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Abstract

Dictionary learning (DL) is an effective feature learning tech-
nique, and has led to interesting results in many classifica-
tion tasks. Recently, by combining DL with multiple kernel
learning (which is a crucial and effective technique for com-
bining different feature representation information), a few
multi-kernel DL methods have been presented to solve the
multiple feature representations based classification problem.
However, how to improve the representation capability and
discriminability of multi-kernel dictionary has not been well
studied. In this paper, we propose a novel multi-kernel DL ap-
proach, named multi-kernel low-rank dictionary pair learning
(MKLDPL). Specifically, MKLDPL jointly learns a kernel
synthesis dictionary and a kernel analysis dictionary by ex-
ploiting the class label information. The learned synthesis and
analysis dictionaries work together to implement the coding
and reconstruction of samples in the kernel space. To enhance
the discriminability of the learned multi-kernel dictionaries,
MKLDPL imposes the low-rank regularization on the analy-
sis dictionary, which can make samples from the same class
have similar representations. We apply MKLDPL for multi-
ple features based image classification task. Experimental re-
sults demonstrate the effectiveness of the proposed approach.

Introduction

Learning effective features plays a crucial role in image
classification tasks. Dictionary learning (DL) is an impor-
tant feature learning technique with state-of-the-art classifi-
cation performance (Yang et al. 2016). Most of existing DL
methods focus on solving single feature representation based
learning problems (Van Nguyen et al. 2013). Some popu-
lar single feature representation based DL methods include
fisher discrimination dictionary learning (FDDL) (Yang et
al. 2011), label consistent K-SVD (Jiang, Lin, and Davis
2013), projective dictionary pair learning (DPL) (Gu et al.
2014) and kernelized supervised DL (Gangeh, Ghodsi, and
Kamel 2013).

Since more information exists in multiple feature repre-
sentations than in a single one, multiple feature representa-
tions based learning techniques have attracted a lot of re-
search interests (Xu, Tao, and Xu 2013). Nowadays, several
linear multiple feature representations based DL methods
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have been presented. (Shi et al. 2013) presents a multimodal
sparse representation based classification method for classi-
fying lung needle biopsy images, which aims to select the
topmost discriminative samples for each individual modal-
ity as well as to guarantee the large diversity among different
modalities. By designing uncorrelated constraint, uncorre-
lated multi-view discrimination DL (UMD?L) method (Jing
et al. 2014) jointly learns multiple uncorrelated discrimi-
native dictionaries from multiple views. (Wu et al. 2016)
presents a multi-view low-rank dictionary learning (MLDL)
approach to cope with the situation where exist large noises.
This family of methods learn the dictionary by regarding the
feature space of samples to be linear for each representation;
however, in many practical applications, samples usually lie
on a non-linear feature space.

Kernel technology is an effective way to deal with non-
linear data (Zhang et al. 2012). Multiple kernel learning
(MKL) has been widely applied to problems involving data
with multiple feature representations (Bucak, Jin, and Jain
2014; Liu et al. 2014). Recently, a few multiple kernel sparse
representation or DL methods have been presented. With
the predefined dictionary, MKL for sparse representation
based classification (MKL-SRC) method (Shrivastava, Pa-
tel, and Chellappa 2014) uses a two-step training strategy to
learn kernel weights and sparse codes. Multiple instance DL
(MIDL) method (Shrivastava, Pillai, and Patel 2015) formu-
lates multiple instance learning problem as a kernel learning
problem, and separately learns kernel dictionaries for pos-
itive and negative bags. Discriminative multiple kernel DL
(DMKDL) method (Thiagarajan, Ramamurthy, and Spanias
2014) performs DL by using multiple levels of 1-D subspace
clustering in kernel space, and optimizes weights of the en-
semble kernel based on graph-embedding principles.

Motivation

Although improved performance has been reported in the
existing multi-kernel DL methods (Thiagarajan, Rama-
murthy, and Spanias 2014; Shrivastava, Pillai, and Patel
2015), there still remains several critical issues.

(1) Researches in (Gu et al. 2014; Yang et al. 2016)
demonstrate that analysis-synthesis dictionary could provide
a more complete view of data representation than analysis
dictionary or synthesis dictionary. However, existing multi-
kernel DL methods only investigate the kernel representa-



tion of data from the viewpoint of synthesis dictionary.

(2) Existing multi-kernel DL. methods do not make full
use of class label information in DL process. MIDL learns a
positive dictionary and a negative dictionary by employing
the bag label information (positive or negative), and does not
consider collaboratively representing samples by dictionary
bases from all classes. DMKDL utilizes class label informa-
tion for the learning of kernel weights, rather than for the
learning of kernel dictionary, which will directly influence
the discriminative ability of the learned dictionary.

Motivated by the above analysis, we intend to solve the
multiple feature representations based image classification
task by learning kernel dictionary from the viewpoint of
analysis-synthesis dictionary and exploiting the discrimina-
tive information contained in class label more effectively.

Contribution

The major contributions of this paper are summarized below.

(1) We propose a multiple kernel low-rank dictionary pair
learning (MKLDPL) approach, and apply it to multiple fea-
ture representations based image classification. MKLDPL
learns a pair of kernel synthesis and analysis dictionaries for
each class. To the best of our knowledge, it is the first time
to integrate multiple kernel learning and analysis-synthesis
dictionary pair learning into a unified model.

(2) We design a low-rank regularization term, which re-
quires that the learned analysis dictionary for each class
should be low-rank, and therefore the obtained coding coef-
ficients of samples from the same class are low-rank. This
means that samples from the same class can have simi-
lar representations by using the learned analysis dictionary,
which is beneficial to the following classification. To the best
of our knowledge, low-rank technique has never been em-
ployed in analysis-synthesis dictionary pair learning.

(3) We design a structured discriminant term, which re-
quires that each pair of class-specific kernel synthesis and
analysis dictionaries should have good representation ability
to samples from the associated class, but poor representation
ability to samples from other classes.

Related Work

In this section, we briefly review the related multiple ker-
nel dictionary learning methods including DMKDL (Thia-
garajan, Ramamurthy, and Spanias 2014) and MIDL (Shri-
vastava, Pillai, and Patel 2015), then provide a discussion
between our approach and related methods.

DMKDL - DMKDL incorporates the multilevel DL al-
gorithm (Thiagarajan, Ramamurthy, and Spanias 2015) into
MKL framework. In DMKDL, the ensemble kernel matrix
is computed as K = Zle BvKy , where H is the num-
ber of feature representations, K is the kernel matrix corre-
sponding to the b'" feature representation, /3, is the weight
corresponding to K. 3 = [B1,-- -, B can be estimated
by:

min 875}, 8
st. BTST..6=1,>0
where SY, and SY,, are scatter matrices in the kernel space
weighted by elements of intra-class and inter-class affin-

ey
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ity matrices, respectively. With the obtained kernel matrix,
DMKDL learns dictionary with the multilevel DL algorithm.

MIDL - MIDL aims to learn kernel dictionaries sepa-
rately for positive and negative bags. Assume that Y, (Y})
is the concatenation of negative (positive) bags, the recon-
struction error corresponding to negative bags is defined as:
|®(Y,) — @(Yn)AanH%. Here, ®() is a nonlinear map-
ping function, A4,, denotes the matrix corresponding to neg-
ative dictionary, and X, is the coding coefficient matrix cor-
responding to ®(Y,,). The reconstruction error correspond-
ing to positive bags is defined in a similar manner. In ad-
dition, MIDL requires the positive bags to be orthogonal to
negative dictionary:

(2)
where €2 is a positive sample selection matrix, K (Y,,Y,) =

St Bk (Y, V).

Comparison with Related Methods - The major dif-
ferences between our approach and the related multi-
kernel dictionary learning methods (including DMKDL and
MIDL) are three-folds. Firstly, the manners of learning
multi-kernel dictionary are different. Specifically, DMKDL
learns a kernel synthesis dictionary, and MIDL learns a
positive dictionary and a negative dictionary, while our
MKLDPL approach learns a structured kernel synthesis
and analysis dictionary pair. Secondly, the manners of
using class label information are different. In particular,
DMKDL uses label information for kernel weights learn-
ing, and MIDL utilizes the bag label information (positive
or negative) to learn the dictionaries. Different from them,
MKLDPL uses the class label information for the learning
of class-specific synthesis and analysis sub-dictionary pair.
Thirdly, existing multi-kernel dictionary learning methods
make no constraint on the relationship between the coding
coefficients of samples from the same class, while our ap-
proach can ensure that the coding coefficients of samples
from the same class are low-rank, which is beneficial to the
subsequent classification.

JATK (v, Y5) 9

Multi-kernel Low-rank Dictionary Pair
Learning
Problem Formulation

In multiple feature representations based image classifica-
tion task, each sample is represented by multiple kinds of
features. Let X = [X1,..., X}, ..., X¢| be a set of N train-
ing images, where X represents images from the i*" class,
and C is the number of classes. Assume that there are L
kinds of features for training images X, we denote the ;"
kind of feature representation for X and X; by Y} and Y; ;,
respectively. In this paper, we aim to learn discriminative
dictionaries from multiple feature representations.

In practice, samples usually lie on non-linear feature
space, which means that dictionaries learned in a linear way
cannot well characterize the corresponding feature space.
Kernel technique is an effective way to cope with this issue.
By embedding multiple feature representations into Repro-
ducing Kernel Hilbert Space (RKHS), dictionary learning
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Figure 1: Basic framework of our approach.

can be conducted in RKHS. Let ®,(.) represent the kernel
mapping function for the j** feature type, and K;(Y;,Y;)
®,(Y;)T®;(Y;) denotes the kernel Gram matrix of the j*
feature representation. To make full use of the discriminative
information contained in multiple feature representations, a
commonly used way is to combine multiple base kernels into
a weighted kernel. Assume that w = [wy, ..., w;, ..., wr]T
represents the weights for L base kernels, the weighted ker-
nel can be computed as follows:

L
KX X) =D w;k; (Y, Y)- 3
j=1
where w; > 0 and 25:1 w; = 1. Denote by ®(X)
the kernel sample set in the weighted RKHS space, i.e.,
o(X)TP(X) = K(X, X).

Since analysis-synthesis dictionary pair can provide a
more complete view of data representation, we introduce
dictionary pair learning into the multiple kernel learning,
and propose a novel kernel dictionary learning framework,
with which a pair of structured kernel synthesis and anal-
ysis dictionaries can be learned. The learned structured
synthesis dictionary is denoted by ®(X)D, where D
[D1,...,D;,...,D¢c], and D; € RN*™i Here, m; is the
is number of atoms in D,;. Similarly, the learned struc-
tured analysis dictionary is denoted by P®(X)T, where
P =[P;..;P;...; Pc],and P; € R™ XN,

The learned kernel synthesis and analysis dictionaries are
used for image classification task, and thus should own fa-
vorable discriminability. To this end, we design a discrim-
inant term by using the class label information, which re-
quires that each pair of class-specific sub-dictionaries (D,
P;) should have good representation ability to samples from
the associated class, but poor representation ability to sam-
ples from other classes. Furthermore, from the perspective
of classification, we hope that coding coefficients of sam-
ples from the same class have high similarity, i.e., the coef-
ficient matrix for each class is low-rank. Therefore, we can
employ the low-rank technique to improve the similarity be-
tween coding coefficients from the same class, which will
facilitate the following classification. Figure 1 illustrates the
basic framework of our approach.

Based on the above analysis, the objective function of our
approach is designed as follows:

C
min Y (Brep + Eais + pBrant) s.t.||d;[3< 1V,

i=1

“

where 1 is a scalar constant, d; denotes the j th atom of dic-
tionary D, and the constraint is to restrict the energy of each
atom. The details of three terms are as follows:
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o Erep=|P(X;)—P(X)DPO(X)T®(X;)||% is the recon-
struction error, which ensures that the learned dictionary
pair can well reconstruct samples in the kernel space.

o Bais=|®(X;)— ®X)DiP(X) (X, 7HA[ P2 (X)"
®(X;)||% is the dictionary discriminant term, which en-
sures that the i*" sub-dictionary pair can well represent
samples from the it" class in the kernel space, but has
poor representation ability to samples from other classes.
Here, A is a scalar constant, and X; denotes the comple-
mentary data matrix of X; in the whole training set X.

e FErank = ||P;]|« is the low-rank regularization term, which
ensures that each analysis sub-dictionary is low-rank,
such that the obtained coding coefficients for each class
have high similarity. Here, ||.||. represents the nuclear
norm of a matrix.

The Optimization of MKLDPL

The objective function in (4) is generally non-convex. We
introduce a variable matrix A and relax (4) to the following
problem:

le}
min S (Ei—®(X) DAl F+@(X) —@(X)Di A3
T =

FMP®(X)T () |+l P | Q)

+7P2(X) 0(X:) — AllF)
s.t. ||dy[I3< 15

where Z; = ®(X;)— 3.7, . ®(X)DP®(X)T®(X;), and
7 is a scalar constant. Then we divide (5) into two sub-
problems: (i) optimizing dictionary pair { D, P, A} by fixing
w; (ii)optimizing kernel weights w by fixing D, P and A ,
and then optimize them alternatively.

(1) Optimizing D, P and A

Here, we optimize D, P and A class by class. When one
class is updated, variables related to other classes are fixed.
For the 7" class, we update D;, P;, A; alternatively (updat-
ing one by fixing the other two). We initialize D and P as
random matrices with unit Frobenius norm for each column
vector. Detailed updating steps are as follows.

Step 1: Updating A;. When D; and P; are fixed, the ob-
jective function related to A; can be written as:

minl|Z: —(X) DiAll3+ (X))~ (X) DiAl:

(6)
+7|P(X) "R (Xi) - AllE
By setting the derivative to zero, we can get
Ai =@D{®X)T@X)Di+ 71" x (D7 ®(X) 2+ .

DI®X)Td (X)) + P,®(X) D (X))

where I is an identity matrix of m; X m;. Note that the values
of ®(X)T' ®(X) and (X' ®(X;) are K (X, X) and £(X, X;),
respectively.
Step 2: Updating P;. When D; and A; are fixed, P; can
be updated by (8):
min AIP;®(X)" @(X5)|fpl| Pl
‘ ®)
+ 7P (X) R (X0) — A F



Algorithm 1 Optimization process of MKLDPL
L

Require: Kernel matrix K;, j = 1,2, ...,
1: Initialize A\, u, 7, D and P;
2: while not converge do
3:  Fix D, P, w, update A by (7);
4:  Fix D, A, w, update P by (11);
5 Fix P, A, w, update D by solving (14) and (15) iter-

atively;
6: Fix D, P, A, update w by solving 7,;
7: end while

Ensure: D, P and w

To address the optimization of problem (8), we transform it
into the same minimization problem by introducing a relax-
ing variable Z:

min f(Pi)+ullZ|le st P =2, )

where f(P;) = NP ® (X)T ©(X5) |57 [P © (X)T O (X3)—A | 7.
Problem (9) can be addressed by solving the following Aug-
mented Lagrange Multiplier problem:

min f(P)+ulZll. + @ P-2+ D\ P-2IF (o)

where 3> 0 is a penalty parameter whilst 7} is the Lagrange

multiplier. The optimal solution of (10) can be obtained by

the ADMM algorithm (Gabay and Mercier 1976):
P=argming f(P) +5[Pi—Z + &
Z=argmin&|2].+ 412 - P 3
=T\ +B(FP—2)

(1)

where the optimization of Z can be solved with Singular
Value Thresholding (SVT) (Cai, Candes, and Shen 2010).
In computation, the value of (X )T ®(X;) is K(X, X;).

Step 3: Updating D;. When P; and A; are fixed, the ob-
jective function related to D; can be written as:

wg‘nl%-f¢>(X)DiA@-H%+H‘I>(>Q)f<I>(X)DiAZ-H% .
s.t. ||d;]|3< 1V

To solve problem (12), we use a similar way as (Gu et al.
2014). Specifically, we first relax (12) by introducing a vari-
able matrix B:

min||Z; — ®X) B| 1+ |0 (X;) - ®X) Bl +a|| B— DiA| &
D;.B (13)
s.t.||d;]3< 1V

where « is a scalar constant. Then we can solve problem
(13) by updating D; and B alternatively. By fixing D;, B
can be updated as follows:

min|[Z; — ®X) Bl 7+ (X:) — oX) Bl 4ol B-Di A7 (14)

The solution of problem (14) can be easily obtained by set-
ting the derivative to zero.
By fixing B, D; can be updated by:

T%ZnaHB_DlAH% s.t. ||d]||§§ 1Vj (15)
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Problem (15) can be easily solved by the similar way as (Gu
et al. 2014).

(2) Optimizing kernel weights w

To update kernel weights w, we need to reformu-
late the objective function (5) into the form w.r.t. w.
There are four terms that are related to w in Eq. (5),
including |1Z; — ®(X)D;A|%, [®(X) — ®(X) DA%,
AP @(X)T@(X;)|[ and 7P, ®(X)T®(X;)— 4| }). Here,
we only provide the reformulation of one term, other terms
can be transformed similarly.

AP (X)T® (X)) || 7= AIPK(X, X5) |7
= tr(K(X, X:)" P/ PK(X,X5))

:wTXQin,

(16)

where

Qi = : : (17)
Qi(Lvl) Qi(LvL)
Here, Q;(m,n) = tr(K,.(X, X;)T PTP,K,.(X, X;)). De-
note by J,, the completed objective function w.r.t. w. Com-
bined with the constraints w; >0 and Zle w;j=1, J, can
be easily solved with quadratic program (QP) solver (Cole-
man and Li 1996). The optimization process of MKLDPL is

summarized in Algorithm 1.

Complexity and Convergence Analysis

We firstly give a detail discussion on the computation com-
plexity. In the training phase, {A, P, D} and w are up-
dated alternatively. In the process of optimizing {A, P,
D} for each class, the time complexity of updating A; is
O(m; N?4+m?2N+m3+m;n; N +m;MN +n; M N), where
M is the number of atoms in D, n; is the sample number in
the i class; Updating P; takes kO(N?® + m;n; N + m3),
where k is the iteration number in the ADMM algorithm,
and k is usually smaller than 20; For the optimization of D,,
updating B costs O(N?® + M N? 4+ n;M N, and updating
D; takes pO(m;n;N + m2N + m?n; + m}), where p is
the iteration number, which is usually smaller than 10. For
updating w, most of the time is spent on computing the trace
of each sub-matrix, and the time complexity is O(N?). The
most time-consuming parts include updating P;, updating B
and updating w. Fortunately, the operations that cost O(N3)
when updating P; and B, are not changed for all classes,
thus we only need to compute them once. This will greatly
improve the efficiency of our approach.

Although the objective function in (5) is not jointly con-
vex w.r.t. {D, P, A, w}, itis convex w.r.t. each of them when
the others are fixed, i.e., in each step of the optimization,
the sub-problem is convex. Figure 2 shows the convergence
curve of our algorithm on Flowers17. One can see that the
energy converges quickly and well. In most of our experi-
ments, our algorithm will converge in less than 25 iterations.

Classification Scheme

In our MKLDPL model, the analysis dictionary is used to
produce the representation coefficient for samples, and the
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Figure 2: Convergence curve on the Flowers17 dataset.

synthesis dictionary is used to reconstruct the samples in the
kernel space. With the learned dictionary pair (D, P) and
kernel weights w, we can perform the image classification
task easily.

Let ®(y) be a test image in the weighted multi-kernel
space. We can classify y as follows:

class(y) = min||®(y) — O(X)D; P2(X)" 2(y)lI7 (18)

The classification is done by assigning the test sample to the
class with the smallest reconstruction error.

Experiments

To evaluate the effectiveness of our approach, we conduct
extensive experiments on three commonly used datasets that
provide multiple feature representations, including Oxford
Flowers17 dataset (Nilsback and Zisserman 2006), Oxford
Flowers102 dataset (Nilsback and Zisserman 2008) and Cal-
tech101 dataset (Fei-Fei, Fergus, and Perona 2007).

Baselines

In this section, We compare our approach with two types
of methods, which are linear multiple feature representa-
tions based DL methods and multiple kernel based meth-
ods. The compared linear multiple representations based DL
methods include uncorrelated multi-view discrimination DL
(UMD?L) (Jing et al. 2014) and multi-view low-rank DL
(MLDL) (Wu et al. 2016). The compared multiple kernel
based methods include £,,-norm multiple kernel learning (£,-
norm MKL) (Kloft et al. 2011), multiple kernel learning
for sparse representation-based classification (MKL-SRC)
(Shrivastava, Patel, and Chellappa 2014), and discriminative
multiple kernel DL (DMKDL) (Thiagarajan, Ramamurthy,
and Spanias 2014).

Parameter Settings

In objective function (5), there are three parameters, i.e., A,
w and 7. In the experiments, we choose these parameters by
5-fold cross validation on each dataset. For all the compet-
ing methods, we tune their parameters for the best perfor-
mance. In experiments, we set the dictionary size (i.e., m;)
of D, as 60, 70 and 70 for Flowers17, Flowers102 and Cal-
tech101 datasets, respectively. In addition, the kernel func-
tion k(z,y) = exp(—||x — y||*/s) is used for all types of
feature representations. We set the kernel parameter with a
similar way as (Gonen 2012; Thiagarajan, Ramamurthy, and
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Table 1: Average classification accuracies (% standard devi-
ation) (%) on three datasets.

Methods Flowers17 Flowers102 | Caltech101
UMD’L 85.174+1.09 | 73.254+0.54 | 76.49+0.28
MLDL 85.88+0.98 | 73.76+0.35 | 76.71+0.19
Lp-norm MKL | 85.29+£1.07 | 73.624+0.49 | 78.254+0.22
MKL-SRC 86.47+1.85 | 74.38+£0.53 | 76.13+0.17
DMKDL 88.134+2.33 | 76.54+0.55 | 82.66+0.36
MKLDPL 91.694+1.15 | 80.17+0.48 | 86.814+0.21

Spanias 2014), i.e., s is set as the mean of the pairwise dis-
tances of samples.

Evaluation on Oxford Flowers17 Dataset

Oxford Flowers17 dataset (Nilsback and Zisserman 2006)
consists of 17 species of flowers with 80 images per class.
We use the three predefined splits with 40 images for train-
ing and 20 images for testing from each class. Classification
is carried out based on distance matrices of 7 different fea-
tures, including color, shape, texture, HSV, HOG and SIFT
on the foreground internal region, and SIFT on the fore-
ground boundary. The parameters A, p and 7 used in our
algorithm are set as 0.3, 0.05 and 0.4, respectively. We con-
duct experiments 10 times and report the average classifica-
tion accuracies (the same strategy is used for other datasets).

Table 1 shows classification results of compared meth-
ods on the Oxford Flowersl7 dataset. We can see that
MKLDPL improves the average classification accuracy at
least by 3.56% (=91.69-88.13) on the Oxford Flowersl7
dataset. The major reasons why MKLDPL can achieve
better results are three-fold: (i) MKLDPL employs a more
effective DL manner, i.e., analysis-synthesis dictionary pair
learning. (ii) MKLDPL imposes the low-rank constraint on
the analysis dictionary, which can improve the similarity of
coding coefficients from the same class. (iii) MKLDPL de-
signs a discriminant term to make use of the class label infor-
mation, which ensures that the learned dictionary pair owns
favorable discriminability.

Evaluation on Oxford Flowers102 Dataset

Oxford Flowers102 dataset (Nilsback and Zisserman 2008)
contains flower images from 102 different types with more
than 40 images per class. There is a predefined split consist-
ing of 2040 training and 6149 testing images. There are four
precomputed distance matrices over different feature repre-
sentations. The parameters A, ;1 and 7 used in our algorithm
are set as 0.2, 0.05 and 0.5, respectively.

Table 1 shows the classification accuracies on the Oxford
Flower102 dataset. We can see that MKLDPL improves the
average accuracy at least by 3.63% (=80.17-76.54) as com-
pared with other methods.

Evaluation on Caltech101 Dataset

The Caltech101 dataset (Fei-Fei, Fergus, and Perona 2007)
contains object images from 102 classes. We use the three
predefined splits with 30 images for training and 15 images
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Table 2: Average classification accuracies (4 standard devi-
ation) (%) of MKLDPL, MKDPL and DMKDL.

Datasets MKLDPL MKDPL DMKDL

Flowers17 91.69£1.15 | 90.31£1.08 | 88.13+2.33
Flowers102 | 80.17£0.48 | 78.88+0.51 | 76.5440.55
Caltech101 | 86.81£0.21 | 85.65+0.25 | 82.66+0.36

for testing from each class. We conduct classification exper-
iment based on the PHOW color, geometric blur and self-
similarity descriptors. The parameters A,  and 7 used in
our algorithm are set as 0.3, 0.05 and 0.6, respectively.
Table 1 shows classification results on the Caltech101
dataset. It is observed that our MKLDPL approach ob-
tains much higher classification accuracy than the compet-
ing methods. In particular, MKLDPL improves the average
matching rate at least by 4.15% (=86.81%-82.66%).

Discussion

Effect of the Low-rank Regularization Term. In our model,
the low-rank regularization is employed to ensure that the
matrix formed by the coding coefficients (which are ob-
tained using analysis dictionary) of samples from the same
class is low-rank, such that the similarity between coding co-
efficients of the same class can be improved. To evaluate the
effect of the low-rank regularization term to our approach,
we conduct MKLDPL with or without the low-rank term.
We call the version of MKLDPL without low-rank term as
“MKDPL”. Table 2 shows the comparison of classification
results on all datasets. We can see that MKLDPL outper-
forms MKDPL at least by 1.16%, which means that our ap-
proach can obtain more favorable discriminative capability
by employing the low-rank regularization term.

Effect of Dictionary Pair Learning. Our work first intro-
duces the dictionary pair learning into multiple kernel learn-
ing. To evaluate the effectiveness of dictionary pair learn-
ing, we made a comparison between MKDPL (the modified
version of our approach without using the low rank term)
and DMKDL (a representative multiple kernel dictionary
learning method based on synthesis dictionary). Table 2 re-
ports the results of MKDPL and DMKDL. We can see that
MKDPL achieves better results than DMKDL, which means
that dictionary pair learning is beneficial to the performance
improvement of multiple-kernel dictionary learning.

Comparison in the Presence of Noise. In this experiment,
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Table 3: Average classification accuracies (& standard devi-
ation) (%) versus different noise percentages on Caltech101.

Methods 10% 20% 30%

UMD’L 73.51£0.36 | 68.55+0.58 | 56.70+0.93
MLDL 75.28+£0.25 | 72.48+0.52 | 64.02+0.91
Lp-norm MKL | 73.754+0.31 | 65.36£0.64 | 46.49+£1.15
MKL-SRC 73.06+0.33 | 67.52+0.67 | 56.24£1.08
DMKDL 79.78£0.52 | 75.62+0.78 | 65.16+1.36
MKLDPL 84.96+0.35 | 81.66+0.71 | 72.13+1.17

we aim to evaluate the effect of noise to the performance
of all compared methods. To this end, we first add random
noises to each image with the same way as (Wu et al. 2016),
and then conduct experiments using the features extracted
from the noisy images. Table 3 reports the classification ac-
curacies of all methods versus different noise percentages
on the Caltech101 dataset. We can see that MKLDPL still
achieves better results than competing methods under each
noise percentage, which means that our approach has favor-
able robustness in the presence of noise.

Comparison of Computational Cost. Among the com-
pared methods: L,-norm MKL is based on SVM; UMD?2L,
MLDL, MKL-SRC and DMKDL are based on dictionary
learning or sparse representation. Comparing to L,-norm
MKL, the other four methods have higher computation com-
plexities. Specifically, computation complexities of linear
methods UMD?L and MLDL are respectively O(N * d? *
M?) + O(M? x d * N) and O(N * d? x M¢) + O(d?),
where d denotes the feature dimension, M is the number
of atoms in dictionary (usually not very large), and ¢ >=
1.2. Since the computation complexity of our approach is
O(N?), the complexity comparison between our approach
and UMD?L, MLDL depends on the values of d and N. For
multi-kernel methods MKL-SRC and DMKDL, their com-
putation complexities are O(N3) and O(N?), respectively.
We can see that the computational complexity of our ap-
proach is comparable to that of MKL-SRC, and lower than
that of DMKDL.

Parameter Analysis. Next, we provide a discussion about
the sensitivity of MKLDPL to different choices of the pa-
rameters A, p and 7. We take the Oxford Flowers17 dataset
as an example and conduct experiments by changing values
of A, u and 7. When evaluating one parameter, the others
are fixed to the values used in the Flowers17 classification



experiment. Figure 3 (a) and (b) shows the classification ac-
curacies of MKLDPL versus different values of A, p and
T, respectively. We can observe that MKLDPL is not sensi-
tive to the choice of A in the range [0.1,1], and MKLDPL
achieves the best results when A and p are separately set as
0.3 and 0.05, and MKLDPL can achieve good performance
when 7 is in the range [0.3, 1]. Similar results can also be
obtained on the other datasets.

Dictionary size is also an important parameter in our ap-
proach. To observe the effect of dictionary size (i.e., m;),
we conduct experiments by changing m; in the range of
[40,200] with step length 10. Figure 3 (c) shows the clas-
sification accuracies with different dictionary size on Flow-
ersl7 dataset. We achieved similar results on the other
datasets. We can see that our approach can obtain a rela-
tively good performance when m;; is set as 60. Due to limited
space, the evaluation of statistical significance of difference
is reported in supplemental material.

Conclusion

In this paper, we propose a multi-kernel low-rank dictio-
nary pair learning (MKLDPL) approach for multiple fea-
tures based image classification. Different from existing ker-
nel dictionary learning methods, MKLDPL jointly learns
a kernel synthesis dictionary and a kernel analysis dictio-
nary from the training data. With the designed discriminant
term and the low-rank regularization term, MKLDPL can
ensure that the learned dictionary pair owns favorable dis-
criminability. Experimental results on three public datasets
show that our approach achieves the best classification ac-
curacies, and also demonstrate the effectiveness of applying
low-rank regularization to analysis dictionary.
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