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Abstract

Multi-instance multi-label learning (MIML) is a learning
paradigm where an object is represented by a bag of instances
and each bag is associated with multiple labels. Ordinary
MIML setting assumes a fixed target label set. In real appli-
cations, multiple novel labels may exist outside this set, but
hidden in the training data and unknown to the MIML learner.
Existing MIML approaches are unable to discover the hid-
den novel labels, let alone predicting these labels in the pre-
viously unseen test data. In this paper, we propose the first
approach to discover multiple novel labels in MIML problem
using an efficient augmented lagrangian optimization, which
has a bag-dependent loss term and a bag-independent cluster-
ing regularization term, enabling the known labels and multi-
ple novel labels to be modeled simultaneously. The effective-
ness of the proposed approach is validated in experiments.

Introduction

In traditional supervised learning, an object is represented
by a single instance associated with a single label (SISL). In
many real applications, however, an object can be simultane-
ously associated with multiple labels, whereas the object can
be described by multiple instances. An image in the image
classification task, for example, can be divided into multiple
patches (as multiple instances); and the image can be tagged
with multiple semantic labels (Zhou and Zhang 2007). The
Multi-instance multi-label learning (MIML) framework has
been established to handle this kind of complex objects
(Zhou et al. 2012).

Many MIML approaches have been proposed recently
(Nguyen 2010; Zhang 2010; Briggs, Fern, and Raich 2012;
Huang, Gao, and Zhou 2014). Almost all of them assume
that all bags belong to a fixed target label set. However, this
assumption is frequently violated. Some novel labels may
exist but hidden in training data, even though they do not
exist in the initial target label set for some reasons. It is im-
portant to build a model which can attune itself to novel la-
bels (Zhou 2016): not only to identify them in the training
data, but enable the learned model to predict new objects
with these novel labels.
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Pham et al. (2015) has proposed a probabilistic model
to identify novel instances in MIML setting. They have as-
sumed that all novel instances have the same label. The
novel instances, however, may actually belong to different
labels. In many applications, a learned model is not only
required to detect novel instances, but also able to classify
these instances into one of the multiple novel labels. For
example, it is desirable to distinguish multiple new voices
in bird song recognition, which may correspond to different
birds which are the new arrivals in the area.

In this paper, we aim to discover multiple novel labels
in MIML learning, and propose a discriminative approach
called DMNL. The contributions of this paper are: (1) formal-
ize the multiple novel labels discovering problem in MIML
learning; (2) propose the first approach to effectively dis-
cover novel labels by formulating the problem as a non-
negative orthogonal constrained optimization, minimizing a
bag-level loss plus a clustering regularization; (3) propose
two new evaluation metrics for novel labels discovery.

In contrast to Pham et. al. (2015)’s probabilistic approach,
our discriminative approach has the following advantages:
(a) DMNL discovers multiple novel labels, rather than dealing
with one novel label only. (b) DMNL’s computational cost
increases linearly, rather than increasing exponentially w.r.t.
the number of bag labels.

There are two other lines of related works: (i) class-
incremental learning (Da, Yu, and Zhou 2014; Kuzborskij,
Orabona, and Caputo 2013) mainly focuses on one novel
class under a SISL setting; and (ii) MIML learning with
weak labels (Yang, Jiang, and Zhou 2013) tries to recover
the missing known labels for each bag. They could not be
applied to discover multiple novel labels in MIML learning,
where both known labels and novel labels must be modeled
simultaneously.

The rest of this paper is organized as follows. We pro-
vide the conceptual overview of the proposed approach, the
preliminaries, the problem formalization, the proposed ap-
proach, and the optimization method in the next five sec-
tions. Experimental results are presented before conclusion.

Conceptual Overview

In our work, we discover multiple novel labels in both
instance-level annotation and bag-level prediction tasks in
MIML setting. Specifically, we design a new discriminative
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approach called DMNL that optimizes the bag-level loss on
known labels (in a loss term), and it takes into consideration
the cluster structure among all instances (in a regularization
term), independent of bags.

In the regularization term, we exploit the structure among
instances to regularize the hypothesis space. Specifically,
we derive our regularization based on an assumption about
the following structure: instances, independent of bags, with
the same label are close to each other in the feature space,
thus are grouped into a single cluster. The intuition is as
follows. Suppose there are two bags {x1,1,· · ·,x1,n1} and
{x2,1,· · ·,x2,n2}, both with bag labels {l1, l2}. If no struc-
ture is considered, there are (2n1 − 2)(2n2 − 2) possi-
ble combinations of instance labels for instance annota-
tion. In contrast, if we know the instance groupings, say
{x1,1,x1,2,x2,1,x2,2} are in one group and the rest are in
the other group, the number of possible combinations will
be reduced to 2.

The loss term is designed based on the bag-level per-
formance on known labels. We propose to utilize all in-
stances in a bag for the purpose of loss computation. This
loss is different from that of existing discriminative MIML
approaches. They usually take the instance with the largest
predictive value in a bag as the bag representative for each
label (Zhang and Zhou 2008; Briggs, Fern, and Raich 2012;
Huang, Gao, and Zhou 2014). The bag label, however, is
usually depended on some structure relation among the in-
stances rather than a single instance (Zhou, Sun, and Li
2009). As the crucial structure is unknown, we choose to
consider the contribution of all instances to the bag label.
Besides, each bag label is of equal importance, even if it may
be associated with different number of instances. So we in-
troduce a rescaling (Zhou and Liu 2010) strategy, which is
popular in class imbalance learning, to balance the contribu-
tion of each label.

The closest related work (Pham et al. 2015) on novel in-
stance detection in MIML learning treats all novel instances
as belonging to a single novel label only. It is a degenerated
version of the multiple novel labels problem. The approach
learns a probabilistic model by maximizing the log likeli-
hood. It utilizes a dynamic programming method to reduce
the likelihood estimation complexity for each bag i from
O((ci+1)zi) to O((ci+1)2(ci+1)zi), where ci is the number
of observed bag labels, and zi is the bag size.

It is non-trivial to extend Pham et al. (2015)’s work to
model multiple novel labels. In their estimation of the like-
lihood for each bag with the only one possible novel label,
2 cases are considered: (a) the known labels only; (b) both
the known labels and the novel label. It is more complicated
for k > 1 novel labels since all of the subsets of k novel la-
bels should be taken into account to compute the likelihood,
which yields 2k cases in total.

Preliminaries

Let X be the instance feature space, and L = {l1, · · · , lc}
be the target label set of size c. Further we define D =
{(X1,y1),· · · ,(Xm,ym)} as the training set of size m,
where Xi = {xi,1; · · · ;xi,zi} is a bag of zi instances with

Table 1: Some commonly used notations.
I identity matrix 1 all-one vector
◦ element-wise

product
÷ element-wise

divide
Tr(.) matrix trace ∨ pairwise OR

operator
∨ ∨n

i=1 ai=a1∨a2∨· · ·∨an

Ωc(.) the first c columns of a matrix
I(.) 1 if the argument is true, 0 otherwise

diag(.) a diagonal matrix with the arguments on the diagonal

each instance xi,j ∈ X , and yi = [yi,1, · · · , yi,c] ∈ {0, 1}c
is the observed bag label vector. If bag i belongs to lj , then
yi,j=1; otherwise yi,j=0.

Suppose there are k novel labels; the combined label set
becomes L̂=L ∪ L, where L={lc+1, · · · , lc+k} represents
the k novel labels. Let ŷi,j =[ŷi,j,1, · · · ŷi,j,c+k]∈{0, 1}c+k

be the unknown instance label vector for instance j in bag i.
We follow a common assumption in the MIML setting,

i.e., each instance belongs to a single label only (Briggs,
Fern, and Raich 2012; Pham, Raich, and Fern 2014; Pham et
al. 2015). Hence, we have

∑c+k
l=1 ŷi,j,l=1 for each instance

xi,j . Note that novel labels and instance labels are not avail-
able for training.

Let A = [X1; · · · ;Xm] be the all-instance matrix which
is the concatenation of instances from all bags, and ai, i ∈
{1, · · · ,n} be the i-th row of A, where n =

∑m
i=1zi is the

total number of instances. Define Ŷi=[ŷi,1; · · · ;ŷi,zi ] as the
instance label matrix of bag i, and Ỹ = [Ŷ1; · · · ;Ŷm] as the
concatenation of all instance label vectors. Each row of A
and Ỹ is an instance and its label vector, respectively.

Other commonly used notations are listed in Table 1.

Problem Formalization

Problem Definition: Given a training set D, consists of
bags with known labels, the problem of discovering mul-
tiple novel labels in MIML learning is to detect previously
unknown labels (i.e., novel labels) in each bag in the training
set, and build a model that can predict bag labels from the
set of known and novel labels for a previously unseen bag.

The problem can be tackled in two levels given D: (i) the
instance-level annotation task is to learn a mapping from an
instance to a label (in the set of known labels and novel la-
bels) f : X → L̂; (ii) the bag-level prediction task is to learn
a mapping from a bag to a set of labels Ψ : 2X → 2L̂.

We assume that the labels of a bag include all instance
labels in that bag. As a consequence, when task (i) is solved
and each instance label ŷi,j in bag i has been predicted, task
(ii) will be solved by predicting

∨zi
j=1ŷi,j as the bag label

for bag i.

Proposed Approach: DMNL
In this section, we provide the details of the loss term and
the clustering regularization term mentioned in the section
on conceptual overview. We first introduce two properties
of instance labels. To simplify notations, we illustrate the
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properties using known labels only. Those properties also
hold in the multiple novel labels setting with minor change
in notations. The properties are presented by the following
propositions.

Proposition 1 yi = β�
i Ŷi, where βi = [βi,1; · · · ;βi,zi ],

with each βi,j = 1/
∑c

l=1(I(ŷi,j,l = 1)
∑zi

q=1 ŷi,q,l).

In Proposition 1, each instance label contributes to the bag
label, and βi corresponds to the contribution weights. In or-
der to balance the importance of each bag label (they may be
associated with different number of instances), we introduce
a rescaling (Zhou and Liu 2010) strategy. Suppose there are
nl instances with the l-th label in the bag, then the weight
for each of them will be 1/nl (i.e., by assuming that ev-
ery instance of the same label has equal importance). βi,j is
the weight of the j-th instance in the i-th bag. This propo-
sition also satisfies yi =

∨zi
j=1ŷi,j . For example, given a

bag {x1;x2;x3;x4} 1, if x1 belongs to l1, x2 and x4 be-
long to l2, x3 belong to l3, then βi = [1, 0.5, 1, 0.5]� ac-
cording to Proposition 1, where x2 and x4 share the same
label and make the equal contribution to l2. The set of βi,
i ∈ {1, 2, · · · ,m} is denoted as β̃ = {β1, · · · ,βm}.

We assume that, independent of bags, there exists a pro-
totype for each label, and instances with the same label are
close to the label prototype, and far away from the proto-
types of other labels. This is the cluster structure assump-
tion.

Proposition 2 Given the prototypeplof label l, instance la-
bel matrix Ỹ will be a solution (Ding et al. 2006) to

min
G

n∑
i=1

c∑
l=1

Gi,l‖ai − pl‖2 : G ∈ {0, 1}n×c,G�G=S, (1)

where S = diag(1�G).

Recall that every instance holds a single label only. Thus,
we have the orthogonal constraints in Eqn. (1): G�G = S,
and the non-zero elements in S represents the total number
of positive instances for each label.

Proposition 1 enables us to design a bag-level loss, con-
sidering the contribution of each instance. Specifically, we
use the squared misclassification loss on the known bag la-
bels, and derive the loss as:

∑m
i=1 ‖yi − β�

i Ωc(Ŷi)‖2.
Proposition 2 enables us to design a regularization consid-

ering the cluster structure. Note that prototype p is unknown,
and it is related to the ground truth distribution of each label.
Thus, the optimization must avoid calculating p. Having de-
fined H = Ỹ S− 1

2 , optimization in Eqn. (1) is transformed
(Zha et al. 2001) into

max
H

Tr(H�AA�H) : H�H = I,H ≥ 0,

where I is an identity matrix. Thus, the regularization term
we used is defined as −Tr((Ỹ S− 1

2 )�AA�Ỹ S− 1
2 ).

Combining the loss and the regularization term together
under the non-negative orthogonal constraints, we obtain the

1To simplify notation, we have dropped the bag subscript i here.

following optimization task:

min
Ỹ

n∑
i=1

‖yi−β�
i Ωc(Ŷi)‖2−λTr((Ỹ S−1

2)�AA�(Ỹ S−1
2)),

s.t. (Ỹ S−1
2)�(Ỹ S−1

2) = I, Ỹ ∈ {0, 1}n×(c+k),

(2)

where λ is a trade-off parameter to be tuned.
Note that we consider an inductive setting, and reduce

Eqn. (2) from a difficult integer optimization to an eas-
ier continuous optimization in [0, 1]n×(c+k). Hence, we de-
note by W = [w1, · · · ,wc+k] the parameter to be learned,
and define gl(x,W ) = exp(xwl)/

∑c+k
l′=1 exp(xwl′) as the

predictive function for instance x on label l, whose out-
put value will lie in range [0, 1]. Let g = [g1, · · · , gc+k],
thus we have g(x,W ) = [g1(x,W ), · · · , gc+k(x,W )] and
g(X,W ) = [g(x1,W ); · · · ; g(xz,W )],xi ∈ X . Then Ỹ

can be modeled by g(A,W ). Substituting Ỹ in Eqn. (2), the
final optimization for DMNL is given as follows:

min
W

∑m

i=1
‖yi − β�

i Ωc(g(Xi,W ))‖2

−λTr((g(A,W )S− 1
2 )�AA�(g(A,W )S− 1

2 )),

s.t. (g(A,W )S−1
2)�(g(A,W )S−1

2) = I.

(3)

Remark 1 If a manifold structure (Belkin,
Niyogi, and Sindhwani 2006) is used instead
of the cluster structure, we can simply replace
−λTr((g(A,W )S− 1

2 )�AA�(g(A,W )S− 1
2 )) in Eqn.

(3) with +λTr((g(A,W )�Lg(A,W )) where L is the
laplacian matrix, so as to encourage similar instances to
have similar predictive values. The optimization is similar.

Instance-level annotation: Having learned W , instance
xi,j is assigned the label with the maximum predictive
value, i.e.,

ŷi,j,l=

{
1, l=argmaxl′ gl′(xi,j ,W ),l′∈{1,· · · ,c+ k};
0, otherwise.

(4)

Bag-level prediction for bag i is obtained as:
∨zi

j=1 ŷi,j .

Optimization

The optimization of Eqn. (3) could not be done directly, be-
cause: (i) β̃ and S are based on Ỹ , i.e., the discrete 0-1 ma-
trix derived from Eqn. (4); (ii) a complex function w.r.t W
is involved in the non-negative orthogonal constraints.

To handle (i), an alternating optimization strategy is ap-
plied: we fix β̃ and S and update W ; then we use the new
W to derive β̃ and S. Specifically, given W , Ỹ is derived
based on Eqn. (4); then β̃ is calculated according to Propo-
sition 1 and S is calculated as S = diag(1�Ỹ ).

To deal with (ii), we define a new variable Ĥ =
g(A,W )S− 1

2 . Thus, the constraints are concisely expressed
as Ĥ�Ĥ=I, Ĥ≥0 to simplify the optimization.

Let Ĥ = [H1; · · · ;Hm], where Hi = g(Xi,W )S− 1
2 .

Then, Eqn. (3) can be rewritten as:

min
W,Ĥ

φ(W ) + ψ(Ĥ) : Ĥ�Ĥ = I, Ĥ = g(A,W )S− 1
2 , (5)
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Algorithm 1 DMNL

Input: D, λ, ρ
Output: W
Process:

1: Initialize W , Ĥ , Λ, S and βi, i = 1, · · · ,m ;
2: repeat:
3: Update W via SGD; \\Solve Eqn. (7)
4: Update Ĥ via Eqn. (10); \\ Solve Eqn. (8)
5: Update Λ via Eqn. (9);
6: Predict Ỹ according to Eqn. (4);
7: Calculate βi, i=1,· · ·,m, according to Proposition. 1;
8: Calculate S = diag(1�Ỹ );
9: until convergence or the maximum iteration is reached.

where φ(W ) = 1
2

∑m
i=1 ‖yi − β�

i Ωc(g(Xi,W ))‖2, and
ψ(Ĥ)= 1

2

∑m
i=1 ‖yi−β�

i Ωc(HiS
1
2 )‖2−λTr(Ĥ�AA�Ĥ).

Notice that we consider prediction loss in both φ(W ) and
ψ(Ĥ), so as to obtain a better result and a faster conver-
gence.

To solve Eqn. (5), we follow an augmented lagragian op-
timization framework (Boyd et al. 2010). Specifically, the
augmented lagrangian of Eqn. (5) is given by:

L(W,Ĥ,Λ)=φ(W )+ψ(Ĥ)+
ρ

2
‖Ĥ−g(A,W )S− 1

2 +Λ‖2F+ζ,

where ‖.‖F is the Frobenius norm, Λ is the dual variable, ρ
is the penalty parameter, and ζ is a constant which can be
dropped during the optimization. Then, solving Eqn. (5) is
equivalent to solving the following optimization problem:

min
W,Ĥ,Λ

L(W, Ĥ,Λ) : Ĥ�Ĥ = I, Ĥ ≥ 0. (6)

We optimize Eqn. (6) w.r.t. W , Ĥ and Λ in an alternating
manner. Let W (t), Ĥ(t) and Λ(t) be the solution of the t-th
iteration. We have the update rules as follows:

W (t+1)= argminW L(W, Ĥ(t),Λ(t)); (7)

Ĥ(t+1)= argmin
Ĥ≥0

L(W (t+1), Ĥ,Λ(t)) : Ĥ�Ĥ = I; (8)

Λ(t+1)=Λ(t) + Ĥ(t+1) − g(A,W (t+1))S− 1
2 . (9)

Algorithm 1 summarizes the procedure.

Update W . In order to efficiently obtain the solution
of Eqn. (7), stochastic gradient descent (SGD) is applied.
Specifically, solving Eqn. (7) is equivalent to minimizing

LW = φ(W ) +
ρ

2
‖Ĥ−g(A,W )S− 1

2 +Λ‖2F .

Then we decompose LW =
∑m

i=1 L(i)
W according to bags.

Specifically, φ(W ) can be naturally written as φ(W ) =∑m
i=1 φi(W ) with each φi(W )=‖yi−β�

i Ωc(g(Xi,W ))‖2.
Recall that A = [X1; · · · ;Xm], Ĥ = [H1; · · · ;Hm], and
we decompose Λ = [Λ1; · · · ; Λm], where Λi is the counter-
part of Xi. Then ρ

2‖Ĥ−g(A,W )S− 1
2 +Λ‖2F can be decom-

posed as
∑m

i=1
ρ
2‖Hi−g(Xi,W )S− 1

2 +Λi‖2F . Based on the
above decompositions, we have

L(i)
W = φi(W ) +

ρ

2
‖Hi−g(Xi,W )S− 1

2 +Λi‖2F .

Let Fi = g(Xi,W ). Given (Xi,yi, Hi,Λi), the gradient of
L(i)
W w.r.t. W is given by

∇W =X�
i

(
(βiΔW1) ◦Gi ◦ Ji

)
+ρX�

i ((ΔW2S
− 1

2) ◦Gi),

where ΔW1 = [yi, 0
1×k] − β�

i Fi, ΔW2 = Hi + Λi −
FiS

− 1
2 , Gi = Fi ◦ (Fi − 1) and Ji = [11×c, 01×k].

We initialize W with W (t), then update W in each iter-
ation i, (i ∈ {1, · · · ,m}) via W ← W − ηi∇W , where ηi
is the step size. Finally, we output the averaged W on all
iterations in SGD algorithm as W (t+1).

Update Ĥ . For the optimization task of Eqn. (8), there is
an non-negative orthogonal constraints Ĥ�Ĥ = I , Ĥ ≥ 0.
Ĥ�Ĥ = I is known as the Stiefel manifold (Boumal et al.
2014), thus we try to solve Eqn. (8) on the Stiefel manifold.
To simplify the description, we drop the superscript of Ĥ(t)

below. Based on Choi (2008)’s work, we derive the update
rule for Ĥ as

Ĥ(t+1)=Ĥ◦ [∇Ĥ ]++Ĥ([∇Ĥ ]−)�Ĥ

[∇Ĥ ]−+Ĥ([∇Ĥ ]+)�Ĥ
, (10)

where ∇Ĥ is the gradient of L(W (k+1), Ĥ,Λ(k)) w.r.t. Ĥ;
[∇Ĥ ]+ and [∇Ĥ ]− satisfy [∇Ĥ ]+ > 0, [∇Ĥ ]− > 0, and
[∇Ĥ ] = [∇Ĥ ]+ − [∇Ĥ ]−.

Note that all of the operations involved in Eqn. (10) are
element-wise, i.e., element-wise product and element-wise
divide. As a result, it can be divided into blocks according to
bags. Specifically, ∇Ĥi

is given by

∇Ĥi
=βi

(
ΔHi1 ◦ Ji

)
S

1
2 − λXi

∑m

j=1
X�

j Hj + ρΔHi2,

where ΔHi1=β�
i HiS

1
2 −[yi, 0

1×k], ΔHi2=Hi−FiS
− 1

2 +
Λi, and Ji=[11×c, 01×k].

To simplify description, let Mi = Xi

∑m
j=1 X

�
j Hj . Be-

cause some elements in Mi and Λi may be negative, we
define Φ+(M) = (abs(M) + abs(M))/2 and Φ−(M) =
(abs(M)− abs(M))/2, where abs(.) returns the absolute
value on each element, so as to obtain Φ+(M) ≥ 0 and
Φ−(M) ≥ 0 satisfying M = Φ+(M) − Φ−(M). Then
[∇Ĥi

]+ and [∇Ĥi
]− is given by

[∇Ĥi
]+=βi

(
(β�

i ĤS
1
2)◦Ji

)
S

1
2 +λΦ−(Mi)+ρ(Hi+Φ+(Λi)),

[∇Ĥi
]−=βi

(
[yi, 0

1×k] ◦ Ji

)
S

1
2 +λΦ+(Mi)+ρ(FiS

−1
2 +Φ−(Λi)).

Initialization. Each element in W is set as a random value
within [0, 1]. Then, we cluster all instances via k-means with
(c+k) clusters, and initialize Ỹ with the obtained cluster in-
dicator matrix, whose element of row i column j suggests
the ith instance belongs to jth cluster. After that, we set
S = diag(1�Ỹ ), and calculate β according to Proposition
1. Finally, Ĥ is initialized by Ĥ ← Ỹ S− 1

2 .

Experiments on Toy Dataset

Experimental Setting. We randomly generate 300 bags
for training from 6 different classes (i.e., 0-5), which corre-
sponds to 6 different colored rectangles in Figure 1(a). Each
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bag contains 10 instances and possesses 2.47 labels on aver-
age. During the training, only class 1-4 are observed in the
bag level as known labels, and class 0 and 5 are novel la-
bels (with a star mark in Figure 1) which are unknown in
the training data. For testing the instance level annotation
with novel labels, we uniformly sample 10,000 instances
from all classes, shown in Figure 1(b). We compare our ap-
proach with MIML-NC (Pham et al. 2015) which detects all
novel instances with a single novel label. The convergence
has been validated in experiments.

Results. Figures 1(c) and 1(d) show the main results of
MIML-NC and DMNL respectively, where dash lines corre-
spond to the boundary of the ground truth. As can be ob-
served, MIML-NC predicts all novel instances as the same
label “0”, whereas our proposed approach is able to discover
multiple novel labels (i.e., both “0” and “5”).

(a) Training data (b) Test data (c) MIML-NC (d) DMNL

Figure 1: Toy data experiments

Influence of the Number of Novel Labels k. In practice,
the number of novel labels is unknown, thus a number k has
to be specified by a user. Figure 2 shows the results of DMNL
on the toy dataset by setting different k values.

(a) k=1 (b) k=2 (c) k=4 (d) k=8

Figure 2: Influence of the number of novel labels k

When k matches the ground truth, i.e., k = 2, the best de-
tection performance are achieved on both the known labels
and the novel labels. This observation suggests that we are
able to select k via cross validation according to the detec-
tion performance on the known labels.

When k is larger than the ground truth, some novel in-
stances from the same class may be separated into differ-
ent categories: see the black part in Figure 2(c). Note that
the algorithm does not always produce the user-specified k
novel classes. This is because the optimization process takes
into consideration both the bag-level loss as well as cluster
structure. Those detected labels with very few instances (due
to the orthogonal constraints) will be regarded as the noise
rather than novel labels. Figure 2 shows that k=4 produced
3 novel labels; and k=8 produced 2 novel labels.

For k = 1, the detection performance for multiple novel
labels is less than ideal because instances from two different
labels are forced to be considered with the same label. The

basic assumption is violated: instances with the same label
are in the same cluster.

Experiments on Real Datasets

Datasets. The datasets include MSRCv2 image dataset
(Winn, Criminisi, and Minka 2005), two letter datasets
(Briggs, Fern, and Raich 2012) (i.e., Letter Carroll and Let-
ter Frost), and the MNIST handwritten dataset (LeCun et al.
1998) 2. Note that MNIST is a single-instance single-label
dataset taken from 10 digits. In order to transform it to a
MIML format, we randomly sample 200 bags from the 10
digits, resulting each bag having 27.6 instances and 3.09 la-
bels on average.

Experimental Setting. We follow the same setting as
used in Pham et al. (2015): the class labels are split into
known and unknown labels (i.e. novel labels) in each dataset.
Specifically, we consider 3 different types of splits: the 1st-
4th, the 1st-8th and the 1st-16th labels are taken as novel la-
bels for the first 3 datasets; and the 1st-2nd, the 1st-4th and
the 1st-6th labels are treated as novel labels for MINIST,
since this dataset contains only 10 labels. Then the novel la-
bels are removed for training.

The evaluation is conducted on following aspects: (A)
instance-level annotation, including (A1) discovering differ-
ent novel labels; (A2) detecting instances with novel labels;
and (A3) instance annotation on known labels; (B) bag-level
prediction, including (B1) prediction for multiple novel la-
bels; and (B2) prediction for known labels. Note that, there
are no existing evaluation metrics for multiple novel la-
bels discovery, thus we have to design a new measure for
instance-level annotation and bag-level prediction.

Specifically, in order to evaluate the performance in A1,
we define a new metric FINL. Let hi and ti be the predicted
label index and ground truth label index, respectively, for
instance xi. By ordering known labels before novel labels,
FINL measure is defined as:

FINL=2PrecINLRecINL/(PrecINL +RecINL);

PrecINL=

∑n
i=1

∑n
j=i+1 I(hi=hj)I(ti= tj)I(ti>c)I(hi>c)∑n

i=1

∑n
j=i+1 I(hi=hj)I(hi>c)

;

RecINL=

∑n
i=1

∑n
j=i+1 I(hi=hj)I(ti= tj)I(ti>c)I(hi>c)∑n

i=1

∑n
j=i+1 I(ti= tj)I(ti>c)

,

where c is the number of known labels. PrecINL measures
the fraction that pairs of instances from the same discov-
ered novel label are the real pairs from the same novel label;
RecINL measures the fraction of pairs, that match with the
same novel label, have been discovered; FINL is the combi-
nation of PrecINL and RecINL.

For B1, FINL measure cannot be applied, because a bag
may possess multiple novel labels whereas an instance at
most holds one. Instead, we define FBNL for bag-level eval-
uation of multiple novel labels. Let G ∈ {0, 1}n×(c+k) de-
note the predicted label matrix for bags, Y ∈ {0, 1}n×(c+k′)

be the groundtruth, and G:,l is the lth column of G. Define

2We use MS, LC, LF and MN as short names for MSRCv2, Let-
ter Carroll, Letter Frost and MNIST, respectively.
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F(y, g) as f-measure function, where y is a predicted label
vector, and g is the groundtruth vector. By ordering known
labels before novel labels, FBNL is given by:

FBNL=
1

k

∑k

i=1
max(

{
F(G:,c+i, Y:,c+j), j∈{1, · · · , k}

}
),

which measures the average performance on detected multi-
ple novel labels on the ground-truth label that best matches.

Both FINL and FBNL are the higher the better.
For the evaluation in other aspects, existing metrics can be

applied. A2 is exactly the same task as that in (Pham et al.
2015), thus we take the same metric (AUC) for evaluation.
For A3, accuracy is applied to evaluate the performance on
instance annotation of known labels. For B2, hamming loss
is used to evaluate bag-level performance on known labels.

Three state-of-the-art MIML approaches are used as base-
lines: ORLR (Pham, Raich, and Fern 2014) , MIMLfast

(Huang, Gao, and Zhou 2014) and MIML-NC (Pham et al.
2015). The first two baselines, which do not directly han-
dle novel labels, assign an instance to a novel label if all the
predictive values are lower than a user-specified threshold
(Lou et al. 2013). Because all baselines are unable to dis-
cover multiple novel labels directly, kmeans is employed
to cluster the detected novel instances into k groups in the
post-processing. Besides, we implement a variant of DMNL
based on manifold assumption (see Remark 1) 3.

All parameters in each approach are tuned via 5-fold cross
validation on the training set on the known labels in bag
level, except the number of novel labels k in the baselines.
As training data has no information about novel labels, we
set the same k for all baselines as that tuned in DMNL, for a
fair comparison.

Results on Instance-Level Annotation. Performance
from three aspects (A1, A2 & A3) are evaluated.

For A1, i.e, discovery of multiple novel labels, the FINL

results are exhibited in Table 2. “•” indicates that our ap-
proach is significantly better than the baseline (paired t-tests
at 95% significance level), and the best average performance
is represented in bold. Without exception, DMNL achieves
the best performance on all datasets.
DMNL performs better than all baselines because they

must take additional procedures outside the optimization
process to discover multiple novel labels (i.e., clustering
for all three baselines, and thresholding for ORLR and
MIMLfast). These procedures do not take bag information
into consideration. In contrast, DMNL establishes a unified
model for both known labels and multiple novel labels, and
considers both the cluster structure among all instances and
the contribution of each instance in a bag. Note that FINL is
conservative measure, i.e., a positive contribution is counted
only if both instances in a pair are correctly predicted to be
novel instances of the same label; otherwise a negative con-
tribution is counted. As a result, a small difference in FINL

suggests a big gap between the approaches. This is also the
reason why FINL is small in Table 2.

3It achieves comparable performance to DMNL. Details will be
presented in a longer version due to the space limit.

Table 2: FINL results for discovering multiple novel labels
ORLR MIMLfast MIML-NC DMNL

MS(1-4) .13±.02• .11±.01• .19±.02• .22± .02
MS(1-8) .12±.01• .10±.02• .16±.03• .20± .02
MS(1-16) .12±.02• .08±.04• .14±.03• .20± .03

LC(1-4) .15±.02• .14±.04• .24±.02• .31± .04
LC(1-8) .15±.02• .14±.04• .23±.04 .28± .04
LC(1-16) .15±.02• .14±.05• .21±.03• .26± .03

LF(1-4) .15±.02• .13±.05• .19±.04• .26± .03
LF(1-8) .13±.04• .12±.05• .21±.03• .27± .04
LF(1-16) .13±.04• .13±.05• .19±.05 .22± .05

MN(1-2) .13±.04• .11±.05• .15±.05 .19± .04
MN(1-4) .19±.05• .17±.05• .24±.05 .26± .04
MN(1-6) .16±.05• .15±.03• .19±.05• .25± .03
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Figure 3: Results on instance-level annotation (A2 and A3)
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Figure 4: Results on bag-level prediction (B1 and B2)

In terms of the ability to detect instances with any novel
label (A2), Figure 3(a) summarizes the AUC results. As ob-
served, DMNL achieves significant better performance than
ORLR and MIMLfast and a comparable performance to
MIML-NC, which is the state-of-the-art novel instance de-
tection approach for MIML setting.

In terms of instance annotation on known labels (A3),
Figure 3(b) shows that DMNL performs comparably to
MIML-NC, and sightly better than ORLR and MIMLfast.
This shows that DMNL, though considering multiple novel
labels, does not degrade the performance on known labels.

Results on Bag-Level Prediction. Figure 4 summarizes
the bag-level prediction results on B1 and B2. As expected,
DMNL surpasses all baselines in terms of the ability to dis-
cover multiple novel labels on bag level (B1). In terms of
bag-level prediction on known labels (B2), DMNL has better
results than ORLR and MIMLfast, which support the argu-
ment of Pham et al. (2015) that modeling novel instances in
MIML can improve the prediction results of known labels.
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Due to DMNL’s ability to simultaneously model both known
and novel labels, it achieves even better performance than
MIML-NC.

Table 3: Runtime comparison results (in second)
MS LC LF MN

MIML-NC 206 166 86 176
DMNL 17 10 9 17

Runtime Comparison. We compare DMNL with
MIML-NC in terms of runtime. The results are shown
in Table 3. It can be observed that DMNL (in MATLAB)
achieves about 10 times faster than MIML-NC (with C
implementations in some parts).

Conclusion
We presented the first model for discovering and predict-
ing multiple novel labels in MIML learning. The proposed
discriminative model has the following unique feature: the
problem is formulated as a non-negative orthogonal con-
strained optimization problem that has a bag-dependent loss
term and a clustering regularization term which is bag-
independent. This enables both the known labels and the
multiple novel labels to be simultaneously modeled. Experi-
ments results validate the effectiveness and the efficiency of
our approach on discovering and predicting multiple novel
labels in MIML learning.
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