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Abstract

Symmetry is the essential element of lifted inference that has
recently demonstrated the possibility to perform very efficient
inference in highly-connected, but symmetric probabilistic
models. This raises the question, whether this holds for opti-
mization problems in general. Here we show that for a large
class of optimization methods this is actually the case. Specif-
ically, we introduce the concept of fractional symmetries of
convex quadratic programs (QPs), which lie at the heart of
many AI and machine learning approaches, and exploit it to
lift, i.e., to compress QPs. These lifted QPs can then be tackled
with the usual optimization toolbox (off-the-shelf solvers, cut-
ting plane algorithms, stochastic gradients etc.). If the original
QP exhibits symmetry, then the lifted one will generally be
more compact, and hence more efficient to solve.

Introduction

Convex optimization is arguably one of the main motors
behind Artificial Intelligence (AI) as it enables inference
and learning in a wide variety of AI models, such as SVMs,
LASSO and efficient approximations (e.g. variational ap-
proaches, convex NMF) to hard inference tasks. The lan-
guage in which convex optimization problems are specified
includes inequalities, matrix and tensor algebra, and software
packages for convex optimization such as CVXPY (Diamond,
Chu, and Boyd 2014) recreate this language as an interface
between the user and the solver. Unfortunately, a pure alge-
braic language has one shortcoming: it is difficult—if not
impossible—for the non-expert to directly make use of the
discrete, combinatorial structure often underlying convex pro-
grams; pixels depend only on neighboring pixels; the reward
of placing a cup on a table does not depend on whether the
window in the next room is open. Having a richer represen-
tation such as first-order logic to express the combinatorial
structure and an automatic way to utilize it in the solver, how-
ever, is likely extend the reach and efficiency of AI. This has
been demonstrated by statistical relational learning (SRL)
that has argued in favor of first-order languages when deal-
ing with complex graphical models, see e.g. (De Raedt et
al. 2016) for a recent overview. Due to the high-level na-
ture of the relational probabilistic languages, the low-level
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(ground) model they produce might often contain redundan-
cies in terms of symmetries. Lifted probabilistic inference
approaches (Poole 2003) exploit these symmetries to perform
very efficient inference in highly-connected (and hence oth-
erwise often intractable for traditional inference approach)
but symmetric models. Intuitively, one infers which variables
are indistinguishable in the ground model (if possible with-
out actually grounding) and solves the model treating the
indistinguishable variables as groups instead of individuals to
reduce the dimensionality of the model. Unfortunately, SRL
does not support convex quadratic programs.

Here, we demonstrate that the core idea of SRL can be
transferred to convex quadratic programming. As our main
contribution, we formalize the notion of symmetries of con-
vex quadratic programs (QPs). Specifically, we first show
that unlike for graphical models, where the notion of indistin-
guishability of variables is that of exact symmetry (automor-
phisms of the factor graph), QPs admit a weaker (partitions
of indistinguishable variables which are at least as coarse) no-
tion of indistinguishability called a fractional automorphism
(FA) resp. equitable partition (EP) computable in quasi-linear
time. This implies that more general lifted inference rules for
QPs can be designed. This is surprising, as it was believed
that FAs apply only to linear equations. Second, we inves-
tigate geometrically how FAs of quadratic forms arise. The
existing theory of symmetry in convex quadratic forms states
that an automorphism of xTQx corresponds to a rotational
symmetry of the semidefinite factors of Q. We generalize this
in that FA of xTQx can be related not only to rotations, but
also to certain scalings. This then results in the first approxi-
mate FA approach based on standard clustering techniques
and whitening. Finally, we tackle the question to which ex-
tend kernels might preserve fractional symmetry. All this is
embedded in the first relational QP language as illustrated in
Fig. 1(left), which is not discussed due to space limitations.

In doing so, the present work is the first that introduces
relational convex QPs and studies their symmetries. Indeed,
there are symmetry-breaking branch-and-bound approaches
for (mixed–)integer programming (Margot 2010) that are also
featured by commercial solvers. QPs, however, do not feature
branch-and-bound solvers. For the special fragment of LPs,
(Kersting, Mladenov, and Tokmakov 2015) have introduced a
relational language and shown how to exploit fractional sym-
metries. (Relaxed) graph automorphisms and variants have
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# logical query for linking papers
linked(I1, I2) = label(I1) & query(I2) & (cite(I1, I2) | cite(I2, I1))
# inline definitions
slacks = sum{I in labeled(I)} slack(I); coslacks = sum{I1, I2 in linked(I1, I2)} slack(I1,I2)
# QUADRATIC OBJECTIVE, the main novelty compared to [Kersting et al., 2015]
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I); # correct prediction
subject to forall {I in labeled(I)}: slack(I) >= 0; # slacks are positive
# TRANSDUCTIVE PART: cited instances should have the same labels.
subject to forall {I1, I2 in linked(I1, I2)}: labeled(I1) * predict(I2) >= 1 - slack(I1, I2);
subject to forall {I1, I2 in linked(I1, I2)}: coslack(I1, I2) >= 0; #coslacks are positive

Figure 1: Illustration of the relational QP language, a novel extension of the relational LP language due to (Kersting, Mladenov,
and Tokmakov 2015). (Left) A relational SVM (TC-QP-SVM) for collective classification of objects with relations among them,
here scientific papers with citations. No “relational” kernel is used, just a linear one with relational constraints taking the citation
links into account. (Right) QPs outperform LPs, in particular for less many observed labels. (Best viewed in color)

been explored for graph kernels (Shervashidze and Borgwardt
2009) and (I)LP-MAP inference approaches (Bui, Huynh,
and Riedel 2013; Mladenov, Globerson, and Kersting 2014;
Jernite, Rush, and Sontag 2015). Unfortunately, their proofs
do not carry over to (convex) QPs. (Güler and Gürtuna 2012)
and references in there have studied automorphisms but
not fractional ones of convex sets. Finally, indeed, several
expressive modeling languages for mathematical program-
ming have been proposed, see e.g. (Wallace and Ziemba
2005) for a recent overview. They are mixtures of declar-
ative and imperative programming styles using sets of ob-
jects to index multidimensional parameters and variables.
Recently, (Diamond, Chu, and Boyd 2014) enabled an
object-oriented approach to constructing optimization prob-
lems. None of them provide integrated capabilities with
relational logic, not to speak of lifting. The need for rela-
tional mathematical programming languages is witnessed
e.g. in natural language processing (Yih and Roth 2007;
Riedel, Smith, and McCallum 2012) and the recent push
to marry statistical analytic frameworks like R and Python
with relational databases (Ré et al. 2015).

We proceed as follows. We start off by developing automor-
phisms of QPs, introducing the required background on the
fly. Then, we generalize this to fractional symmetries. Before
concluding, we illustrate our theoretical results empirically.

Exact Symmetries of Convex QPs

Let us start off with exact symmetries of convex QPs. Lifting
convex quadratic programs essentially amount to reducing
the size a model by grouping together “indistinguishable”
variables and constraints. In other words, they exploit sym-
metries. To formalize the notion of lifting more concisely let
us consider a convex program, i.e., an optimization problem
of the form

x˚ “ argminxPD Jpxq , (♣)
over x P Rn, where J : Rn Ñ R is a convex function,
and D is a subset of Rn, typically specified as the solution
a system of convex inequalities f1pxq ď 0, . . . , fmpxq ď 0.
A convex quadratic program (QP) is an instance of p♣q
where Jpxq “ xTQx`cTx is a quadratic function with Q P
Rnˆn is symmetric and positive semi-definite, and D is a
convex subset of Rn specified as a system of linear equations,
D “ tx : Ax ď bu. If Q is the zero matrix, the problem is

known as a linear program (LP). If we add convex quadratic
constraints to a quadratic program, we obtain a quadratically
constrained quadratic program (QCQP). We will not deal
explicitly with QCQPs in this paper, however, by the end of
our discussion of quadratic functions, it will be evident that
our results can easily be extended to such programs. We shall
denote a QP by the tuple QP “ pQ, c, A, bq.

We are now interested in partitioning the variables of the
program by a partition P “ tP1, . . . , Ppu, Pi X Pj “ H,Ť

i Pi “ tx1, . . . , xnu, such that there exists at least one
solution that respects the partition. More formally, P is a
lifting partition of p♣q if p♣q admits an optimal solution
with xi “ xj whenever xi and xj are in the same class in P .
We call the linear subspace defined by the latter condition RP .
Having apriori obtained a lifting partition of the QP, we can
restrict the solution space to DXRP . That is, we constrain
indistinguishable variables to be equal, knowing that at least
one solution will be preserved in this space of lower dimen-
sion. Since ground variables of the same class are now equal,
they can be replaced with a single aggregated (lifted) variable.
The resulting lifted problem has one variable per equivalence
class, thus, if the lifting partition is coarse enough, signifi-
cant dimensionality reduction and run-time savings can be
achieved. To recover a ground solution, one assigns the value
of the lifted variable to every ground variable in its class.

One way to demonstrate that a given partition P is
a lifting partition for p♣q is by showing that averag-
ing any feasible x over the partition classes (i.e. rxi “

1
| classpxiq|

ř
xjPclasspxiq xj) yields a new feasible rx with

Jprxq ď Jpxq. Theorem 1 that we will prove later on will
provide sufficient conditions for this. As a consequence, by
averaging any optimal solution we get another optimal solu-
tion which respects P , implying that P is a lifting partition.
Please note if there is only one solution with different values
in all coordinates then this certifies that there are no sym-
metries. In any case, one bit of notation that is handy in the
analysis averaging operations is the partition matrix. To
any partition P we can associate a matrix XP P Qnˆn such
that XP

ij “ 1{| classpxiq| if xj P classpxiq or 0 otherwise.
With XP defined thusly, averaging x over the classes of P is
equivalent to multiplying by XP , i.e., rx “ XPx. Partition
matrices are always doubly stochastic (XP1 “ 1), sym-
metric (pXPqT “ XP ), and idempotent (XPXP “ XP ) –
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as a consequence also semidefinite.
Example. We seek to minimize the function xTQx over
x P R4, subject to x ě 1, with Q given in Fig. 2. As a
lifting partition, we propose P “ ttx1, x3u, tx2, x4uu (in
the next paragraph, we will explain how one could compute
this lifting partition). The corresponding partition matrix XP
is also shown on Fig. 2. Let us demonstrate that averaging
over the classes of P decreases the value of the solution. For
example, for x0 “ r2, 1, 1, 2sT , xT

0 Qx0 “ 3. On the other
hand, the class-averaged rx0 “ XPx0 “ r1.5, 1.5, 1.5, 1.5sT
yields a value of 0. In fact, one could notice that any feasible
x respecting the partition yields a value of 0, so any such
solution is optimal. Moreover, if all coordinates of x are
already greater than or equal to 1, then the same holds for
rx, as averages cannot be lower than the minimum of the
averaged numbers. Thus, the compressed problem reduces to
finding any two numbers that ě 1 . l

An intuitive way to find lifting partitions is via automor-
phism groups of convex problems. We define the automor-
phism group of p♣q, Autp♣q, as the group of all pairs of per-
mutations pσ, πq with permutation matrices pΣ,Πq, such that
for all x, Jpxq “ JpΠxq and pf1pΠxq ď 0, . . . , fmpΠxq ď
0q “ pfσp1qpxq ď 0, . . . , fσpmqpxq ď 0q. In other words,
renaming the variables yields the same constraints up to
reordering. For linear programs (LPs), this is equivalent to
ΣA “ AΠ and Σb “ b and cTΠ “ cT . The partition
that groups together xi with xj if some Π in Autp♣q ex-
changes them is called an orbit partition. An interesting
fact is that if P is an orbit partition, XP is the symmetrizer
matrix of Autp♣q, XP “ 1

| Autp♣q|
ř

pΣ,ΠqPAutp♣q Π. One
way to detect renaming symmetries is by inspection of the
parameters of the problem. E.g., for a convex quadratic pro-
gram pQ, c, A, bq, a set of necessary conditions for the pair
of permutations pΣ,Πq to be a renaming symmetry is: (i)
ΠQ “ QΠ (equivalently ΠQΠT “ Q), (ii) cTΠ “ cT , (iii)
ΣA “ AΠ, and (iv) Σb “ b. Such automorphism groups,
or rather, the orbit partitions thereof, can be computed via
packages such as Saucy (Codenotti et al. 2013). The rea-
son why orbit partitions are lifting partitions of a convex
problem, is that JpXPxq “ Jp 1

| Aut |
ř

pΣ,ΠqPAut Πxq ď
1

| Aut |
ř

pΣ,ΠqPAut JpΠxq “ Jpxq, the inequality being due
to convexity of J . Reconsider our example on Fig. 2. Permu-
tations renaming row/column 1 to 3 resp. 2 to 4 are automor-
phisms, and P is an orbit partition.

For the special case of LPs, (Grohe et al. 2014) have
proven that equitable partitions act as lifting partitions. An
equitable partition (EP) of a square symmetric nˆ n ma-
trix M is a partition P of 1, . . . , n, such that XP satisfies
XPM “ MXP . For rectangular matrices, we say that a
partition P of the columns is equitable, if there exists a parti-
tion of the rows Q such that XQM “ MXP . For LPs, we
say that a partition of the variables P is equitable if there
exists a partition of the constraints Q such that: cTXP “ cT ,
XQb “ b, and XQA “ AXP . EPs and their correspond-
ing partition matrices are referred to as fractional auto-
morphisms resp. fractional symmetries—we will use both
terms in an exchangeable ways—as they satisfy the same
conditions as automorphisms from the previous paragraph,

A b

1
3

2

4

2
3

4 1

Figure 2: Running example for fractional symmetries of
QPs. (Top) A matrix specification of minimizexPR4 xTQx
s. t. Ax ď b and the partition matrix XP of the parti-
tion P “ ttx1, x3u, tx2, x4uu. (Bottom) The factor B with
BBT “ Q as well as a sketch of the rows of B. Multiplying
B by the matrix M on the right, which equates to rescaling
and rotating the vectors by 45˝, is a symmetry of B; it yields
the same configuration modulo renaming.

except that XP is a doubly stochastic matrix and not a permu-
tation matrix. Moreover, EPs have an equivalent combinato-
rial characterization. A partition P of M P nˆ n is equitable
if for all i, j in the same class P and every class P 1 (includ-
ing P 1 “ P ), we have

ř
kPP 1 Mik “ ř

kPP 1 Mjk. In other
words, if we reorder the rows and columns of M such that
indices of the same class are next to each other, M will take
on a block-rectangular form where every row (and column)
of the block has the same sum. One special flavor of EPs are
what we will call counting partitions, where a narrower con-
dition holds, |tk P P 1|Mik “ cu| “ |tk P P 1|Mjk “ cu| for
all c P R, and Mii “Mjj if i, j are in the same class. They
partition M into blocks where each row (and column) has the
same count of each number. The EP of our example is such a
partition. In fact, any orbit partition of a permutation group is
a counting partition as well. EPs have several very attractive
properties when used as lifting partitions. First, the coarsest
WP (as well as the coarsest counting equitable partition) of
a matrix is computable in Oppe ` nq logpnqq time, where
e is the number of non-zeroes in the matrix, via an elegant
algorithm called color refinement(Grohe et al. 2014). Second,
the coarsest EP is at least as coarse as the orbit partition of a
matrix, hence it offers more compression.

Fractional Symmetry of Convex QPs

Having developed automorphisms of convex QPs, we now
move on to our main contributions. We develop FA esp. EPs
of a convex QP. We start off with showing that they are lifted
partitions. Then, we provide a geometric interpretation and
investigate whether kernels preserve fractional symmetries.

Equitable Partitions (EPs) of QPs: We prove now that
the lifting partition of a convex QP captures its symmetries.

Theorem 1. Let QP “ pQ, c, A, bq be a convex quadratic
program. If P is a partition of the variables of QP , such
that: (a) XPQ “ QXP and cTXP “ cT , (b) there exists
a partition Q of the constraints of QP such that XQb “ b
and XQA “ AXP , then P is a lifting partition for QP .
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Proof. We proceed along the lines drawn out in the previous
section and show that for any feasible x, x1 “ XPx, the
class-averaged x, is both feasible and Jpx1q ď Jpxq. Let
us start with the latter. Note that both Q and XP are diago-
nalizable (i.e. admit an eigendecomposition) since they are
symmetric and real matrices. It is known that if two diago-
nalizable matrices commute (as is our starting hypothesis,
XPQ “ QXP ), then they are also simultaneously diagonal-
izable. That is, there exists an orthonormal basis of vectors
u1, . . . ,un such that Q “ ř

i λiuiu
T
i “ UΛUT and XP “ř

i κiuiu
T
i “ UKUT , where the λi’s and κi’s are nonnega-

tive scalars. Now, Jpx1q “ JpXPxq “ xT pXPqTQXPx`
cTXPx. From our discussion so far and assumption (a),
this is equal to xTUKTUTUΛUTUKUTx ` cTx “
xTUΛK2UTx` cTx. The key observation is that because
XP is doubly stochastic, |κi| ď 1. Hence xTUK2ΛUTx “ř

i κ
2
iλ

ixTuiu
T
i x ď

ř
i λ

ixTuiu
T
i x as λix

Tuiu
T
i x is a

nonnegative quantity. This entails Jpxq ě Jpx1q.
Regarding feasibility, because XQ is a matrix of nonnega-

tive numbers, Ax ď b implies XQAx ď XQb. Due to (b),
this becomes AXPx ď b, that is, Ax1 ď b, demonstrating
the feasibility of x1. We have thus satisfied the two sufficient
conditions stated in the previous section and shown that any
P satisfying our assumptions is a lifting partition for QP . l
Example. Recall Q from our running example on Fig. 2.
However, this time we propose P 1 “ ttx1, x2, x3, x4uu as
a lifting partition with XP 1 “ 1

4 ¨ 14, where 14 is the 4ˆ 4

matrix of ones. We observe that QXP 1 “ XP 1
Q “ 04,

moreover, if we introduce the constraint partition Q1 “
ty1, ..., y4u with partition matrix XQ1 “ XP 1

, we have that
XQ1

A “ AXP 1
and XQ1

b “ b. According to Thm. 1 P 1 is
a lifting partition of the QP in question. l

There are two interesting observations to be made here.
First, we have gained even further compression over our pre-
vious attempt, having a compressed problem with 1 variable
instead of 2. Second, there is no automorphism of Q that
could possibly exchange x1 and x2. As fractional symme-
tries generalize exact symmetries, see e.g. (Godsil 1997), it is
to be expected that coarser equitable partitions than the orbit
partition Q could satisfy the conditions of Thm 1. Moreover,
these observations allow one to gain insight into what frac-
tional symmetry means geometrically for a dataset. This is
important as the matrix Q relates to the data we feed into the
optimization problem for many QPs; e.g., in the SVM dual
QP, the entries of Q are inner products of the training feature
vectors.

Geometry of Fractionally-Symmetric QPs: Our investi-
gation is inspired by the characterization of automorphisms
of semidefinite matrices and quadratic forms. One way to
think about a semidefinite matrix Q is as the Gram matrix of
a set of vectors, i.e. Q “ BBT where B is an nˆ k matrix
and k ě rankpQq. In this light, the quadratic form xTQx
can be seen as the squared Euclidean norm of a matrix-vector
product. That is, xTQx “ xTBBTx “ pBTxqT pBTxq “
||BTx||2. It is a basic fact that the Euclidean norm is in-
variant under orthonormal transformations, that is, for any
orthonormal matrix O and any vector y, ||OTy|| “ y as
yTOOTy “ yTy. Thus, suppose we have a rotational

automorphism of B, i.e., a pair of orthonormal matrix O
and permutation matrix Π, such that ΠB “ BO or also
ΠBOT “ B. That is, rotating the tuple of vectors that are
the rows of B together yields same tuple back, but in different
order. Observe then, that Π would be a renaming automor-
phism for Q, since ΠQΠT “ ΠBOTOBΠT “ BBT “ Q,
implying ΠQ “ QΠ. Moreover, if the right dimension (num-
ber of columns) B is held fixed, the converse is true as well
(Bremner, Dutour Sikrić, and Schürmann 2009). That is, not
only do rotational symmetries of B correspond to renaming
symmetries of Q, but vice-versa, as for fixed k, the semidefi-
nite factors of Q are unique up to rotations.
Example. Our Q from Fig. 2 can be factored into BBT as
shown on Fig. 2. The Figure also shows the plot of these
vectors. If we were to rotate them by 180˝ counter-clockwise,
we would get back the same set of vectors, but in the order
tx3, x4, x1, x2u. The permutation matrix according to this
reordering is a renaming automorphism of Q. l

Using the case of automorphisms as a motivation, we now
turn to fractional automorphisms. More precisely, given a
doubly stochastic and idempotent matrix X , such that XQ “
QX , we would like to derive a similar characterization of X
in terms of B. As we prove now, this is indeed possible.
Theorem 2. Let X be a symmetric and idempotent (as our
usual color-refinement automorphisms are) matrix, and Q “
BBT be a positive semidefinite matrix with B having full
column rank. Then XQ “ QX if and only if there exists a
symmetric matrix R such that XB “ BR.
Proof. (only if direction): Let R be such that R “ RT and
XB “ BR . Then, XQ “ XBBT “ BRBT . Making
use of R “ RT this rewrites as BRTBT “ BpBRqT “
BpXBqT “ BBTXT “ QX , as X is symmetric.

(if direction): Let XQ “ QX with X being idem-
potent and symmetric. Then, let R “ BTXBpBTBq´1.
Observe that BpBTBq´1 exists and is the right pseu-
doinverse of BT , i.e., BTBpBTBq´1 “ Ik, as B has
full column rank. Therefore, left multiplying by Ik yields
XB “ XBBTBpBTBq´1 “ BBTXBpBTBq´1 “
BR . It remains to demonstrate that R is symmetric. Re-
call that RTR and pRTRq´1 are symmetric matrices. Then,
RTR “ “

BTXBpBTBq´1
‰T

BTXBpBTBq´1 . Since,
pBTBq´T “ pBTBq´1 and XBBT “ BBTX , this simpli-
fies to pBTBq´1pBTBqXXBpBTBq´1. Since XX “ X
and using Ik, this simplifies to BTXBpBTBq´1 “ R .
Hence, as RTR “ R, R is symmetric. l

This theorem holds the key to explaining why all 4 dimen-
sions in our example are compressed together. To see why,
consider the situation on Fig 2.
Example. Fig. 2 shows the factor B of Q (as well as a sketch
of its rows) and an invertible matrix M , which consists of a
clockwise rotation by 45˝ which aligns the vectors with the
axes, a rescaling of the vectors along the axes, then a further
45˝. Multiplying B by M yields back the same row vectors
modulo a cyclic permutation, exchanging x4 with x1, x1 with
x2 and so on, i.e. ΣB “ BM . Moreover BMMTBT ‰ Q.
The group of tM,M2,M3,M4u is thus a group that does
not correspond to any group of automorphisms of Q, yet, the
symmetrizer matrix 1

4

ř4
i“1 M

i is symmetric (and equal to

2353



02), so it qualifies under the conditions of Thm. 2. l
From this we can conclude that certain scaling symmetries

of B do not result in symmetries of Q, but do result in frac-
tional symmetries of Q (Thm. 2 ). On the other hand, by
Thm. 1, we can also infer that these symmetries can safely be
compressed out when minimizing the quadratic form xTQx.
Note finally that even these symmetries do not exhaust the
possible matrices of Thm. 2, unless the graph isomorphism
problem is P-TIME solvable. Thm. 2 allows for partitions and
matrices that do not correspond to any group. Characterizing
them is an exciting avenue for future work.

Approximately Lifted SVMs: Indeed, one may argue
that the (rotational) automorphism group of most Euclidean
datasets consists of the identity transformation alone. This fol-
lows from the same result for convex bodies, see e.g. (Güler
and Gürtuna 2012), and is to be expected, since the symmetry
properties of a given dataset B can easily be destroyed by
slightly perturbing the body. To bypass this, we propose the
first approximate lifting approach for Euclidean datasets.

Proposition 3. Let B be an Euclidean dataset and D its
corresponding pairwise distance matrix. Then Bi¨ and Bj¨
are in the same (rotational) orbit if an only if Bi¨ and Bj¨
have the same sorted distances to all other data points.

Proof. The EP of D encodes the symmetries of B. To com-
pute it, we represent it as a colored graph C of D. We note
that C is a clique with edge colors encoding distances. We
turn this into a node-colored graph by assigning the same
color to all nodes that have identical edge-color signatures.
Running color-refinement on this graph does not add any new
color since C is a clique. l

This suggest a simple way to compute proper approxima-
tions of (rotational) EPs of B as illustrated in Fig. 3(left): (1,
optional) Whiten the data to capture some scalings, (2) com-
pute the pairwise distance matrix D of B (potentially using
anchor points), (3) sort each row of D, and (4) run any cluster
algorithm on the sorted distance matrix. More importantly,
it connects lifted inference to SVM approaches that reduce
the size of the optimization problem by extracting a small
number of representatives from the original training set and
using them to train an approximate SVM, see e.g. (Boley and
Cao 2004). In particular, one can easily prove (proof left out
due to space restrictions) that the same PAC-style generaliza-
tion bound applies (Cao and Boley 2007): the approximately
lifted SVM will very likely have a small expected error rate
if it has a small empirical loss over the original dataset.

Kernels and Equitable Partitions: Finally, we touch
upon the relationship between the fractional symmetry of data
vectors and kernels. Kernel functions often appear in conjunc-
tion with quadratic optimization in machine learning prob-
lems as a means of enriching the hypothesis space of a learner.
From an algebraic perspective, the essence of the approach is
to replace the entries of the semidefinite matrix Q with the
values of a kernel function, which represents the inner prod-
uct of data vectors under some non-linear transformation in a
high dimensional space. That is, in place of Qij “ 〈B¨i, B¨j〉,
we use Kij “ kpB¨i, B¨jq “ 〈φpBi¨q, φpBj¨q〉, where
φ : Rn Ñ Rm is some non-linear function with m much
greater than n or even infinite. Due to the prevalence of ker-

nels, it is important to understand whether kernels preserve or
destroy symmetries. Here, we will examine two popular ker-
nels, the polynomial kernel, kPOLYpx,yq “ p〈x,y〉 ` 1qg
and kRBFpx,yq “ expp´2γ2||x ´ y||22q, where g is a pos-
itive integer and γ is a nonzero real number. We find that
in both cases, if Q “ BBT admits a counting equitable
partition, then K will admit the same partition as well, i.e.,
these two kernels preserve fractional symmetry of Q up to
counting (recall, that includes rotational symmetry of B):

Proposition 4. Let B be a matrix whose rows are data in-
stances. Then, if Q “ BBT admits a counting equitable
partition P with partition matrix XP , then both kernel ma-
trices (a) KPOLY and (b) KRBF of this set of vectors admit
the same counting partition.

Proof. Recall that an EP P is a counting partition for Q if for
all xi, xj in the same class P , and for every class P 1 (includ-
ing P 1 “ P ), |txk P P 1|Qik “ cu| “ |txk P P 1|Qjk “ cu|
for all c P R, and Qii “ Qjj . (a) A direct consequence
of this definition is that if P is a counting partition for
Q, it will be a counting partition for every other matrix
whose equality pattern respects that of Q, in other words,
Qij “ Qpq ñ Kij “ Kpq. KPOLY has exactly this
property: KPOLY

ij “ p〈Bi¨, Bj¨〉 ` 1qg “ pQij ` 1qg. It is
clear that if Qij and Qpq are equal, the values of the last ex-
pression would be equal as well. (b) First, we note KRBF

ij “
expp´2γ2||Bi¨||2qexpp´2γ2||Bj¨||2qexpp´γ2 〈Bi¨, Bj¨〉q.
This allows one to rewrite KRBF in terms of Q:
KRBF

ij “ expp´2γ2Qiiq expp´2γ2Qjjq expp´γ2Qijq.
Now, let xi, xj P P and xp, xq P P 1 such that Qip “ Qjq.
Since Qii “ Qjj (by virtue of being in P ) and Qpp “ Qqq

(by virtue of P 1), we have that KRBF
ip “ KRBF

jq hence counts
across classes are preserved. l

To summarize, convex QP can be lifted without loss of
quality: compute in quasi-linear time its quotient model w.r.t
its EP as illustrated in Fig. 3(right). For the polynomial and
RBF kernels, this also leads to valid liftings.

Empirical Illustration

Our intention here is to investigate whether (Q) AI can po-
tentially benefit from relational and lifted QPs?

As our main experiment, we compared our lifted QP ap-
proach to relational linear programs (Kersting, Mladenov,
and Tokmakov 2015), following their experimental setup for
the Cora dataset (Sen et al. 2008) consisting of 2708 scientific
papers classified into seven classes. Each paper is described
by a binary word vector indicating the absence/presence of a
word from a dictionary of 1433 words. The citation network
of the papers consisting of 5429 links. The goal is to predict
the class of the paper. For simplicity, we converted this prob-
lem to a binary classification problem by taking the largest of
the 7 classes as a positive class. We compared four different
learners on Cora. The base classifiers are an8-norm regular-
ized SVM (LP-SVM) (Zhou, Zhang, and Jiao 2002) and a
conventional SVM (QP-SVM) (Vapnik 1998) formulated as a
convex QP. Both use the word feature vectors and do standard
linear prediction (no kernel used). Additionally we consid-
ered transductive, collective versions of both of them, again
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Figure 3: (Left) Approximate EPs without scalings on 3D datasets. The colors encode the rotational symmetries under a budget
of 4 resp. 5 orbits. E.g. the“hand” consists of 327.323 points (a clique with 50 ¨ 1010 edges) running in ă 5 secs using 2500
anchor points. (Right) Convex QPs can be exactly lifted by running color-refinement (Ahmadi et al. 2013) on the colored graph
encoding it. This takes quasi-linear time, and one can directly read off XP . After color-refinement, nodes with the same color
form the quotient QP of the original QP. Since the corresponding constraints of variables with the same color (they are in the
same orbit) are identical, one can drop all but one of the identical constraints; this forms XQ. This compression is exact, i.e., the
lifted QP computes an optimal solution of the original QP. (Best viewed in color)

following (Kersting, Mladenov, and Tokmakov 2015), de-
noted as TC-LP-SVM resp. TC-QP-SVM. Both transductive
approaches have access to the citation network and imple-
ment the following simple rule: whenever we have access to
an unlabeled paper i, if there is a cited or citing labeled paper
j, then assume the label of j as a label of i. To account for
contradicting constraint (a paper citing both papers of and not
of its class), we introduced separate slack variables for the
transductive constraints and add them to the objective with a
different penalty parameter. This can easily be implemented
by adding a few relational constraints to an existing standard
QP-SVM formulation, see Fig. 1(left). In order to investigate
the performance, we varied the amount of labeled examples
available. That is, we have four cases, where we restricted
the number of labeled examples to t “ 20%, 40%, 60%, and
80% of size of the dataset. We first randomly split the dataset
into a labeled set L and an unlabeled test set B, according
to t. Then, we split L randomly in half, leaving one half A
for training, the other half becoming a validation set C. The
validation set was used to select the parameters of the TC-QP-
SVM in a 5-fold cross-validation fashion. That is, we split
the validation set into 5 subsets Ci of equal size. On these
sets we selected the parameter using a grid search for each
Ci on a AYpCzCiq labeled and BYCi unlabeled examples,
computing the prediction error on Ci and averaging it over
all Cis. We then evaluated the selected parameters on the
test set B whose labels were never revealed in training. We
repeated this experiment 5 times (one for each Ci) for the TC-
SVMs. For consistency, we followed the same protocol with
QP-SVM and LP-SVM, except that the set B Y Ci did not
appear during training as the non-transductive learners have
no use for unlabeled examples. That is, we selected param-
eters by training on AY pCzCiq and evaluating on Ci. The
selected parameters were then evaluated on the test set B. For
all SVM models, we also ran a ground and a lifted version.
The results are summarized in Fig. 1(right): QP-SVM outper-
forms LP-SVM for each setting, both are outperformed by
TC-L/QP-SVM, and TC-QP-SVM outperforms TC-LP-SVM.
While there was no appreciable symmetry in either QP-SVM
or LP-SVM, TC-QP-SVM exhibited significant variable and
constraint reduction: the lifted problem was reduced to up
to 78% of the variables, resp., 70% of the constraints of the

ground problem, while achieving the same accuracy1.
To illustrate our approach on propositional data, we con-

sidered SVM classifiers for varying amounts of overlap be-
tween two classes represented by spherical Gaussians. This
dataset was chosen in order to depict the potential of ap-
proximate symmetries. We trained a lifted SVM (LSVM)
with 200 approximate color classes and a conventional SVM,
both with RBF kernels, on 2500 training examples per
class. We used a grid search together with CV for selecting
γ “ t0.25, 0.50, 1.00, 2.00, 4.00u and C “ t0.5, 1.0, 2.0u.
The performance was measured on an independently drawn
test set of 5000 data points per class. For approximate lifting
we used k-Means using the Euclidean metric and 500 anchor
points. For 4 units apart class centers, the SVM achieved an
error of 0.02 in 20 secs (all numbers in this experiment are
averaged over 10 reruns and rounded to the second digit),
while the LSVM achieved 0.02 in 1.7 secs. For 2 units apart
class centers, the SVM took 98 secs achieving an error of
0.16, while the LSVM achieved 0.17 in 2.1 secs. Thus, the
generalization bound guarantees that the LSVM will very
likely have an expected error rate comparable to the SVM, at
a fraction of time.

Overall, the empirical results are clear evidence for an
affirmative answer to question (Q).

Conclusions

We have deepened the understanding of symmetries in statisti-
cal AI and extended the scope of lifted inference. Specifically,
we have introduced and studied a precise mathematical defi-
nition of fractional symmetry of convex QPs. Using the tool
of fractional automorphism, orbits of optimization variables
are obtained, and lifted solvers materialize as performing
the corresponding optimization problem in the space of per-
orbit optimization variables. This enables the lifting of a
large class of AI tools such as spectral relaxations for MRF
inference (Cour and Shi 2007) and quadratic assignments
problems as implied by (Lu and Boutilier 2015). We here
instantiated the framework for QP-SVMs by developing the
first lifted and relational solvers for them and illustrating

1Qualitatively similar results were obtained on the two-moons
dataset with 150 additional features, each drawn randomly from a
Gaussian per example, using the 4-NN graph as "citation network".
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empirically their benefits. In the future, other AI settings
and more datasets should be explored, one should investi-
gate the link to other data reduction methods, move beyond
convex QPs, and explore our framework for symmetry-based
learning (Gens and Domingos 2014)2.
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