
A Nearly-Black-Box Online Algorithm for
Joint Parameter and State Estimation in Temporal Models

Yusuf B. Erol∗
EECS, UC Berkeley

yberol@eecs.berkeley.edu

Yi Wu*

EECS, UC Berkeley
jxwuyi@eecs.berkeley.edu

Lei Li
Toutiao Lab

lileicc@gmail.com

Stuart Russell
EECS, UC Berkeley

russell@eecs.berkeley.edu

Abstract

Online joint parameter and state estimation is a core prob-
lem for temporal models. Most existing methods are either
restricted to a particular class of models (e.g., the Storvik fil-
ter) or computationally expensive (e.g., particle MCMC). We
propose a novel nearly-black-box algorithm, the Assumed Pa-
rameter Filter (APF), a hybrid of particle filtering for state
variables and assumed density filtering for parameter vari-
ables. It has the following advantages: (a) it is online and
computationally efficient; (b) it is applicable to both discrete
and continuous parameter spaces with arbitrary transition dy-
namics. On a variety of toy and real models, APF generates
more accurate results within a fixed computation budget com-
pared to several standard algorithms from the literature.

Introduction

Many problems in scientific studies and real-world appli-
cations involve modeling of dynamic processes, which are
often modeled by temporal models, namely state space
models (SSMs) (Elmohamed, Kozen, and Sheldon 2007;
Arora et al. 2010). Online parameter and state estimation
–computing the posterior probability for both (static) param-
eters and (dynamic) states, incrementally over time– is cru-
cial for many applications such as simultaneous localization
and mapping (Montemerlo et al. 2002), object tracking (Ris-
tic, Arulampalam, and Gordon 2004) and 3D design sugges-
tion (Ritchie et al. 2015).

Sequential Monte-Carlo (particle filter) based algorithms
have been introduced for real-world applications (Gordon,
Salmond, and Smith 1993; Arulampalam et al. 2002; Cappé,
Godsill, and Moulines 2007). However, classical particle fil-
ter algorithms suffer from the path degeneracy problem, es-
pecially for parameters, and leave it a challenge to jointly
estimate parameters and states for SSMs with complex de-
pendencies and nonlinear dynamics. Real-world models can
involve both discrete and continuous variables, arbitrary de-
pendencies and a rich collection of nonlinearities and distri-
butions. Existing algorithms are either restricted to a partic-
ular class of models, such as the Storvik filter (Storvik 2002)
and the Liu-West filter (Liu and West 2001), or very expen-
sive in time complexity, such as particle MCMC (Andrieu,

∗The first two authors contributed equally to this work.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Doucet, and Holenstein 2010), which utilizes an expensive
MCMC kernel over the parameter space and typically re-
quires a very large number of MCMC iterations to converge.

In this paper, we propose a practical algorithm for the
general combined parameter and state estimation problem in
SSMs. Our algorithm, called the Assumed Parameter Filter
(APF), is a hybrid of particle filtering for state variables and
assumed density filtering for parameter variables. It projects
the posterior distribution for parameters, p(θ | x0:t, y0:t),
into an approximation distribution and generates samples
of parameters in constant-time per update. APF streams
data and is a nearly-black-box algorithm: when an appro-
priate approximate distribution for the parameter is chosen,
APF can be applied to any SSM that one can sample from
and compute evidence likelihood. We emphasize the nearly-
black-box property of APF by developing it as an automatic
inference engine for a probabilistic programming language.
Experiment results show that APF converges much faster
than existing algorithms on a variety of models.

Background

State space models: A state space model (SSM) consists
of the parameters Θ ∈ R

p, latent states {Xt}0≤t≤T ∈ R
d

and the observations {Yt}0≤t≤T ∈ R
n defined by

Θ ∼ f1(θ) X0 ∼ f2(x0)
Xt | xt−1, θ ∼ g(xt | xt−1, θ) Yt | xt, θ ∼ h(yt | xt, θ)

where fi, g, h denote some arbitrary probability distribu-
tions (the model). Given an SSM, the goal of the joint pa-
rameter and state estimation is to compute the posterior dis-
tribution of both the states (i.e., {Xt}) and the parameters
(i.e., Θ) given the observations. In the filtering setting, we
aim to compute the posterior of Θ and Xt for every time t
based on evidence until time t, namely p(xt, θ | y0...t).
Inference Algorithms: Sequential Monte Carlo (SMC) is
a widely adopted class of methods for inference on SSMs.
Given the observed values Y0:T = y0:T , the posterior dis-
tribution p(x0:t, θ|y0:t) is approximated by a set of K parti-
cles, with each particle k denoted by Xk

t for 1 ≤ k ≤ K.
Xk

t consists of a particular assignment of the states and the
parameter denoted by xk

0:t and θk. Particles are propagated
forward through the transition model g(xk

t |xk
t−1, θ

k) and re-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1861

sampled at each time step t according to the weights wk
t :

Xk
t |Xk

t−1 ∼ g(xk
t |xk

t−1, θ
k), wk

t = h(yt|xk
t , θ

k).

At the propagation step, we assume that the propagation
proposal is the transition probability for conciseness. The
choice of proposal is orthogonal to the focus of this paper.

The most critical issue for static parameter estimation via
the classical particle filter (PF) is the sample impoverish-
ment problem. Due to the resampling step, which “kills” the
particles with low weights, the diversity of the Θ-particles
reduces at every time step (parameter particles are only
sampled once at the beginning of the inference procedure).
Hence, K needs to be sufficiently large to prevent an early
convergence to a degenerate particle set. Thus, PF is mostly
used in the cases where only state estimation is required.

For joint parameter and state estimation, the “gold stan-
dard” approaches are particle Markov chain Monte Carlo
(PMCMC) algorithms (Andrieu, Doucet, and Holenstein
2010), such as particle independent Metropolis-Hastings
(PIMH), particle marginal Metropolis-Hastings (PMMH),
particle Gibbs (PGibbs) (Andrieu, Doucet, and Holen-
stein 2010) and particle Gibbs with ancestor resampling
(PGAS) (Lindsten, Jordan, and Schön 2014). PMCMC al-
gorithms utilize an MCMC transition kernel over the param-
eter space and a classical particle filter for state estimation
and likelihood computation. PMCMC methods are favored
due to their theoretical guarantees as an unbiased estimator
as well as their “black-box” property: the only requirement
for PMCMC methods is that one needs to sample from the
SSM and compute likelihood for the evidence, which is in
most cases straightforward.

However, one significant drawback of PMCMC algo-
rithms is the computational budget. Suppose there are T
time steps and we perform N MCMC steps with K parti-
cles. Then the time complexity for PMCMC algorithms is
O(NKT). Note that for adequate mixing, it is necessary
for N to be sufficiently large. For a real-world application
with a large number of time steps and complex dynamics,
the mixing problem becomes critical. Moreover, since PM-
CMC algorithms require multiple sweeps over observations,
T must be fixed in advance and the full history of the par-
ticles must be stored. This “offline” property of PMCMC
algorithms is infeasible for online/streaming applications,
such as real-time object tracking and signal monitoring, for
which constant time per update is required and storing the
whole history is prohibitive.

There are also online algorithms for joint parameter and
state estimation problems. However, existing algorithms
are either computationally inefficient or only suitable for
a restricted domain of models. The resample-move algo-
rithm (Gilks and Berzuini 2001) utilizes kernel moves that
target p(θ, x0:t | y0:t) as its invariant. However, this method
requires O(t) computation per time step, leading Gilks and
Berzuini to propose a move at a rate proportional to 1/t so
as to have asymptotically constant-time updates. Sampling
from p(θ | x0:t, y0:t) at each time step for models with fixed-
dimensional sufficient statistics has also been proposed by
several authors (Storvik 2002; Lopes et al. 2010). However,
the sufficient statistics assumption restricts the applicable

models. The extended parameter filter (Erol et al. 2013),
which generates approximate sufficient statistics via poly-
nomial approximation overcomes this issue, however, poly-
nomial approximations are often hard to derive for mod-
els with complicated transitions. Lastly, there are other re-
lated works, such as the nested particle filter (Crisan and
Miguez 2013), which is a recursive implementation of the
offline SMC2 (Chopin, Jacob, and Papaspiliopoulos 2013)
algorithm, and the artificial dynamics approach (Liu-West
filter, LW) (Liu and West 2001), which diversifies the pa-
rameter particles by introducing random perturbation and
applies only to continuous variables.

The Assumed Parameter Filter (APF)

The design principles of APF are to inherit the appealing
properties of the classical particle filter, which is applicable
to arbitrary transitions and suitable for streaming data, while
better overcoming the path degeneracy problem for parame-
ter estimation without an expensive MCMC kernel.

We propose a nearly-black-box algorithm, called the As-
sumed Parameter Filter (APF), for online parameter and
state estimation. In APF, the posterior of both states and
parameters are jointly represented by K particles. The key
point is that on the contrary to the bootstrap filter which
keeps a static parameter value in each particle, APF main-
tains an extra approximate distribution and samples from
that distribution for the parameter at each time step.

In order to fight against sample impoverishment, for pa-
rameter θkt at time t in particle k, we sample from a dis-
tribution qkt (θ) in some parametric family Q where qkt (θ)
is the approximate representation of the true particle poste-
rior p(θ | xk

0:t, y0:t). In the special case where q is a delta
function, APF recovers the bootstrap particle filter (proven
in the supplementary material). In order to obtain the ap-
proximating distribution qkt from qkt−1, M additional Monte
Carlo samples are utilized for each particle to perform the
moment-matching operations required for assumed density
approximation. The proposed method is illustrated in Alg. 1.

Algorithm 1: Assumed Parameter Filter
Input: y0:T , Q, K, and M , the model (f1, f2, g, h)
Output: Samples

{
xk
0:T , θ

k
T

}K

k=1

Initialize
{
xk
0 , q

k
0 (θ)

}K

k=1
according to f1, f2 and Q;

for t = 1, . . . , T do
for k = 1, . . . ,K do

sample θkt ∼ qkt−1(θ) ≈ p(θ | xk
0:t−1, y0:t−1);

sample xk
t ∼ g(xt | xk

t−1, θ
k
t) ;

wk
t ← h(yt | xk

t , θ
k
t);

qkt (θ) ← Update(M,Q; qkt−1(θ), x
k
t , x

k
t−1, yt);

sample
{

1
N , x̄k

t , q̄
k
t

} ∼ Multinomial
{
wk

t , x
k
t , q

k
t

}
;{

xk
t , q

k
t

} ← {
x̄k
t , q̄

k
t

}
;

Following the assumed density filtering framework, we
are approximating p(θ | x0:t, y0:t) in a parametric distribu-
tion family Q. In our algorithm this is expressed through

1862

the Update function. The Update function generates the
approximating density q via minimizing the KL-divergence
between the target p and the approximating distribution q.

Approximating p(θ | x0:t, y0:t)
At each time step with each new incoming data point we
approximate the posterior distribution by a tractable and
compact distribution from Q. Our approach is inspired by
assumed density filtering (ADF) for state estimation (Lau-
ritzen 1992; Boyen and Koller 1998).

For our application, we are interested in approximately
representing p(θ | x0:t, y0:t) in a compact form that belongs
to a family of distributions. Due to the Markovian structure
of the SSM, the posterior can be factorized as

p(θ | x0:t, y0:t) ∝
∏t

i=0 si(θ),

si(θ) =

{
p(θ)p(y0 | x0, θ), i = 0

p(xi | xi−1, θ)p(yi | xi, θ), i ≥ 1
.

Let us assume that at time step i − 1 the posterior was
approximated by qi−1 ∈ Q. Then with incorporation of
(xi, yi), the posterior p̂ will be

p̂(θ | x0:i, y0:i) =
si(θ)qi−1(θ)∫

θ
si(θ)qi−1(θ)dθ

. (1)

For most models, p̂ will not belong to Q. ADF projects p̂
into Q via minimizing KL-divergence:

qi(θ) = argmin
q∈Q

D (p̂(θ | x0:i, y0:i) || q(θ)) (2)

For Q in the exponential family, minimizing the KL-
divergence reduces to moment matching (Seeger 2005). For
qi(θ) ∝ exp

{
γT
i m(θ)

}
, where γi is the canonical parame-

ter and m(θ) is the sufficient statistic, we compute moments
of the one-step ahead posterior p̂ and update γi to match.

g(γi) =

∫
m(θ)qi(θ)dθ =

∫
m(θ)p̂(θ)dθ

∝
∫

m(θ)si(θ)qi−1(θ)dθ

where g(·) is the unique and invertible link function. Thus,
for the exponential family, the Update function computes
the moment matching integrals to update the canonical pa-
rameters of qi(θ). For the general case, where these integrals
may not be tractable, we propose approximating them by a
Monte Carlo sum with M samples, sampled from qi−1(θ):

Z ≈ 1
M

∑M
j=1 si(θ

j), g(γi) ≈ 1
MZ

∑M
j=1 m(θj)si(θ

j)

where θj ∼ qi−1(θ). In our framework, this approximation
is done for all particle paths xk

0:i and the corresponding qki−1,
hence leading to O(KM) sampling operations per time step.

Asymptotic performance for APF

In a similar spirit to (Opper and Winther 1998), we prove
that assumed density filtering framework can successfully
converge to the target posterior with increasing amount of
data. For simplicity, we only consider continuous parameters

and use Gaussian as the approximation distribution. We as-
sume an identifiable model (posterior is asmptotically Gaus-
sian around the true parameter) and also assume that in the
model, only the transition is parametrized by the parameter
θ while the observation model is known.
Theorem 1. Let (f1, f2, gθ, hθ) be an identifiable Marko-
vian SSM, and let Q be multivariate Gaussian. The KL di-
vergence between p(θ | x0:t, y0:t) and the assumed density
qt(θ) computed as explained in the previous subsection will
converge to zero as t → ∞.

lim
t→∞DKL (p(θ | x0:t, y0:t)||qt(θ)) = 0. (3)

The proof is given in the supplementary material. The the-
orem states that the error due to the projection diminishes in
the long-sequence limit. Therefore, with K,M → ∞, APF
would produce samples from the true posterior distribution
p(θ, xt | y0:t). For finite K, however, the method is suscep-
tible to path degeneracy.

Similar to (Storvik 2002; Lopes et al. 2010), we are
sampling from p(θ | xi

0:t, y0:t) at each time step to fight
against sample impoverishment. It has been discussed before
that these methods suffer from ancestral path degeneracy
(Chopin et al. 2010; Lopes et al. 2010; Poyiadjis, Doucet,
and Singh 2011). For any number of particles and for a large
enough n, there exists some m < n such that p(x0:m | y0:n)
is represented by a single unique particle. For dynamic mod-
els with long memory, this will lead to a poor approxima-
tion of sufficient statistics, which in turn will affect the pos-
terior of the parameters. In (Poyiadjis, Doucet, and Singh
2011), it has been shown that even under favorable mix-
ing assumptions, the variance of an additive path functional
computed via a particle approximation grows quadratically
with time. To fight against path degeneracy, one may have
to resort to fixed-lag smoothing or smoothing. Olsson et al.
used fixed-lag smoothing to control the variance of the es-
timates (Olsson et al. 2008). Del Moral et al. proposed an
O(K2) per time step forward smoothing algorithm which
leads to variances growing linearly with t instead of quadrat-
ically (Del Moral, Doucet, and Singh 2010). Poyiadjis et
al. similarly proposed an O(K2) algorithm that leads to
linearly growing variances (Poyiadjis, Doucet, and Singh
2011). These techniques can be augmented into the APF
framework to overcome the path degeneracy problem for
models with long memory.

Special cases: Gaussians, mixtures of Gaussians
and discrete distributions

Gaussian case: For a multivariate Gaussian Q, explicit
recursions can be derived for p̂(θ) ∝ si(θ)qi−1(θ) where
qi−1(θ) = N (θ;μi−1,Σi−1). The moment matching recur-
sions are

μi =
1
Z

∫
θsi(θ)qi−1(θ)dθ,

Σi =
1
Z

∫
θθT si(θ)qi−1(θ)dθ − μiμ

T
i .

(4)

where Z =
∫
p̂(θ)dθ =

∫
si(θ)qi−1(θ)dθ. These integrals

can be approximated via Monte Carlo summation as previ-
ously described. One alternative is deterministic sampling.
Since q is multivariate Gaussian, Gaussian quadrature rules

1863

can be utilized. In the context of expectation-propagation
this has been proposed by (Zoeter and Heskes 2005). In the
context of Gaussian filtering, similar quadrature ideas have
been applied as well (Huber and Hanebeck 2008).

For an arbitrary polynomial f(x) of order up to 2M − 1,∫
f(x)e−x2

dx can be calculated exactly via Gauss-Hermite
quadrature with M quadrature points. Hence, the required
moment matching integrals in Eq.(4) can be approximated
arbitrarily well by using more quadrature points. The un-
scented transform (Julier and Uhlmann 2004) is one spe-
cific Gaussian quadrature rule that uses M = 2d deter-
ministic samples to approximate an integral involving a d-
dimensional multivariate Gaussian. In our case these sam-
ples are: ∀1 ≤ j ≤ d,

θj = μi−1 +
(√

dΣi−1

)
j
, θd+j = μi−1 −

(√
dΣi−1

)
j
.

where (·)j means the jth column of the corresponding ma-
trix. Then, one can approximately evaluate the moment
matching integrals as follows:

Z ≈ 1
2d

∑2d
j=1 si(θ

j), μi ≈ 1
2dZ

∑2d
j=1 θ

jsi(θ
j),

Σi ≈ 1
2dZ

∑2d
j=1 θ

j(θj)T si(θ
j)− μiμ

T
i .

Mixtures of Gaussians: Weighted sums of Gaussian
probability density functions can be used to approximate an-
other density function arbitrarily closely. Gaussian mixtures
have been used for state estimation since the 1970s (Alspach
and Sorenson 1972).

Let us assume that at time step i − 1 it was possible to
represent p(θ | x0:i−1, y0:i−1) as a mixture of Gaussians
with L components.

p(θ | x0:i−1, y0:i−1) =

L∑
m=1

αm
i−1N (θ;μm

i−1,Σ
m
i−1)

= qi−1(θ)

Given xi and yi;

p̂(θ | x0:i, y0:i) ∝
L∑

m=1

αm
i−1si(θ)N (θ;μm

i−1,Σ
m
i−1)

The above form will not be a Gaussian mixture for arbitrary
si. We can rewrite it as:

p̂ ∝
L∑

m=1

αm
i−1β

m si(θ)N (θ;μm
i−1,Σ

m
i−1)

βm
(5)

where the fraction is to be approximated by a Gaussian via
moment matching and the weights are to be normalized.
Here, each βm =

∫
si(θ)N (θ;μm

i−1,Σ
m
i−1)dθ describes

how well the m-th mixture component explains the new
data. That is, a mixture component that explains the new
data well will get up-weighted and vice versa. It is impor-
tant to note that the proposed approximation is not exactly
an ADF update. The problem of finding a mixture of fixed
number of components to minimize the KL divergence to a
target distribution is intractable (Hershey and Olsen 2007).

The proposed update here is the one that matches the mean
and covariance.

The resulting approximated density would be qi(θ) =∑K
m=1 α

m
i N (θ;μm

i ,Σm
i) where the recursion for updating

each term is as follows:

βm =

∫
si(θ)N (θ;μm

i−1,Σ
m
i−1)dθ

αm
i =

αm
i−1β

m∑
� α

�
i−1β

�

μm
i =

1

βm

∫
θsi(θ)N (θ;μm

i−1,Σ
m
i−1)dθ

Σm
i =

1

βm

∫
θθT si(θ)N (θ;μm

i−1,Σ
m
i−1)dθ − μm

i (μm
i)T

Similar to the Gaussian case, the above integrals are gen-
erally intractable. Either a Monte Carlo sum or a Gaussian
quadrature rule can be utilized to approximately update the
means and covariances.

Discrete parameter spaces: Let us consider a d-
dimensional parameter space where each parameter can take
at most Nθ values. For discrete parameter spaces, one can
always track p(θ | x0:t, y0:t) exactly with a constant-time
update; the constant, however, is exponential in d (Boyen
and Koller 1998). Hence, tracking the sufficient statistics be-
comes computationally intractable with increasing dimen-
sionality. For discrete parameter spaces we propose pro-
jection onto a fully factorized distribution, i.e., qi(θ) =∏

j qj,i(θj). For this choice, minimizing the KL-divergence
reduces to matching marginals:

Z =
∑

θ si(θ)qi−1(θ)
qj,i(θj) =

1
Z

∑
θ\θj si(θ)qi−1(θ).

Computing these summations is intractable for high-
dimensional models, hence we propose using Monte Carlo
summation. In the experiments, we consider a simultaneous
localization and mapping problem with a discrete map.

Discussions

Applicability: APF follows the framework of particle fil-
tering and the only requirement for updating the approxi-
mate distribution is being able to compute the likelihood of
the states conditioned on the sampled parameter. Thus, APF
can be applied to the same category of models as the particle
filter. The critical issue for APF is the choice of the family of
approximation distributions Q. Although Gaussian mixtures
can arbitrarily approximate any density, different forms of
Q can significantly improve the practical performance. For
example, when the dimensionality of the parameter space
is large, one may want to use a diagonal Gaussian distribu-
tion for fast convergence; for non-negative parameters, the
gamma distribution may be favored. Note that different Qs
yield different updating formulae. To this perspective, APF
is nearly-black-box: a user can apply APF to arbitrary SSMs
just by choosing an appropriate approximating distribution.
In the next section, we further explore the nearly-black-box
property of APF by adapting it to the backend inference en-
gine of a probabilistic programming language.

1864

Modularity: One can utilize a Storvik filter for a subset of
parameters with fixed-dimensional sufficient statistics, and
for the rest of the parameters, approximate sufficient statis-
tics can be generated via the APF framework. This is similar
to the extended Liu-West filter (Rios and Lopes 2013) where
a Storvik filter is used in conjunction with the artificial dy-
namics approach.

Complexity: The time complexity of APF is O(MKT)
over T time steps for K particles with M extra samples to
update the sufficient statistics through the moment matching
integrals. Setting K and M adequately is crucial for per-
formance. Small K prevents APF exploring the state space
sufficiently whereas small M leads to inaccurate sufficient
statistics updates which will in turn result in inaccurate pa-
rameter estimation.

Note that the typical complexity of PMCMC algorithms is
O(NKT) where N denotes the number of MCMC samples.
Although in the same order of APF for time complexity, we
find in practice that M is often orders of magnitude smaller
than N for achieving a given level of accuracy. PMCMC al-
gorithms often requires a large amount of MCMC iterations
for mixing properly while very small M is sufficient for APF
to produce accurate parameter estimation, especially for the
Gaussian case as discussed above.

Moreover, the actual running time for APF is often much
smaller than its theoretical upper bound O(MKT). Notice
that the approximation computation in APF only requires
the local data in a single particle and does not influence the
weight of that particle. Hence, one important optimization
specialized for APF is to resample all the particles prior to
the update step and only update the approximate distribution
for those particles that do not disappear after resampling. It
is often the case that a small fraction of particles have signif-
icantly large weights. Consequently, in our experiment, the
actual running time of APF is several times faster than the
theoretically required time O(MKT) (see practical perfor-
mances of APF in the Experiment section).

Lastly, the space complexity for APF is in the same order
as the bootstrap particle filter, namely O(K). Overall, APF
is constant time and memory per update and hence fits into
online/streaming applications.

Using APF in probabilistic programming

This section shows APF can be integrated into a probabilis-
tic programming language (PPL), BLOG (Milch et al. 2005),
from which the general research community can benefit.
PPLs aim to allow users to express an arbitrary Bayesian
model via a probabilistic program while the backend engine
of PPL automatically performs black-box inference over the
model. PPLs largely simplify the development process of AI
applications involving rich domain knowledge and have led
to many successes, such as the human-level concept learn-
ing (Lake, Salakhutdinov, and Tenenbaum 2015) and the 3D
scene perception (Kulkarni et al. 2015).

We developed a compiled inference engine, the State and
Parameter Estimation Compiler (SPEC), utilizing APF un-
der BLOG (Milch et al. 2005) thanks to its concise syn-
tax (Li and Russell 2013): in the BLOG language, state vari-

ables are those indexed by timestep, while all other vari-
ables are effectively parameters; thus, by identifying the
static and dynamic variables, the SPEC compiler can auto-
matically work out how to apply APF to the filtering prob-
lem. Since APF is based on the BLOG language, the gen-
eral compilation process is based on the Swift compiler for
BLOG (Wu et al. 2016). There are also other compiled PPL
systems, such as Church (Goodman et al. 2008) and Angli-
can (Wood, van de Meent, and Mansinghka 2014). However,
these systems do not have any language primitives distin-
guishing state and parameter. Potentially APF can be also
applied to these systems by adding new syntax for declaring
the parameter.

In order to demonstrate the online property of APF, SPEC
also includes some extended syntax to allow streaming ap-
plications. The following BLOG program describes a simple
SSM, the SIN model:

X0 ∼ N (0, 1) Θ ∼ N (0, 1)
Xt ∼ N (sin(θxt−1), 1) Yt ∼ N (xt, 0.5

2)

The keyword random declares random variables in the
model: those with an argument of type Timestep are states
(dynamic variables, i.e., X(t) and Y(t)) while others are
parameters (static variables, i.e., theta). Line 14 states that
Y(t) is observed while line 16 and 17 query the posterior
distribution of the state X(t) at each time step and the pa-
rameter theta.

In SPEC, we extend the original syntax of BLOG by (1)
introducing a new keyword extern (Line 12) to import ar-
bitrary customized C++ functions (e.g., input functions for
streaming data at each time step) and (2) the for-loop style
observation statement (Line 14) and query statement (Line
16, 17). These changes allow APF to be applied in a com-
pletely online fashion.

A user can utilize SPEC to perform inference with APF
for both {Xt} and Θ by simply coding this tiny program
without knowing algorithm details. SPEC automatically an-
alyzes the parameters, selects approximate distributions and
applies APF to this model. By default, we use Gaussian dis-
tributions with Gauss-Hermite quadratures for continuous
parameters and factored categorical distributions for discrete
parameters. SPEC is extensible for more approximate distri-
butions for further development. Moreover, due to the mem-

1865

ory efficiency of APF, many other optimizations from the
programming language community can be applied to further
accelerate the practical performance of APF.1

Experiments

We evaluated APF on three benchmark models: 1. SIN:
a nonlinear dynamical model with a single continuous pa-
rameter; 2. SLAM: a simultaneous localization and Bayesian
map learning problem with 20 discrete parameters; 3. BIRD:
a 4-parameter model to track migrating birds with real-world
data. We compare the estimation accuracy of APF, as a
function of run time, against the Liu-West filter (LW) and
PMCMC algorithms including particle marginal Metropolis-
Hastings (PMMH), particle Gibbs (PGibbs) and particle
Gibbs with ancestor sampling (PGAS). For implementation,
APF and LW are natively supported by our automatic engine
SPEC. PMMH is manually adapted from the code compiled
by SPEC. For PGibbs and PGAS, we compare both the code
generated the Anglican compiler (Wood, van de Meent, and
Mansinghka 2014), and our customized implementations.

Toy nonlinear model (SIN)

We consider the SIN model in the previous section with the
true parameter θ� = 0.5. 5000 data points are generated to
ensure a sharp posterior. Notice that it is not possible to use
the Storvik filter (Storvik 2002) or the particle learning algo-
rithm (Lopes et al. 2010) for this model as sufficient statis-
tics do not exist for Θ.

We evaluate the mean squared error over 10 trials between
the estimation results and θ� within a fixed amount of time.
For APF and LW, we consider the mean of the samples for Θ
at the last time step for parameter estimation while for PM-
CMC algorithms, we take the average of the last half of the
samples and leave the first half as burn-in. We omit PGAS
results by Anglican here since Anglican takes more than 10
minutes to produce a sample with 100 particles.

For APF, we choose Gaussian as the approximate distri-
bution with M = 7. For PMMH, we use a local truncated
Gaussian as the proposal distribution for Θ.

Note that for PGAS and PGibbs, we need to sample from
Pr[Θ|X1:T , Y1:T] while this cannot be efficiently computed
in SIN. As a black-box inference system, the Anglican com-
piler avoids this by treating every variable as state variable.
In our customized implementations, we use a piecewise lin-
ear function to approximate Pr[Θ|X1:T , Y1:T]

2.
The results for black-box algorithms, including APF, Liu-

West filter (supported by SPEC), PMMH (adapted from
the code by SPEC) and PMCMC algorithms (PGibbs and
PGAS in Anglican) are shown in Fig. 1(a). We also compare
APF against out customized implementation of PGibbs and
PGAS in Fig. 1(b). APF produced a result of orders of mag-
nitude smaller error within a much smaller amount of run

1The details of the compilation optimizations in SPEC can be
found in the supplementary materials.

2We discretize [−1, 1] uniformly into 500 intervals. 500 is
smaller than the number of particles used by the PMCMC algo-
rithms, so this process does not influence the total running time
significantly.

time: an estimation for θ with 1.6 ∗ 10−4 square error with
only 1000 particles in 1.5 seconds.

Note that, as mentioned in the discussion section, in the-
ory APF with M = 7 should be 7 times slower than the
plain particle filter. But in practice, thanks to the trick – only
updating the approximate distributions for the retained par-
ticles, APF is just 2 times slower.

Density Estimation: We also show the kernel density es-
timates of the posterior of θ in Fig. 1(c), where we ran APF
with 104 particles and M = 7 as well as our customized ver-
sion of PGibbs and PGAS with 5000 particles for 6 hours
(around 5000 MCMC iterations). For PGibbs and PGAS,
we left the first 1000 samples as burn-in. APF produced
a reasonable mode centered exactly at the true parameter
value 0.5 using merely 40 seconds while PGibbs and PMMH
mixed slowly.

Bimodal Variant: Consider a multimodal variant of SIN
as follows: Xt ∼ N (sin(θ2xt−1), 1), Yt ∼ N (xt, 0.5

2).
Due to the θ2 term, p(θ | y0:t) will be bimodal. We generate
200 data points in this case and execute APF with K = 103

particles and M = 7 using mixtures of L = 2, 5, 10 Gaus-
sians as the approximate distribution. To illustrate the true
posterior, we ran PMMH with K = 500 for 20 minutes
(much longer than APF) to ensure it mixes properly.

The histograms of the samples for θ are demonstrated in
Fig. 1(d). APF successfully approximates the multimodal
posterior when L = 5, 10 and the weights are more accu-
rate for L = 10. For L = 2, APF only found a single mode
with a large bias. This suggests that increasing the number
of mixtures used for approximation can help find different
modes in the true posterior in practice.

Simultaneous localization and mapping (SLAM)

We consider a simultaneous localization and mapping ex-
ample (SLAM) modified from (Murphy and others 1999).
The map is defined as a 1-dimensional grid, where each cell
has a static label (parameter to be estimated) which will be
(noisily) observed by the robot. More formally, the map is a
vector of boolean random variables M(i) ∈ {1, . . . , NO},
where 1 ≤ i ≤ NL. Neither the map nor the robot’s location
Lt ∈ {1, . . . , NL} is observed.

Given the action, move right or left, the robot moves in
the direction of action with a probability of pa and stays at
its current location with a probability of 1− pa (i.e., robot’s
wheels slip). The prior for the map is a product of individ-
ual cell priors, which are all uniform. The robot observes the
label of its current cell correctly with probability po and in-
correctly with probability of 1−po. In the original example,
NL = 8, pa = 0.8, po = 0.9, and 16 actions were taken.
In our experiment, we make the problem more difficult by
setting NL = 20 and deriving a sequence of 41 actions to
ensure the posterior converge to a sharp mode.

We evaluate the KL-divergence between the prediction
posterior and the exact true posterior within various time
limits. We omit Liu-West filter since is not applicable for dis-
crete parameters. In APF, we use a Bernoulli distribution as
the approximate distribution for every grid cell. For PMMH,

1866

5E-05

0.0005

0.005

0.05

0.5

0.1 0.4 1.6 6.4 25.6 102.4 409.6

M
SE

Running Time (s)

Accuracy vs Run Time
(PPL systems)

APF,M=7 Liu-West
PMMH,K=100, N=200~5000 PMMH,K=1000, N=200~1000
PGibbs,K=100,N=500~2000 PGibbs, K=1000, N=200~1000

(a) Accuracy on SIN using black-box algorithms in PPLs

5E-05

0.0005

0.005

0.05

0.5

0.1 0.4 1.6 6.4 25.6 102.4 409.6

M
SE

Running Time (s)

Accuracy vs Run Time
(customized implementations)APF,M=7

PGibbs-custom,
K=1000,N=13~700
PGibbs-custom,
K=5000,N=3~60
PGAS-custom,
K=500, N=15~300
PGAS-custom,
K=1000,N=3~160

(b) Accuracy on SIN via customized implementations

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

5

10

15

20

25

θ

PMMH

PGAS

APF

(c) Density estimation on SIN

−1−0.5 0.5 1
0

10

20

30

40

50

60

70

θ

MoG L = 2

−1−0.5 0.5 1
0

10

20

30

40

50

60

70

80

90

θ

MoG L = 5

−1−0.5 0.5 1
0

10

20

30

40

50

60

70

80

90

100

θ

MoG L = 10

−1−0.5 0.5 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

θ

PMMH(N=10
5
,K=500)

(d) Histograms for multimodal SIN

0 100 200 300 400 500
−1

0

1

2

3

4

5

M

lo
g
(D

K
L
(p
(θ
|y

0
:T
)|
|p̂
(θ
))

g

K=200

K=400

K=1000

K=2000

(e) APF with different parameters on SLAM

0.01

0.1

1

10

0.2 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2

KL
 D

iv
er

ge
nc

e

Run Time (s)

Accuracy vs Run Time

APF, M=100

PMMH, K=200, N=200~15000

PGibbs, K=200, N=200~2000

PGAS, K=200, N=200~500

40 140

(f) Accuracy on SLAM

0

5

10

15

20

25

30

35

40

45

45 90 180 360

M
SE

Run Time (s)

Accuracy vs Run Time
APF,M=15

Liu-West

PMMH, K=20, N=200,360,660,1000,2000

PMMH, K=100, N=70,130,210,400,800

PMMH, K=300,N=60,100,200

(g) Accuracy on BIRD

Figure 1: Performance plots in SIN, SLAM, BIRD experiments: (a) accuracy on SIN comparing APF with other black-box
algorithms for PPLs (Liu-West, PMMH from SPEC and PGibbs by Anglican); (b) accuracy on SIN comparing APF with our
customized implementations of PGibbs and PGAS in C++; (c) density estimation of the posterior distribution of θ by APF,
PMMH and PGAS; (d) the histograms of samples for θ in the multimodal SIN model by APF using L = 2, 5, 10 mixtures of
Gaussians and the almost-true posterior by PMMH; (e) APF with different configurations for K and M on SLAM; (f) accuracy
on SLAM; (g) accuracy on BIRD.

1867

we use a coordinate MCMC kernel: we only sample a sin-
gle grid at each MCMC iteration. For PGibbs and PGAS,
since it is hard to efficiently sample from Pr[θ|X1:T , Y1:T],
we only show results by Anglican.

Fig. 1(f) shows that APF approximates the posterior dis-
tribution much more accurately than other methods within a
shorter run time. For PGAS by Anglican, due to its system
overhead, the overall run time is significantly longer.

Similar to SIN, although APF performs 20M = 2000
extra samples per time step in SLAM, in practice, APF is
merely 60x slower than the plain particle filter due to the
resampling trick.

Choices of Parameters: We experiment APF with vari-
ous settings (number of particles K and number of sam-
ples M) and evaluate the average log KL-divergence over
100 trials. The results in Fig. 1(e) agree with the theory. As
K increases the KL-divergence decreases whereas after a
certain point, not much gain is obtained by increasing M .
When M is large enough, the moment matching integrals
are more or less exactly computed and the error is not due
to the Monte Carlo sum but due to the error induced by the
assumed-density projection step, which cannot be avoided.

Tracking bird migration (BIRD)

The bird migration problem (BIRD) is originally investi-
gated in (Elmohamed, Kozen, and Sheldon 2007), which
proposes a hidden Markov model to infer bird migration
paths from a large database of observations3.

In the BIRD model, there are 4 continuous parameters
with 60 dynamic states where each time step contains 100
observed variables and more than 104 hidden variables.

We again measure the mean squared estimation error over
10 trials between the average of the samples for the pa-
rameters and the ground truth within different time limits.
For APF, we use a diagonal Gaussian approximation with
M = 15. For PMMH we use a truncated Gaussian pro-
posal with diagonal covariance and leave the first half of the
samples as burn-in. We did not compare against PGAS and
PGibbs since these algorithms require storing the full his-
tory, which consumes too much memory (60x larger) to run
enough particles. The results illustrated in Fig. 1(g) again
show that APF achieves much better convergence within a
much tighter computational budget.

Conclusion

We proposed the assumed parameter filter (APF), an online
algorithm for joint parameter and state estimation in general
state-space models, which provably converges in the long-
sequence limit under standard conditons.

It is a “nearly-black-box” algorithm in the sense that its
default assumed-density models can handle a large range of
cases, while the algorithm can be extended easily to new
cases by supplying a well-defined set of functions. APF is
not a drop-in replacement for unbiased algorithms with the-
oretical guarantees, e.g., PMCMC and SMC2, but an effi-
cient alternative in practice. Experiments exhibit that APF

3http://ppaml.galois.com/wiki/wiki/CP2BirdMigration

has better estimation performance using much less compu-
tation time compared to several standard algorithms on a va-
riety of applications.

Acknowledgement

We would like to thank our anonymous reviewers for valu-
able discussions. This work is supported by the DARPA
PPAML program, contract FA8750-14-C-0011.

References

Alspach, D. L., and Sorenson, H. W. 1972. Nonlinear
Bayesian estimation using Gaussian sum approximations.
Automatic Control, IEEE Transactions on 17(4):439–448.
Andrieu, C.; Doucet, A.; and Holenstein, R. 2010. Particle
Markov chain Monte Carlo methods. Journal of the Royal
Statistical Society: Series B 72(3):269–342.
Arora, N. S.; Russell, S. J.; Kidwell, P.; and Sudderth, E. B.
2010. Global seismic monitoring as probabilistic inference.
In NIPS, 73–81.
Arulampalam, S.; Maskell, S.; Gordon, N.; and Clapp, T.
2002. A tutorial on particle filters for on-line non-linear/non-
Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing 50(2):174–188.
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In UAI, 33–42. Morgan Kauf-
mann Publishers Inc.
Cappé, O.; Godsill, S. J.; and Moulines, E. 2007. An
overview of existing methods and recent advances in se-
quential Monte Carlo. Proceedings of the IEEE 95(5):899–
924.
Chopin, N.; Iacobucci, A.; Marin, J.-M.; Mengersen, K.;
Robert, C. P.; Ryder, R.; and Schäfer, C. 2010. On parti-
cle learning. arXiv preprint arXiv:1006.0554.
Chopin, N.; Jacob, P. E.; and Papaspiliopoulos, O. 2013.
SMC2: An efficient algorithm for sequential analysis of state
space models. Journal of the Royal Statistical Society: Se-
ries B 75(3):397–426.
Crisan, D., and Miguez, J. 2013. Nested particle filters
for online parameter estimation in discrete-time state-space
markov models. arXiv preprint arXiv:1308.1883.
Del Moral, P.; Doucet, A.; and Singh, S. 2010. Forward
smoothing using sequential Monte Carlo. arXiv preprint
arXiv:1012.5390.
Elmohamed, M.; Kozen, D.; and Sheldon, D. R. 2007. Col-
lective inference on Markov models for modeling bird mi-
gration. In Advances in Neural Information Processing Sys-
tems, 1321–1328.
Erol, Y. B.; Li, L.; Ramsundar, B.; and Stuart, R. 2013.
The extended parameter filter. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13),
1103–1111.
Gilks, W. R., and Berzuini, C. 2001. Following a moving tar-
get – Monte Carlo inference for dynamic Bayesian models.
Journal of the Royal Statistical Society. Series B (Statistical
Methodology) 63(1):127–146.

1868

Goodman, N. D.; Mansinghka, V. K.; Roy, D. M.; Bonawitz,
K.; and Tenenbaum, J. B. 2008. Church: A language for
generative models. In UAI, 220–229.
Gordon, N. J.; Salmond, D. J.; and Smith, A. F. M. 1993.
Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. IEE Proceedings F Radar and Signal Processing
140(2):107–113.
Hershey, J. R., and Olsen, P. A. 2007. Approximating
the Kullback Leibler divergence between Gaussian mixture
models. In 2007 IEEE International Conference on Acous-
tics, Speech and Signal Processing-ICASSP’07, volume 4,
IV–317. IEEE.
Huber, M. F., and Hanebeck, U. D. 2008. Gaussian filter
based on deterministic sampling for high quality nonlinear
estimation. In Proceedings of the 17th IFAC World Congress
(IFAC 2008), volume 17.
Julier, S. J., and Uhlmann, J. K. 2004. Unscented fil-
tering and nonlinear estimation. Proceedings of the IEEE
92(3):401–422.
Kulkarni, T. D.; Kohli, P.; Tenenbaum, J. B.; and Mans-
inghka, V. 2015. Picture: A probabilistic programming
language for scene perception. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
4390–4399.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350(6266):1332–1338.
Lauritzen, S. L. 1992. Propagation of probabilities, means,
and variances in mixed graphical association models. Jour-
nal of the American Statistical Association 87(420):1098–
1108.
Li, L., and Russell, S. J. 2013. The BLOG language ref-
erence. Technical Report UCB/EECS-2013-51, EECS De-
partment, University of California, Berkeley.
Lindsten, F.; Jordan, M. I.; and Schön, T. B. 2014. Parti-
cle Gibbs with ancestor sampling. The Journal of Machine
Learning Research 15(1):2145–2184.
Liu, J., and West, M. 2001. Combined parameter and
state estimation in simulation-based filtering. In Sequential
Monte Carlo Methods in Practice.
Lopes, H. F.; Carvalho, C. M.; Johannes, M.; and Polson,
N. G. 2010. Particle learning for sequential Bayesian com-
putation. Bayesian Statistics 9:175–96.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2005. Blog: Probabilistic models with un-
known objects. In IJCAI, 1352–1359.
Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B.; et al.
2002. FastSLAM: A factored solution to the simultaneous
localization and mapping problem. In AAAI, 593–598.
Murphy, K. P., et al. 1999. Bayesian map learning in dy-
namic environments. In NIPS, 1015–1021.
Olsson, J.; Cappé, O.; Douc, R.; Moulines, E.; et al.
2008. Sequential Monte Carlo smoothing with applica-
tion to parameter estimation in nonlinear state space models.
Bernoulli 14(1):155–179.

Opper, M., and Winther, O. 1998. A Bayesian approach to
on-line learning. On-line Learning in Neural Networks, ed.
D. Saad 363–378.
Poyiadjis, G.; Doucet, A.; and Singh, S. S. 2011. Parti-
cle approximations of the score and observed information
matrix in state space models with application to parameter
estimation. Biometrika 98(1):pp. 65–80.
Rios, M. P., and Lopes, H. F. 2013. The extended Liu and
West filter: Parameter learning in markov switching stochas-
tic volatility models. In State-Space Models. Springer. 23–
61.
Ristic, B.; Arulampalam, S.; and Gordon, N. J. 2004. Be-
yond the Kalman filter: Particle filters for tracking applica-
tions. Artech House.
Ritchie, D.; Mildenhall, B.; Goodman, N. D.; and Hanra-
han, P. 2015. Controlling procedural modeling programs
with stochastically-ordered sequential Monte Carlo. In SIG-
GRAPH.
Seeger, M. 2005. Expectation propagation for exponential
families. Technical report.
Storvik, G. 2002. Particle filters for state-space models with
the presence of unknown static parameters. IEEE Transac-
tions on Signal Processing 50(2):281–289.
Wood, F.; van de Meent, J. W.; and Mansinghka, V. 2014.
A new approach to probabilistic programming inference. In
AISTATS, 1024–1032.
Wu, Y.; Li, L.; Russell, S.; and Bodik, R. 2016. Swift: Com-
piled inference for probabilistic programming languages. In
Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI).
Zoeter, O., and Heskes, T. 2005. Gaussian quadrature based
expectation propagation. In Proceedings of AISTATS.

1869

