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Abstract

Streaming classification with emerging new class is an im-
portant problem of great research challenge and practical
value. In many real applications, the task often needs to han-
dle large matrices issues such as textual data in the bag-of-
words model and large-scale image analysis. However, the
methodologies and approaches adopted by the existing so-
lutions, most of which involve massive distance calculation,
have so far fallen short of successfully addressing a real-time
requested task. In this paper, the proposed method dynam-
ically maintains two low-dimensional matrix sketches to 1)
detect emerging new classes; 2) classify known classes; and
3) update the model in the data stream. The update efficiency
is superior to the existing methods. The empirical evalua-
tion shows the proposed method not only receives the com-
parable performance but also strengthens modelling on large-
scale data sets.

Introduction

The problem of classification under Streaming Emerging
New Class (SENC), which aims to maintain the predictive
accuracy for identifying the novel class and the known class
in the stream, has recently been attracting an increasing
amount of attention and effort due to both the significant
research challenges (Masud et al. 2011; Parker and Khan
2015; Haque, Khan, and Baron 2016) and the immense prac-
tical value (Abdallah et al. 2016). A common example in in-
dustry is the topic categorization in the news stream, where
a new topic of news may arise when a new event occurred.

There are three main challenges when we explore solu-
tions for the SENC problem:

• The distinguishing challenge is that, under no instances
from new classes observed in the training set, the high
performance of three tasks including detection, classifica-
tion and update needs to be ensured simultaneously. It
is also different from traditional classification problem
or novel class detection (or anomaly detection) because
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those problems are equivalent to one of the three tasks,
without addressing classification or model update.

• In real-time streaming tasks, the solution should not only
increase classification quality but also decrease computa-
tional cost when utilizing large-scale data. In the previous
works (Haque, Khan, and Baron 2016; Al-Khateeb et al.
2012; Masud et al. 2011), data with high dimension is
still a big issue when deploying in real-time application
because most of them are based on distance calculation or
tree structure.

• Concept drift is very common in the SENC problem, and
an efficient updating strategy needs to be adopted in the
systems or algorithms to overcome this issue.

The matrix sketching approach is one way to model large-
scale matrix as low-dimension approximation, and has been
used in many data mining tasks such as textual data min-
ing and large-scale image analysis (Achlioptas and McSh-
erry 2007; Metwally, Agrawal, and El Abbadi 2006). In
particular, when the SENC problem meets large-scale data,
we should try to explore a low-dimensional space for data
analysis so that the model can be implemented on streaming
within limited time and space cost.

Based on the technique Frequent-Directions (Liberty
2013), which can produce low-dimensional matrix from
large-scale matrix approximations in streaming model, we
propose SENC-MaS, a framework for Streaming classifica-
tion with Emerging New Class emerging by class Matrix
Sketching modelling. The main idea is to maintain a low-
dimensional structure dynamically in the long data stream
to approximate original information, and build the classi-
fier and the detector by using this structure. The proposed
framework contains two low-dimensional matrix sketches
for approximating original global and local information.
The former matrix sketching is produced on the whole data
set for new class detection, whereas the latter sketching is
built on each class as local information for classification. We
conduct empirical studies on the benchmark data sets and a
real-world topic of news data set to validate the effectiveness
and efficiency of our approach.

Our main contributions are (1) the proposed framework
is able to identify new class and classify known classes in
stream; (2) the model update is efficient due to the low-
dimension characteristic of class matrix sketching; and (3)
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we conduct experiments on both simulated and real-world
streams to comprehensively evaluate the performance.

The rest of this paper starts with an introduction of the
related work. Then the SENC-MaS framework is presented,
followed by the discussion section. The paper ends with
empirical studies and conclusion.

Related Work
Class-incremental learning(C-IL) (Zhou and Chen 2002) is
a branch of incremental learning which strengthens a previ-
ously trained classifier to deal with emerging new class. It
has attracted much attention in machine learning and data
mining community recent years. The problem of Streaming
Classification Under Emerging New Class(SENC) (Masud
et al. 2011; Mu, Ting, and Zhou 2016) is a C-IL problem in
the data stream context. The ECSMiner (Masud et al. 2011)
tackles the novel class detection and classification problems
by introducing time constraints for delayed classification.
ECSMiner assumes that true labels of new emerging class
can be obtained after some time delay. Learning with Aug-
mented Class (LAC) (Da, Yu, and Zhou 2014) is proposed
for identifying emerging new classes under assuming an un-
labeled dataset is available to help identify emerging new
class, and the framework of LACU-SVM works in an SVM
regularization style, which can assign a test instance to ei-
ther one of the known classes or emerging new class. SAND
(Haque, Khan, and Baron 2016) is a semi-supervised frame-
work that uses change detection on classifier confidence to
detect concept drift, and to determine chunk boundaries dy-
namically. These approaches achieved good performance,
though they were not designed for large-scale streaming data
set, as most of them are based on distance or tree structure.

Another line of study, mostly in computer vision, is
zero-shot learning (Larochelle, Erhan, and Bengio 2008;
Palatucci et al. 2009), which aims to recognise instances
from novel categories that were not presented during train-
ing, and has been found useful in applications, e.g., detecting
bots (Chen, Ranjan, and Tan 2011), face recognition (Huang
et al. 2007) and video concept detection (Yang, Yan, and
Hauptmann 2007). Most of these studies focus on batch-
mode tasks, and requires all training data available.

In large-scale data analysis, low-rank approximations are
popularly used in various tasks. Liberty (2013) introduced
Frequent Directions which achieves the best bounds on the
covariance error, and is further analyzed by (Ghashami and
Phillips 2014). This technique has been adopted in sev-
eral tasks, e.g., one-pass AUC optimization (Gao et al.
2016), streaming hashing (Leng et al. 2015), and streaming
anomaly detection (Huang and Kasiviswanathan 2015). In
this paper, we will extend this idea to the SENC task.

Other relevant works include novel class detection
(Spinosa and de Carvalho 2004) and anomaly detection,
such as by iForest (Liu, Ting, and Zhou 2008) and one-class
SVM (Ma and Perkins 2003), they can identify new data
that have not been previously seen during training. However,
they just address subproblem in SENC, without addressing
the classification and model update issues. The only way to
solve the whole SENC problem is that combine with other
classification framework.

Recently Zhou (2016) proposed the new concept of learn-
ware, with properties of reusability, evolvability and com-
prehensibility. The evolvability emphasizes the ability of
getting accustomed to environment changes, whereas the so-
lution to SENC problem can be viewed as a preliminary step.

Preliminaries

The SENC task. Given training data set D = {(xi, yi)}mi=1,
where xi ∈ Rd is a training instance and yi ∈ Y =
{1, 2, . . . , c} is the associated class label, streaming data
S = {(x′

t, y
′
t)}∞t=1, where x′ ∈ Rd and y′ ∈ Y ′ =

{1, 2, . . . , c, c + 1, . . . , o} with o > c, the goal is first to
learn an initial model f with D, and f(x′) → Y ′. For ev-
ery test instance in the data stream, f is able to determine
whether it belongs to a known class. If yes, f will produce a
class prediction; Otherwise the instance is placed in a buffer
B which stores candidates of previously unseen class. When
the number of candidates reaches the buffer size, they will
be used to update model f . The overall aim of the task is to
maintain high classification accuracy continuously in a data
stream (Mu, Ting, and Zhou 2016).

Frequent Directions A sketch of the matrix A is an-
other matrix B which is significantly smaller than A, but
can approximates it well. Finding such sketches efficiently
is an important building block in algorithms for approximat-
ing. In particular, the streaming algorithm urgently needs a
lightweight matrix for computing. Liberty (2013) has pre-
sented a well-known streaming algorithm for approximating
item frequencies to the matrix sketching setting. The algo-
rithm receives m rows of a large matrix A ∈ Rm×d one
after the other, in a streaming fashion. It maintains a sketch
B ∈ Rl×d containing only l � m rows but still guarantees
that ATA ≈ BTB.

The SENC-MaS Framework

Overview

Inspired by (Liberty 2013), we introduce “Class Matrix
Sketching” (CMS). The main idea is to maintain two low-
dimensional matrix sketches for approximating original
global information and local information in the data stream,
named by “Global Sketching” (GS) and “Local Sketching”
(LS), respectively.

In the proposed SENC-MaS, the two sketches are trained
on known classes before stream coming, and then they are
used to identify the novel class and the known class in the
stream. Ideally, we would like instances of new class to
be detected as soon as they emerge in the data stream; and
only instances that are likely to belong to known classes are
passed to the classifier for prediction. We first introduce GS
and LS as follows.

Class Matrix Sketching

Firstly, a matrix sketching which can well represented global
information is built on whole known data. We call this ma-
trix Global Sketching:

Definition 1. Global Sketching (GS): Given training data
set D = {(xi, yi)}mi=1, where xi ∈ Rd is a training instance
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Figure 1: Building class matrix sketching

and yi ∈ Y = {1, 2, . . . , c} is the associated class label.
The Global Sketching is G ∈ Rg×d, g � m, and the matrix
G is significantly smaller than the whole data matrix D ∈
Rm×d, but still approximates it well as GTG ≈ DTD.

Based on the definition, the known class data should be
more naturally approximated well by GS; on the contrary,
the new class data which is unseen before may not be repre-
sented well by GS.

Secondly, multiple matrix sketches are built for discrimi-
nating the category of known class as the local information.
A testing data belongs to one known class only if this class
of sketching can best represent for it. We call these sketches
Local Sketching:
Definition 2. Local Sketching (LS): Given c classes train-
ing data set {D1, D2, . . . , Dc}, where Di = {(x, y)|y =
i}ni , i ∈ {1, 2, . . . , c}. The Local Sketching is L =
{L1, L2, · · · , Lc} where Li ∈ Rli×d, li � ni. The lo-
cal sketching matrix Li is significantly smaller than Di ∈
Rni×d, but approximates it well as (Li)

TLi ≈ (Di)
TDi.

An illustrative example to build class matrix sketching is
provided in Figure 1. We assume that there are three ini-
tial classes. The global sketching is a smaller matrix with
g dimension, which is built on the whole m original data
sample, g � m. Similarly, local sketching is built on each
class data, e.g., the 1st sketching is produced by using the
1st-class data, l1 � n1.

SENC-MaS

Initialization of class matrix sketching. The training
procedure to build the SENC-MaS is detailed in Algorithms
1. The steps 1∼4 show the main process of building class
matrix sketching: In line 1, an unsupervised procedure on
whole data set D is implemented for building GS; in line
4, we produce multiple local sketches for known classes
by considering the supervised information. The function
Construct Sketching is to build a matrix sketching which
is similar with building the Frequent-directions in (Liberty
2013). The function Construct Sketching shows that the
algorithm keeps a low-dimensional sketch matrix that is up-
dated every time when the sketch C has none zero-valued
rows. During steps 8∼11, the sketch is first rotated (from

Algorithm 1 Initialize Class Matrix Sketching
Input: D ∈ Rm×d - input gobal data. D1, D2, . . . , Dc ∈

Rni×d - input local data. G ∈ Rg×d, Li ∈ Rli×d - all
zeros matrix

Output: G and L = {L1, L2, . . . , Lc}
1: G ← Construct Sketching(D,G)
2: for i = 1, . . . , c do
3: Li ← Construct Sketching(Di, Li)
4: end for

Construct Sketching(A,C)
# A ∈ Rw×d, C ∈ Rv×d

5: for i = 1, . . . , w do
6: Insert Ai into a zero valued row of C
7: if C has no zero valued rows then
8: [U,Σ, V ] ← SVD(C)
9: δ ← δ2p/2

10: Σ̌ ← max
√
(Σ2 − Ipδ, 0)

11: C ← Σ̌V T

12: end if
13: end for
14: return C

the left) using its SVD such that its rows are orthogonal
and in descending magnitude order. Then the sketch rows
norms are “shrunk” so that at least half of them are set to
zero. In the algorithm, Σ is a non-negative diagonal matrix
Σ = diag([δ1, . . . , δp]), δ1 ≥ . . . ≥ δp ≥ 0. Finally, at least
half of the rows of C are all zero. Following assumption in
(Liberty 2013), we assume that p/2 is an integer.

Deployment in data stream. Algorithm 2 describes the
deployment of our proposed method in the data stream.
Given a test instance x, C-MaS(x) produces a class label
y ∈ {1, . . . , c, new class}, where new class is the label
given for an emerging new class. Note that C-MaS(x) can
detect instances of any number of emerging new classes,
though they are grouped into one meta-class.

In line 3 of Algorithm 2, the function C-MaS is defined as
follows:

C-MaS(x) =

{
new class, if ψ(x) < threshold (1)
j, j = max

j
φj(x), otherwise (2)

where j ∈ {1, 2, . . . , c}, ψ(·) is the function for new class
detection, φ(·) is the function for classification on known
classes, a threshold is introduced to determine if new class
is emerging. The detail is as follows:

- New class detection. Let [·]i,: be the vector at ith row
in a matrix. The function ψ() is defined as:

ψ(x) = max 〈x, [G]i,:〉, ∀i i ∈ {1, 2, ..., g} (3)

where 〈·〉 is the inner product of two vectors, [G]i,: is ith
row in matrix G. This is a very straightforward idea that
we employ inner product as building relationship between a
test data and the sketching space. The inner product can be
defined either algebraically or geometrically. Algebraically,
it is the sum of the products of the corresponding entries of
the two sequences of numbers. Geometrically, it is positive

2375



for acute angles and negative for obtuse angles. Therefore,
the larger inner product means that the two vectors are more
similar. In function ψ(·), the group of inner product is cal-
culated between testing instance x and every row of G, and
then the maximum value of this group is used to illustrate
how similar the between x and G is.

- Threshold determination. We employ a threshold to
measure new class emerging in (1). Different from previous
manual setup, it is determined automatically. The intuition is
that new class has the different property from known classes,
e.g., it has been assumed that instances of any emerging new
class are far from the known classes in the data space (Masud
et al. 2011; Haque, Khan, and Baron 2016). In this paper,
we assume that the inner product between new class and GS
should be smaller than between known classes and global
sketching. Thus, the definition of threshold is as follows:

threshold = argmin Q (4) or 1
m

∑m
k=1 Q (5)

where Q = {ψ(x1), ψ(x2), . . . , ψ(xm)}. We produce a list
Q by Eqn.(3) on every training instacne x. Ideally, we as-
sume that there is none outlier in training set, the minimum
value of Q such as Eqn.(4) can be used to distinguish the
new class from the known classes, where the former should
have smaller value than the latter according to our assump-
tion. However, outlier usually exists in common practise,
and thus, the minimum value of Q does not always give
the better representation on the known property. Therefore,
the average of Q in Eqn.(5) is used for the threshold which
would be more robust. In this paper, we use the Eqn.(5) for
threshold, which is also recommended to use in practise.

if a testing instance leads to a smaller value than this
threshold, it is determined as new class. Otherwise, it will
be passed to the classifier in Eqn.(2).

Note that using of the Eqn.(5) will produce the candi-
date of new class in the buffer including novel classes and
anomaly of known classes. For handling the problem of de-
termining new class, a simple yet effective solution called
SDdiff (Mu, Ting, and Zhou 2016) curve for separating these
two types of instances is used when buffer is full in our
framework. The main idea is to take advantage of the fact
that, anomaly instances are more similar to the normal in-
stances than instances from emerging new classes . There-
fore, let V be a ascending order list of the result of Eqn.(3)
on data in the buffer. The new class instances are ex-
pected to have smaller value in list V than the anomalies,
the split point τ̂ in this list would yield two sub-lists V left

and V right, where the former is regarded as new class with
small value and the latter is regarded as the anomalies with
the large value. The best split point is used to separate the
novel class part from the anomaly part. We use the criterion
which minimises the difference in standard deviations σ(·):
τ̂ = argminτ |σ(V left) − σ(V right)|. The τ̂ is the best
point to separate new class and known class.

Figure 2 provides an illustration on this strategy. Firstly,
we assume that 3000 candidates of new class are in the
buffer B, and a list V (ascending order) according to these
candidates can be obtained as mentioned before. The X-axis
of all three figures is the ordered 3000 instances with respect
to the value of V . Figure 2(b) shows the true label distribu-

Algorithm 2 Deploying SENC-MaS in data stream
Input: G, Li, B - empty buffer of size s
Output: y - class label for each x in a data stream

1: while not end of data stream do
2: for each x do
3: y ← C-MaS(x) # using (1) and (2)
4: if y = new class then
5: B ← B ∪ {x}
6: if |B| ≥ s then
7: Update (G, L, B)
8: B ← NULL
9: end if

10: end if
11: Output y ∈ {1, . . . , c, new class}
12: end for
13: end while

tion of those ordered instances. The red is the new class and
the blue is the known class. We can see that two kinds of
the known classes mostly distribute on the right side, that
means they have large value in list G. On the contrary, the
new class with small value in list V distributes mostly on
the left side; Figure 2(c) shows the SDdiff curve calculated
by formula mentioned before. As can be seen from Figure
2(c), the point marked which yields the minimum SDdiff can
be chosen as the threshold to separate the novel class and the
known classes in the buffer.
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 Ordered instances

(a) V curve.
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Figure 2: An illustration on determining the new class and
the known classes in the buffer.

- Classification on known classes. We calculate the inner
product between a testing instance and every local matrix
sketching Li. We define:

φi(x) = max〈x, [Li]j,:〉, ∀i, j
i ∈ {1, 2, ..., c}, j ∈ {1, 2, ..., nj} (6)

Finally, Eqn.(2) produces the index of maximum value of
the list {φ1(x), φ2(x), · · · , φc(x)} as class number.

If C-MaS(x) outputs new class, x is placed in buffer B
which stores the candidates of the previously unseen class
(line 5). When the number of candidates has reached the
buffer size s, the candidates are used to update both the
global and local sketching (line 7). Once these updates are
completed, the buffer is reset and the new model is ready for
the next test instance in the data stream.

Update sketching. The update process is described in Al-
gorithm 3. Before starting, similar to (Haque, Khan, and
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Algorithm 3 Update
Input: G, L - existing sketching, B - input data
Output: the new G, L, threshold’

1: initialize: All instances in B are assigned the true class
YB, B′ is a sub set of B including k new class instances,
Q′ is a list like in Eqn.(5) with respect to B′ . Y ′

B is a set
of r new class types in YB, n - the number of instances
is used to compute the old threshold

2: G ← Construct Sketching(B′,G)
3: threshold’ ← threshold×n+

∑k Q′

n+k
4: for i = 1, . . . , r do
5: Lnew ← Construct Sketching ({(x, y)|x ∈ B, y =

Y ′
B(i)},Lnew) # Lnew - all zeros matrix

6: L ← L ∪ Lnew

7: update the number of known class c
8: end for

Baron 2016; Mu, Ting, and Zhou 2016), we assume all in-
stances in B are assigned the true class information.

For global sketching G, it is still an unsupervised pro-
cedure by using function Construct Sketching in line 2.
This process leads to the global sketching with new class
information. For local matrix sketching L, a newly grown
sketching Lnew for new class is produced to update L (in
line 4∼8). Threshold will be upgraded by using the equation
in line 3. Note that if one new class is with small amount of
instances, it will not be used for updating temporarily and
stay in buffer to wait for more instances.

Discussion

Concept drift. As mentioned before, there are some known
classes instances in the buffer, they are not used for updating
model in algorithm 3. From another perspective, it is pos-
sible that the appearance of these known classes instances
is due to concept drift. We can transfer them to another
memory and wait for more instances, then existing concept
drift solutions can be adopted to detect concept drift for each
known class. If the concept drift occurs, the relevant sketch-
ing will be updated by using function Construct Sketching.

The error of approximation and complexity. In (Lib-
erty 2013), the bound of difference between original ma-
trix A ∈ Rm×d and sketching B ∈ Rl×d is given as:
∀x, ||x|| = 1, 0 ≤ ||Ax||2 − ||Bx||2 ≤ 2||A||2f/l. Or
BTB ≺ ATA and ||ATA − BTB|| ≤ 2||A||2f/l. Further-
more, Ghashami et. al. (2015) provided more detail of the-
oretical analysis of this technique. In this paper, our core
technique is extension of Frequent-Direction method so that
the global sketching matrix and the local sketching matrix
also can be offered theoretical bound.

In training and updating procedure, the main time con-
sumption is on the SVD. A basic matrix sketching runs in
O(mdl) time to produce a sketch of size l × d from m in-
stances. The total running time in our framework is there-
fore bounded by O(mdg +

∑
nidli). An update efficiency

analysis will be demonstrated in experimental section.
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Figure 3: The class distribution of one simulated stream on
MNIST data set. The X-axis is data streaming and the Y-axis
is class information.

Experiment

Experimental setup

Data sets. Three benchmark data sets are used to assess the
performance of all methods, including KDDCup991, Forest
Cover2, MNIST3. In particular, we use the 10 percent ver-
sion of the KDDCup99 data set, and it contains 12 largest
classes. An initial training set with two known classes is
available to train the model, We simulate a data stream on
each benchmark data set including both instances of the two
known classes and multiple new classes, note that those new
classes appear in the different periods in this simulated data
stream with uniform distribution. When buffer is full, model
will be updated immediately. After updating, model can
continuously deal with another new classes in the streaming.
The experiments on each data set are repeated for 10 times
with different simulated streams and both the mean and the
standard variance of the performance are reported.

In addition, a real news summary stream is used to evalu-
ate performance. it is crawled over a period of time by using
the New York Times API4. There are 10k news items cat-
egorised into 8 classes. The most common 5 classes, i.e.,
“World”, “U.S.”, “Sport”, “Business Day” and “Arts”, are
used as the initial known classes to train the initial model.
The class “N.Y./Region”, “Fashion & Style” and “Technol-
ogy” are regarded as new classes which occur in the stream-
ing. Each item is preprocessed using the “word2vec” tech-
nique5 to produce a 1000-dimension feature vector. In order
to illustrate distribution of experimental stream clearly, Two
examples will be presented in Figure 3 and Figure 4.

Competing algorithms. We compare with: iForest +
KNN: iForest (Liu, Ting, and Zhou 2008) is an unsuper-
vised anomaly detector which can be treated as new class
detector by isolating new class data. We combine it with
KNN as classifier; LACU-SVM (Da, Yu, and Zhou 2014):
this method trains c binary classifiers fc(·) for each known
class. LACU-SVM makes a prediction for the known class

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2https://kdd.ics.uci.edu/databases/covertype/covertype.

data.html
3http://cis.jhu.edu/ sachin/digit/digit.html
4http://developer.nytimes.com/
5https://radimrehurek.com/gensim/index.html
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Table 1: Comparisons of different methods on simulated streams.
KDD Cup 99 Forest Cover MNIST

Algorithm Accuracy F-measure Accuracy F-measure Accuracy F-measure
iForest+KNN 0.867±0.01 0.882±0.04 0.707± 0.02 0.742± 0.08 0.720 ± 0.06 0.593 ± 0.05
LACU-SVM 0.853±0.05 0.827± 0.02 0.702± 0.07 0.752± 0.11 0.752 ± 0.01 0.697 ± 0.04

SAND-F 0.880±0.03 0.892± 0.03 0.799± 0.02 0.771± 0.03 0.725 ± 0.04 0.622 ± 0.03
ECSMiner 0.857± 0.03 0.852±0.06 0.823± 0.05 0.794± 0.02 0.745 ± 0.07 0.641 ± 0.03

SENC-non-MaS 0.792± 0.08 0.722±0.13 0.633± 0.02 0.651± 0.05 0.701 ± 0.07 0.652 ± 0.06
SENC-MaS 0.897± 0.03 0.902±0.02 0.792± 0.04 0.752± 0.07 0.817 ± 0.05 0.710 ± 0.09
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Figure 4: New York Times news stream. The X-axis is data
streaming and the Y-axis is class information of each item.

if maxk fk(x) > 0; otherwise x is predicted as belonging to
the emerging new class; SAND-F (Haque, Khan, and Baron
2016): This is a framework that maintains an ensemble of
clustering-based classifier models, each trained on a differ-
ent dynamically determined partially labeled chunk of data;
ECSMiner (Masud et al. 2011): ECSMiner is an ensemble
framework for SENC problem, and a new measure is de-
fined to decide whether they are emerging new classes. K
nearest neighbor is used as the classifier to make predictions
for instances of known classes; SENC-non-MaS: our pro-
posed framework works on original space without building
any sketches, KNN is as classifier.

Algorithms settings and evaluation metrics. All meth-
ods are executed in the MATLAB environment. The fol-
lowing implementations are used: LACU-SVM and iFor-
est were the codes as released by the corresponding au-
thors; The ECSMiner and SAND-F code are completed
based on the authors’ paper (Masud et al. 2011; Haque,
Khan, and Baron 2016). Number of trees in iForest is set
to 50 and ψ = 200. Parameters in LACU-SVM are set by
ramps = −0.3, η = 1.3, λ = 0.1,max iter = 10 accord-
ing to authors paper. ECSMiner employs K-means and K
is set to 5. In SAND-F, ensemble size t is set to 6, q = 50
and τ= 0.4. In SENC-MaS, the buffer of size s = 3000,
L = N ∗ 0.8, li = ni ∗ 0.8. The data size of the initial
training set D is 2000 per class.

Two measurements are used in this paper. One is Ac-
curacy, Accuracy = Anew+Aknown

m , where m is the total
number of instances, Anew is the number of emerging
class instances identified correctly, Aknown is number of
known class instances classified correctly; the other is the F-
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Figure 5: An illustration result on the MNIST data set. Av-
erage F-measure for each method is marked at the end of
each line.

measure for new class detection, which is calculated when
buffer is full.

Results

Simulated stream. The results of simulated stream are
shown in Figure 5 and Table 1. Figure 5 shows one sim-
ulated stream result on the MNIST data set. Note that dif-
ferent methods have different update points, and the marked
F-measure is average of all results in the stream. We will
run ten independent experiments with different simulated
streams on each data set and both the mean and the standard
variance of the performance are reported in Table 1.

SENC-MaS maintains the good performance in data
streams with new classes continually emerging. The clos-
est contenders are ECSMiner and SAND-F, both of them
employ an ensemble framework. While ECSMiner needs to
provide with all true labels in order to train a new classi-
fier; and accuracy of SAND-F depends on base classifier. It
is difficult to tune appropriate parameters for LACU-SVM.
iForest + KNN using two frameworks still performed worse.
SENC-non-MaS is different type of our method, its result
also shows our proposed algorithm efficient.

Real-world stream. Figure 6(a) shows SENC-MaS per-
forms better than other methods. The performance of
SAND-F and ECSMiner are unstable in the stream as
demonstrated in Figure 6(a). SENC-non-MaS results in the
worst performance although it is the simplest. The remain-
ing two methods hinge heavily upon parameter settings.

Update efficiency analysis. Four algorithms with better
performance are chosen to analyze update efficiency on real-
world stream, and Figure 6(b) shows the average of whole
update time in the stream. There is no doubt that SENC-MaS
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Figure 6: Result on New York Times news stream.

0.0 0.5 1.0
0.5

0.6

0.7

0.8

0.9
Accuarcy

Sketching size

(the percent of whole original data size)

 Global Sketching

 Local Sketching

Figure 7: The influence of size of sketching.

achieves faster update time, and it should be the best choice
for a real-time task.

Parameter analysis. We study the influence of two pa-
rameters in SENC-MaS including the size of sketch g and
li. The initial conditions are same as before. We test per-
formance accuracy with different sketch size of GS and LS
on MNIST data set. When testing one parameter, another
is fixed. As can be seen from Figure 7, we can use greater
than 50 percent of original data size to guide the setup of
sketching size in practice. Note that similar results can be
concluded on other data sets.

Conclusion

This paper tackles the SENC problem. We propose SENC-
MaS which uses two low-dimensional matrix sketches
for detecting new class and classifying known classes.
These two sketches are continuously updated in the stream.
Empirical evaluation shows that SENC-MaS outperforms
existing methods. Future work includes improving further
the efficiency and scalability, and exploring infinite stream
and concept drift. Theoretical guarantee is a future issue.
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