.) on the toy dataset. Bold font indicates that SPMTL is significantly better than the other methods
based on paired t-tests at 95% significance level.

Measure Train AMTL SPLD MTL GO-MTL MultiSeqMT MSMTFL DG-MTL SPMTL

rMSE
5% 5.564±0.109 5.563±0.118 5.745±0.018 5.736±0.330 5.704±0.056 5.945±0.122 5.447±0.106
10% 5.255±0.108 5.274±0.135 5.731±0.101 5.573±0.312 5.566±0.117 5.652±0.305 5.075±0.177
15% 5.091±0.112 4.985±0.112 5.179±0.244 5.226±0.274 5.376±0.070 5.510±0.227 4.694±0.133

nMSE
5% 0.943±0.018 0.964±0.022 1.008±0.001 1.002±0.013 0.997±0.016 1.096±0.053 0.914±0.036
10% 0.834±0.026 0.938±0.019 0.995±0.038 0.961±0.032 0.956±0.023 1.064±0.123 0.797±0.049
15% 0.786±0.048 0.845±0.064 0.855±0.080 0.892±0.050 0.902±0.020 1.103±0.108 0.696±0.040

Since we utilize a convex tight upper bound to approxi-
mately solve V, and the blocks w and U have closed-form
solutions, the convergence of Algorithm 1 can be guaranteed
(please see (Razaviyayn, Hong, and Luo 2013) for details).

Experiments

We conduct the experiments on one toy dataset and two real-
world datasets to verify our method. We compare it with
several related multi-task learning (MTL) methods, includ-
ing DG-MTL (Kang, Grauman, and Sha 2011) and GO-
MTL (Kumar and Daume III 2012), MultiSeqMT (Pentina,
Sharmanska, and Lampert 2015), MSMTFL (Gong, Ye, and
Zhang 2013), and AMTL (Lee et al. 2016). In addition,
we use the regularizer of SPLD instead of our proposed
self-paced regularizer in (1) as another baseline. we call it
SPLD MTL for short. For all the datasets, we randomly se-
lect the training instances from each task with different train-
ing ratios (5%, 10% and 15%) and use the rest of instances to
form the testing set. We evaluate all the algorithms in terms
of both root mean squared error (rMSE) and normalized
mean squared error (nMSE). The regularization parameter
α in (3) is used to control the complexity of the basis tasks.
We find α = 100 works well on all the three datasets, and
thus fix it to 100 throughout the experiments. The parameter
β is tuned in the space [0.001, 0.01, 0.1, 1, 10, 100]. The pa-
rameters λ and γ influence how many tasks will be selected
for training. Thus we initially set more than 20% tasks se-
lected in the experiment. To determine the corresponding λ
and γ, we adopt the grid search strategy based on the princi-
ple that larger λ and smaller γ can make more weights to be
larger. After initialization, we increase λ and decrease γ to
gradually involve hard tasks and instances at each iteration.
We repeat each case 10 times and report the average results.

Toy Example

We first describe the synthetic data generation procedure.
Let there be 3 groups and each group has 10 tasks. There
are 100 instances in each task; each instance is represented
by a 15-dimensional vector. We generate parameter vectors
for 4 latent tasks, i.e., U in the proposed formulation, in
20 dimensions, with each entry drawn i.i.d. from a standard
normal distribution. Based on U, we generate the first 10
tasks by linearly combining only the first two latent tasks.
In a similar manner, the next 10 tasks are generated by lin-
early combining the second and the third latent tasks. Last
10 task are generated by linear combinations of the last two
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Figure 1: Effectiveness verification of considering the order
of both tasks and instances on the toy dataset.

latent tasks. All the coefficients of linear combinations, i.e.,
V, are drawn i.i.d. from a standard normal distribution. The
instance xij is sampled from a standard Gaussian distribu-
tion, and the response is yij = vT

i U
Txij + ξij . To create

hard tasks, we add different noise to tasks and instances by
setting ξij = σiθj , where σi’s are i.i.d. from a normal distri-
bution N(0, 5), and θj is drawn i.i.d. from N(0, 1).

We first report the statistical results on this dataset as
shown in Table 1. SPMTL achieves the best result among
all the methods under different training ratios. This means
that incorporating the easy-to-hard strategy on both instance
level and task level into the learning process can improve
the prediction performance. Moreover, SPMTL is better than
GO-MTL, a task grouping method, and MultiSeqMT, a task
selection method. It indicates that only learning related in-
formation among a subset of tasks without task selection, or
only selecting tasks without learning grouping information
is not optimal for MTL. Finally, SPMTL significantly out-
performs SPLD MTL, which shows our task-oriented self-
paced regularizer is better for MTL than that of SPLD.

We also test the effectiveness of considering either or
both instance order and task order in our method. By set-
ting γ = 0 in (3), we only consider the complexities of the
instances. We call it Self-Paced Instance Weight Learning
(SPIWL). The experiments are conducted on the 15% train-
ing data, and the results are shown in Figure 1. Since GO-
MTL is our special case (when λ = γ = 0, and w = 1,
our method is reduced to GO-MTL), we take it as the base-
line. SPIWL performs better than GO-MTL. This suggests
that including the instances from the easiest to the hard-
est improves the performance. SPMTL outperforms SPIWL,
which demonstrates that involving the tasks based on the
easy-to-hard strategy can also be helpful for model training.
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Table 2: Results (mean±std.) on the OHSUMED dataset. Bold font indicates that SPMTL is significantly better than the other
methods based on paired t-tests at 95% significance level.

Measure Train AMTL SPLD MTL GO-MTL MultiSeqMT MSMTFL DG-MTL SPMTL

rMSE
5% 0.713±0.017 0.651±0.008 0.665±0.024 0.668±0.033 0.754±0.002 0.966±0.040 0.644±0.007
10% 0.692±0.008 0.628±0.006 0.651±0.018 0.654±0.007 0.756±0.003 0.800±0.016 0.624±0.005
15% 0.690±0.005 0.616±0.003 0.626±0.010 0.631±0.004 0.788±0.006 0.740±0.012 0.614±0.003

nMSE
5% 1.482±0.121 1.243±0.111 1.255±0.140 1.259±0.153 1.443±0.003 3.148±0.660 1.121±0.079
10% 1.312±0.036 1.109±0.023 1.152±0.081 1.157±0.054 1.455±0.015 1.880±0.151 1.039±0.016
15% 1.296±0.058 1.073±0.034 1.078±0.065 1.085±0.057 1.646±0.032 1.622±0.085 1.012±0.016

Table 3: Results (mean±std.) on the Isolet dataset. Bold font indicates that SPMTL is significantly better than the other methods
based on paired t-tests at 95% significance level.

Measure Train AMTL SPLD MTL GO-MTL MultiSeqMT MSMTFL DG-MTL SPMTL

rMSE
5% 6.374±0.382 5.930±0.167 7.099±0.563 6.781±0.273 7.194±0.175 6.566±0.228 5.909±0.142
10% 5.902±0.067 5.605±0.034 6.189±0.267 6.104±0.184 6.494±0.105 6.168±0.166 5.570±0.036
15% 5.880±0.043 5.468±0.051 5.519±0.124 5.833±0.079 6.173±0.085 6.043±0.098 5.444±0.059

nMSE
5% 0.724±0.028 0.803±0.032 0.905±0.146 0.772±0.083 0.921±0.045 0.768±0.055 0.621±0.030
10% 0.621±0.064 0.729±0.026 0.688±0.059 0.669±0.047 0.751±0.025 0.678±0.038 0.552±0.008
15% 0.619±0.017 0.717±0.016 0.541±0.024 0.557±0.023 0.677±0.018 0.650±0.021 0.526±0.012
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Figure 2: An example on tasks and instances selected by Al-
gorithm 1. Dark blue denotes the values are close to zero.

Real-World Data Experiments

In this section, we conduct the experiments on two real-
world datasets: OHSUMED (Hersh et al. 1994) and Isolet1.
The first one is an ordinal regression dataset which consists
of 106 queries. We take each query as one task. Each query
comes with multiple returned documents with labels indi-
cating how relevant the returned document is to the query:
“definitely relevant”, “possibly relevant”, or “not relevant”.
These documents and their relevance labels are the instances
to the corresponding query (task). Each query is associated
with 70 instances in average, and there are in total 7,546 in-
stances with the feature dimension of 25. The second dataset
is collected from 150 speakers who speak each English let-
ter of the alphabet twice. Thus there are 52 samples from
each individual. Each English letter corresponds to a label
(1-26), and the label is treated as the regression value as in
(Gong, Ye, and Zhang 2013). The individuals are grouped
into 5 groups by speaking similarity. Thus, we naturally

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Figure 3: Prediction performance vs. iterations.

have 5 tasks with each task corresponding to a group. There
are 1560, 1560, 1560, 1558, and 1559 instances in the 5
tasks respectively. Each instance is represented by a 617-
dimensional vector. We reduce dimensions using PCA with
90% of the variance retaining, in order to learn efficiently.

Tables 2 and 3 report the performance measured by rMSE
and nMSE for the OHSUMED dataset and the Isolet dataset,
respectively. Our SPMTL significantly outperforms all the
other methods on both datasets. This demonstrates that our
method is effective by incorporating the self-paced learning
regime into MTL once more.

We visualize w and L in (3) using 15% training data
on the OHSUMED dataset, as shown in Figure 2. The first
two pictures depict the averaged loss and averaged weight
of each task. When the loss is small (easy task), the corre-
sponding weight is large, thus the easy tasks are first selected
for training. The third and fourth pictures show the loss and
weight on the instance level in the i-th task (here i = 10).
Similarly, the instances with lower loss have higher weight,
i.e., easy instances are first selected for training.

Finally, we further study the prediction performance of
SPMTL as the iteration increases on the OHSUMED dataset
with 15% training data. The results are shown in Figure 3.
Only after around 10 iterations, the performances of SPMTL
become stable, which implies SPMTL is then convergent.
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Conclusion and Future Work

We present a novel multi-task learning algorithm, namely
SPMTL. We incorporate the easy-to-hard strategy on both
tasks and instances into the learning process of multi-task
learning. Experiments on both synthetic dataset and real
datasets have verified the effectiveness of SPMTL.

A question is there should be more complicated patterns
for instance selection in the context of multi-task learning.
For example, prioritizing easy instances in difficult tasks and
difficult instances in easy tasks can be helpful for model
training. We will study it in future work especially in the
context of joint learning (Li et al. 2015).
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