
Generalized Ambiguity Decompositions for Classification with
Applications in Active Learning and Unsupervised Ensemble Pruning

Zhengshen Jiang
Electronics Engineering and

Computer Science, Peking University
Beijing, P.R. China

jiangzhengshen@pku.edu.cn

Hongzhi Liu,* Bin Fu, Zhonghai Wu*
National Engineering Center of

Software Engineering, Peking University
Beijing, P.R. China

{liuhz, fubin1990, wuzh}@pku.edu.cn
*Corresponding author

Abstract

Error decomposition analysis is a key problem for ensemble
learning. Two commonly used error decomposition schemes,
the classic Ambiguity Decomposition and Bias-Variance-
Covariance decomposition, are only suitable for regression
tasks with square loss. We generalized the classic Ambiguity
Decomposition from regression problems with square loss to
classification problems with any loss functions that are twice
differentiable, including the logistic loss in Logistic Regres-
sion, the exponential loss in Boosting methods, and the 0-
1 loss in many other classification tasks. We further proved
several important properties of the Ambiguity term, armed
with which the Ambiguity terms of logistic loss, exponential
loss and 0-1 loss can be explicitly computed and optimized.
We further discussed the relationship between margin theory,
“good” and “bad” diversity theory and our theoretical results,
and provided some new insights for ensemble learning. We
demonstrated the applications of our theoretical results in ac-
tive learning and unsupervised ensemble pruning, and the ex-
perimental results confirmed the effectiveness of our meth-
ods.

Introduction

Previous work

As a sub-field of machine learning, ensemble methods use
multiple learning algorithms to obtain better predictive per-
formance than could be obtained from any of the constituent
learning algorithms alone (Rokach 2010). To achieve good
performance, the base learners should be both accurate and
diverse.

It is widely accepted that the generalization error of an en-
semble depends on a term related to diversity (Zhou 2012).
Thus, error decomposition analysis has long been consid-
ered as a key problem in ensemble learning. Two commonly
used error decomposition schemes are the classic Ambigu-
ity Decomposition and Bias-Variance-Covariance decompo-
sition. Both the two decompositions are only suitable for re-
gression tasks with square loss. In this work, we generalized
the classic Ambiguity Decomposition to classification tasks
with a variety of loss functions, including the logistic loss,
exponential loss, 0-1 loss, etc.
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The classic Ambiguity Decomposition revealed the rela-
tionship between the loss of base learners and that of the en-
semble for ensemble regression (Krogh and Vedelsby 1995).
Its form for a single sample (Brown et al. 2005) is

(fens − y)2 =
∑
i

ωi(fi − y)2 −
∑
i

ωi(fi − fens)
2 (1)

where fi is the output of a base classifier, y is the true value
of the considered sample’s target, and fens is a convex com-
bination of the base classifiers, i.e., fens =

∑
i ωifi, where∑

i ωi = 1 and ωi ≥ 0.
Computing the expectation in the sample space yields the

classic Ambiguity Decomposition, which is always written
as

E = Ē − Ā

where E is the generalization error of the ensemble, Ē is
the average generalization error of the base learners, and
Ā, which has been considered to be relevant to diversity, is
called “ambiguity”.

The classic Ambiguity Decomposition assumes that the
loss function is square loss which is commonly used in re-
gression but not suitable for classification.

Brown and Kuncheva broke down the Ambiguity term for
0-1 loss into two terms: “good” and “bad” diversity. The
good diversity term is taken out of Ē whereas the bad diver-
sity term is added to it (Brown and Kuncheva 2010). Their
work only considered classification tasks with 0-1 loss, and
the base classifiers were assumed to be combined using ma-
jority voting.

Audhkhasi et al. presented a framework to generalize the
classic Ambiguity Decomposition to classification problems
(Audhkhasi et al. 2013). Their results showed that the en-
semble performance approximately decomposed into a dif-
ference of the average classifier performance and the diver-
sity of the ensemble. However, their result was a bound of
the generalization error. The bound is not tight and the ap-
plicability is limited.

Contributions

In this paper, we contributed to the field of machine learning
both theoretically and practically.

First, we presented two Generalized Ambiguity Decom-
positions that can be used not only in regression tasks, but
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also in classification tasks with a variety of loss functions,
e.g., the logistic loss in Logistic Regression, the exponential
loss in Boosting methods, and the 0-1 loss in many classifi-
cation tasks. These decompositions can be used in many op-
timization problems in ensemble learning and active learn-
ing. All these are not possible by using the classic Ambiguity
Decomposition or the “good” and “bad” diversity theory.

Secondly, we proved several important properties of E, Ē
and Ā. Armed with these properties, the Ambiguity terms
can be explicitly computed and optimized. We further dis-
cussed the relationship between margin theory, “good” and
“bad” diversity theory and our theoretical results, and pro-
vided some new insights for ensemble learning.

Lastly, we demonstrated the applications of our theoret-
ical results in active learning and unsupervised ensemble
pruning, and the experimental results confirmed the effec-
tiveness of our methods.

The Two Generalized

Ambiguity Decompositions

In this section, we will present two Generalized Ambigu-
ity Decompositions which generalize the classic Ambigu-
ity Decomposition to classification problems. We will prove
that the classic Ambiguity Decomposition is a special case
of both of the generalized decompositions. At the end of this
section, we will show that our results provide new insights
into ensemble learning both theoretically and practically.

Notations

In this work, we focus on two-class classification problems.
But the theoretical results can also be used in regression
problems.

We make the usual assumption of PAC learning theory
(Valiant 1984) that a task D corresponds to a probability
distribution over the input-output space X × Y . A sample
from D is represented as (x, y), where x ∈ Rd is a vector of
the attributes, and y ∈ Y is the label. h is a classifier that is
trained to predict the label. f is the output of classifier h for
input x, i.e. f = h(x). The ensemble of the base classifiers
is

H(x) =
∑
i

ωihi(x) or fens = f̄ =
∑
i

ωifi

where ωi is the weight of classifier hi. In the following de-
ductions, we assume that

∑
i ωi = 1 for conciseness reason.

However, this assumption is not essential.
We denote the loss function as l(f, y). Commonly used

loss functions include the square loss l(f, y) = (f−y)2, the
logistic loss l(f, y) = log(1+ e−yf ) (Collins, Schapire, and
Singer 2002), the exponential loss l(f, y) = e−yf (Collins,
Schapire, and Singer 2002), etc.

The generalization error is represented as ED{l(f, y)},
where ED is the expectation in the sample space. Specif-
ically, in the same way as in (Mukherjee et al. 2003), the
generalization error is computed as

ED{l(f, y)} = E
(x,y)∼D

l(h(x), y)

The Generalized Ambiguity Decompositions

Inspired by the work of Audhkhasi et al., we present the fol-
lowing two Generalized Ambiguity Decompositions.

Theorem 1 (The First Generalized Ambiguity Decom-
position) Assume we are dealing with binary classification
problems. A set of classifiers {h1, h2, ..., hT } have been
trained and are combined by weighted averaging fens =∑

i ωifi with fi = hi(x) and
∑

i ωi = 1. Then for any loss
function that is twice differentiable, the loss function of the
ensemble can be decomposed into

l(fens, y) =

T∑
i=1

ωil(fi, y) (2)

−1

2

T∑
i=1

ωi[l
′′(f∗i , y)f

2
i − l′′(f∗ens, y)f

2
ens]

Computing the expectation in sample space yields decompo-
sition of the generalization error as following

E = Ē − Ā

where

E = ED{l(fens, y)}

Ē =

T∑
i=1

ωiED{l(fi, y)}

Ā =
1

2

T∑
i=1

ωiED{l′′(f∗i , y)f2
i − l′′(f∗ens, y)f

2
ens}

with f∗i being some number between zero and fi, f∗ens being
some number between zero and fens, and ED{·} represent-
ing the expectation in sample space.

Proof. For a single sample, the loss of the output fi given
by base classifier hi can be expanded near zero according to
Taylor’s theorem:

l(fi, y) = l(0, y) + l′(0, y)fi +
1

2
l′′(f∗i , y)f

2
i

where f∗i is an uncertain number between zero and fi.
For the ensemble, the loss function l(fens, y) can also be

expanded in a similar way, i.e.,

l(fens, y) = l(0, y) + l′(0, y)fens +
1

2
l′′(f∗ens, y)f

2
ens

where f∗ens is an uncertain number between zero and fens.
The weighted average of l(fi, y) is

T∑
i=1

ωil(fi, y) = l(0, y)+l′(0, y)fens+
1

2

T∑
i=1

ωil
′′(f∗i , y)f

2
i

Thus
T∑

i=1

ωil(fi, y)− l(fens, y)

=
1

2

T∑
i=1

ωi[l
′′(f∗i , y)f

2
i − l′′(f∗ens, y)f

2
ens]
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Finally, we get the form of the Generalized Ambiguity
Decomposition for a single sample as in Equation 2.

Computing the expectation over the sample space by inte-
grating with respect to the probability density function p(x)
yields the form of the Generalized Ambiguity Decompo-
sition for the overall dataset, which is exactly the theorem
above.

Theorem 2 (The Second Generalized Ambiguity De-
composition) With the same assumptions as in Theorem 1,
for any loss function that is twice differentiable, the loss
function of the ensemble can be decomposed into

l(fens, y) =

T∑
i=1

ωil(fi, y)− 1

2

T∑
i=1

ωil
′′(f∗i , y)(fi − fens)

2

and thus with E and Ē remaining the same as in Theorem 1,

Ā =
1

2

T∑
i=1

ωiED{l′′(f∗i , y)(fi − fens)
2}

with f∗i being some value between fi and fens, and ED{·}
representing the expectation in sample space.

Proof. For a single sample, the loss of the output fi given by
base classifier hi can be expanded near the ensemble output
fens according to Taylor’s theorem:

l(fi, y) = l(fens, y) + l′(fens, y)(fi − fens)

+
1

2
l′′(f∗i , y)(fi − fens)

2

where f∗i is a value between fi and fens.
Summing over all the loss functions of the base classifiers

using weighted averaging yields

T∑
i=1

ωil(fi, y) = l(fens, y) +
1

2

T∑
i=1

ωil
′′(f∗i , y)(fi − fens)

2

This is exactly the form of the second Generalized Ambigu-
ity Decomposition for a single sample.

Computing the expectation over the sample space yields
the form of the Generalized Ambiguity Decomposition for
the overall dataset, which is exactly the theorem above.

Above theorems are both generalizations of the clas-
sic Ambiguity Decomposition, which was derived under
the square loss assumption. It can be verified that when we
choose l(f, y) = (f − y)2 as the loss function, the General-
ized Ambiguity Decompositions become exactly the classic
Ambiguity Decomposition, since l′′ = 2 holds for any f and
y.

Property of the Parameter f∗

In above two Generalized Ambiguity Decompositions, there
are three uncertain numbers, that is, f∗i between 0 and fi,
f∗ens between 0 and fens in Theorem 1, and f∗i between fi
and fens in Theorem 2. All the three parameters are in close
relationship with Lagrange mean value. In this section, we

will prove that in limit situation, the parameters in Theo-
rem 1 can be estimated by

f̂∗i =
fi
4

, f̂∗ens =
fens
4

(3)

and the parameter in Theorem 2 can be estimated by

f̂∗i =
fi + 3fens

4
(4)

Our proof is based on the theorem proved by (Azpeitia
1982) as following.

Lemma 3 Suppose f ′′(x) exists in a neighborhood of
point a, f ′′(x) is continuous at a and f ′′(a) �= 0, ξ is de-
cided by Lagrange mean value theorem:

f(x) = f(a) + f ′(ξ)(x− a),

then limx→a
ξ−a
x−a = 1

2 .
Using this lemma, we can proof Equation 3 and 4 as fol-

lowing.
Theorem 4 Suppose f ′′′(x) exists in a neighborhood of

point a, f ′′′(x) is continuous at a and f ′′′(a) �= 0, the un-
certain parameter ξ in the Lagrange remainder of Taylor’s
theorem ξ is decided by Lagrange mean value theorem:

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(ξ)(x− a)2,

then limx→a ξ = x+3a
4 .

Proof. According to Lemma 3, we get f(x) = f(a) +
f ′(ξ0)(x− a) and limx→a ξ0 = x+a

2 .
Expanding f ′(ξ0) according to Lagrange mean value the-

orem yields
f ′(ξ0) = f ′(a) + f ′′(ξ)(ξ0 − a)

x→a
= f ′(a) +

1

2
f ′′(ξ)(x− a)

Substituting above equation into the first one yields

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(ξ)(x− a)2,

and limx→a ξ = ξ0+a
2 = x+3a

4 .

Corollaries and Discussions

Optimization Problems in Ensemble Learning The goal
of ensemble learning is to minimize the generalization error
E. Many tasks in ensemble learning need to optimize an ob-
jective function that is related to diversity, such as base clas-
sifier generation, ensemble pruning and the optimization of
ensemble weights. According to the classic Ambiguity De-
composition, the minimization of E can be decomposed into
minimizing Ē and maximizing Ā, and Ā is in close rela-
tionship with diversity. However, since the classic Ambigu-
ity Decomposition only holds for regression problems, the
objective function related to diversity in classification prob-
lems is somewhat heuristic. Our newly presented General-
ized Ambiguity Decompositions provide theoretical basis to
explore the Ambiguity term in classification problems, and
enable us to maximize the Ambiguity of many loss func-
tions, such as logistic loss, exponential loss, 0-1 loss, and
other less common loss functions. We will further discuss
about this later.
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Active Learning In the classic Ambiguity Decomposi-
tion, Ā can be estimated entirely from unlabelled data,
which makes it possible to exploit unsupervised learning
methods. Using Theorem 2, we have similar result for lo-
gistic loss in classification problems.

Corollary 1 In classification problems where class la-
bel y ∈ {−1, 1}, when using logistic loss function, i.e.,
l(f, y) = log(1 + e−yf ), the Ambiguity term Ā is indepen-
dent with the class label y.

This is because the second derivative of logistic loss is
l′′(f, y) = 1/(eyf +2+e−yf ). In the case that y ∈ {−1, 1},
l′′(f, y) is independent with y, and so do the Ambiguity term
according to Theorem 1 or 2.

That is to say, when we use logistic loss in two-class clas-
sification problems, unsupervised learning and active learn-
ing methods can be used to explore the Ambiguity term. We
will demonstrate this in the application section later.

Error Bound and Jensen’s Inequality Considering that
l′′ ≥ 0 always holds for convex loss functions, we can fur-
ther prove the following corollary from Theorem 2.

Corollary 2 For arbitrary convex loss function, the gen-
eralization error of the ensemble is always smaller than the
weighted average error of the base classifiers, i.e., E ≤ Ē,
since Ā ≥ 0 always holds for convex loss functions.

This corollary can also be proved by Jensen’s Inequality
which has been mentioned many times in the classifier en-
semble literature (Krogh and Vedelsby 1995; Audhkhasi et
al. 2013). From this corollary, Ē can be viewed as an up-
per bound of the ensemble error E, which coincides with
the fact that the performance of ensemble method is always
better than the average performance of the base classifiers.

Properties of E, Ē, Ā
To further explore the properties of E, Ē and Ā, in this
section, we analyse the three terms in a special case where
the oracle output of base classifiers are combined, i.e., fi ∈
{−1, 1}. In such a case, y should also in {−1, 1}, although
it is not required in our derivations.

The following theorem is about the relationship between
the three components E, Ē, Ā and f̄ .

Theorem 5 (E, Ē, Ā only depend on f̄ and y) Assume
the outputs of the base classifiers only take the values −1 or
1, which is also called “oracle output”, i.e., fi ∈ {−1, 1}.
Also assume the base classifiers are combined by weighted
voting, i.e., fens = f̄ =

∑
i ωifi and

∑
i ωi = 1. Then all

the three terms E, Ē and Ā in the Generalized Ambiguity
Decomposition only depend on f̄ (which is also fens).

Proof. It is obvious that the term E depends on f̄ and y
only, since it is defined as the expectation of l(fens, y) and
fens = f̄ .

Following we prove that the term Ē only depends on f̄
and y.

According to Taylor’s theorem, l(fi, y) can be decom-
posed as following

l(fi, y) = l(0, y) + l′(0, y)fi +
+∞∑
n=2

l(n)(0, y)

n!
fn
i

Considering fi ∈ {−1, 1}, we get

fn
i =

{
fi, for n = 1, 3, 5, ...

1, for n = 2, 4, 6, ...

So weighted averaging of l(fi, y) yields

T∑
i=1

ωil(fi, y) = [l(0, y) +
∑

n=2,4,6,...

l(n)(0, y)

n!
]

+[l′(0, y) +
∑

n=3,5,7,...

l(n)(0, y)

n!
]f̄

As can be seen, the only variable is f̄ and y. Since Ē is
defined as the expectation of

∑M
i=1 ωil(fi, y), we can con-

clude that the term Ē only depends on f̄ and y.
Finally, since E and Ē only depend on f̄ and y, it is nat-

ural that the Ambiguity term, which can be computed by
Ā = Ē − E, only depend on f̄ and y too.

According to Theorem 5, if the values of f̄ are given,
all the three terms E, Ē and Ā can be computed, no mat-
ter what value the fi’s take.

Following we prove that Ē is always a linear function of
f̄ , and get a concise form of Ē which is easy to compute.

Theorem 6 (Given class label y, ē is always a linear
function of f̄ ) Assume fi ∈ {−1, 1} and the base classi-
fiers are combined by weighted voting. Denote e, ē and ā
according to Equation 2 as e = l(f̄ , y), ē =

∑
ωil(fi, y),

ā = ē − e, and E, Ē, Ā are the expectations of them, re-
spectively. Then ē is always a linear function of f̄ (note that
l(1, y) or l(−1, y) takes different values for different loss)

ē =
l(1, y) + l(−1, y)

2
+

l(1, y)− l(−1, y)

2
f̄

and

Ē = ED{ l(1, y) + l(−1, y)

2
}+ ED{ l(1, y)− l(−1, y)

2
f̄}

Proof. Let

A =
∑

n=2,4,6,...

l(n)(0, y)

n!
, B =

∑
n=3,5,7,...

l(n)(0, y)

n!

Considering

l(1, y) = l(0, y) + l′(0, y) +A+B

and
l(−1, y) = l(0, y)− l′(0, y) +A−B

we have

A =
l(1, y) + l(−1, y)

2
− l(0, y)

B =
l(1, y)− l(−1, y)

2
− l′(0, y)

Substituting A and B into the last equation in the proof of
Theorem 5 yields the theorem.
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Further, we prove the following theorem.
Theorem 7 Assume fi ∈ {−1, 1} and the base classifiers

are combined by weighted voting, then the straight line rep-
resented by ē always pass through the two endpoints of the
curve represented by e.

Proof. According to the definition of e, the two endpoints
are l(−1, y) and l(1, y).

The two endpoints of the straight line ē corresponds to the
points with f̄ = −1 and f̄ = 1. So the endpoints are

l(1, y) + l(−1, y)

2
− l(1, y)− l(−1, y)

2
= l(−1, y)

l(1, y) + l(−1, y)

2
+

l(1, y)− l(−1, y)

2
= l(1, y)

which are exactly the same with that of e.

Conclusion Given that fi ∈ {−1, 1}, for all the twice
differentiable loss function, we have (1) all the three compo-
nents E, Ē and Ā only depend on f̄ ; (2) ē is a linear function
of f̄ , and the function can be computed according to Theo-
rem 6; and (3) the straight line ē always passes through the
endpoints of e. Using these results, the curves of e, ē and ā
for different loss functions can be plotted. For space consid-
erations, the plots are not shown in this paper.

It should be noted that the results above also hold for the
case of

∑
i ωi �= 1, although the theorems were proved in

the
∑

i ωi = 1 case for simplicity reason.

Discussion

Our results provide some new insights in ensemble learning.

Margin Theory has long been used as the explanation
of AdaBoost (Freund and Schapire 1995), the widely used
ensemble learning algorithm. The margin of a single clas-
sifier is defined as yfi, and the margin of an ensemble
fens = f̄ , is defined as yf̄ =

∑
ωiyfi. According to The-

orem 6, assuming that y ∈ {−1, 1}, it can be proved that if
l(1, 1) = l(−1,−1) and l(1,−1) = l(−1, 1), then

ē =
l(1, 1) + l(−1, 1)

2
− l(−1, 1)− l(1, 1)

2
yf̄

Thus, ē depends only on the margin of the ensemble. More-
over, if the ensemble loss e depends only on yf̄ , the Ambi-
guity ā will depend only on the margin too, which is exactly
the case of the logistic loss, exponential loss and 0-1 loss
which will be discussed later.

Since l(−1, 1) ≥ l(1, 1) always holds for reasonable loss

functions, with margin
def
= yf̄ , we have

min Ē ⇔ max ED{margin} (5)

The Ambiguity Terms for Several Loss Functions Fol-
lowing we derive the ambiguity forms for several standard
loss under the assumption that y, fi ∈ {−1, 1}.

Logistic loss is usually used in logistic regression, which
is a popular technique for classification (Collins, Schapire,
and Singer 2002). The loss function is l(f, y) = log(1 +
e−yf ). After some derivation, we could get that

ā = [−1

2
+ log(1 + e)]− log(eyf̄/2 + e−yf̄/2)

max Ā ⇔ min ED{log(ef̄/2 + e−f̄/2)} (6)
As can be seen, the Ambiguity term for logistic loss is in-
dependent from y, which is consistent with the discussion
before.

Exponential Loss is widely used in Boosting algorithms
(Collins, Schapire, and Singer 2002), e.g. AdaBoost. We
take AdaBoost.M1 (Freund and Schapire 1995) into consid-
eration. The loss function used in this algorithm is l(f, y) =
e−yf . The Ambiguity term is ā = (e + e−1)/2 − (e −
e−1)yf̄/2− e−yf̄ and

max Ā ⇔ min ED{e− e−1

2
yf̄ + e−yf̄} (7)

0-1 Loss is the most commonly used loss functions in
classification problems. For two-class problems, l(f, y) = 1
if yf < 0 otherwise l(f, y) = 0. Although it is not dif-
ferentiable at f = 0, it can be approximated to arbitrary
precision using some differentiable function, such as the lo-
gistic function. Such approximation does not change the re-
sults in Theorem 1 to 7. In limit situation, which is exactly
the 0-1 loss case, using any of the approximations, ē can be
represented as ē = 1/2 − yf̄/2. So the Ambiguity term is
ā = 1

2 (sign{yf̄} − yf̄) and

max Ā ⇔ min ED{yf̄ − sign{yf̄}} (8)

Since 0-1 loss is not convex, the Ambiguity term can be pos-
itive, negative or 0.

Combination of Equation 5 and Equation 6, 7 or 8 forms
the optimization problems in ensemble learning with logis-
tic loss, exponential loss and 0-1 loss, respectively. These
objective functions can be used in every phases in ensemble
learning, i.e., base classifier generation, pruning and combi-
nation.

“Good” and “bad” diversity presented by (Brown and
Kuncheva 2010) can also be accounted for by our results.
The authors broke down the Ambiguity term for 0-1 loss into
two terms: “good” and “bad” diversity. Our result is consis-
tent with theirs. In 0-1 loss, “good” and “bad” diversity cor-
respond to the two branches of Ambiguity. In their work,
they concluded that the Ambiguity term “can be directly
expressed in terms of the average classifier disagreement”,
which is exactly the margin. We generalized their conclu-
sion to any loss functions that are twice differentiable, and
further proved that ē is a linear function of the margin.

Applications

There are many potential applications of our theoretical re-
sults. As the demonstrations, we apply our theoretical results
in active learning and unsupervised ensemble pruning.

Active Learning

Active learning would benefit from our theoretical results.
According to Theorem 1 and 2, ē ≥ ā always holds since
the generalization error is always non-negative. Therefore
we can treat the Ambiguity as a lower bound for the average
error of the base classifiers. Thus samples with large Ambi-
guity are “harder”, and the ensemble would benefit the most
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Figure 1: Results for Active Learning on pendigits dataset
as a representation. “Random” corresponds to the method
where the samples were selected randomly. In “Entropy-
Label” and “Logistic-Label”, class label outputs were used,
and new sample was selected according to vote entropy
and logistic disagreement respectively. In “KLDiv-Prob”,
“JSDiv-Prob” and “Logistic-Prob”, probability outputs were
used, and the disagreement was estimated by KL divergence,
JS divergence and logistic disagreement, respectively.

from the samples with the largest Ambiguity. Moreover, di-
versity is an important property for committee-based active
learning methods (Melville and Mooney 2004). Since the
Ambiguity term is related to diversity, it could be used as
the diversity measure in active learning methods.

We tested the above ideas by a query-by-committee
(QBC) like algorithm (Seung, Opper, and Sompolinsky
1992; Settles 2010), where the key role is the disagreement
measure. Common disagreement measures include vote en-
tropy (Dagan and Engelson 1995), Kullback-Leibler (KL)
divergence (McCallumzy and Nigamy 1998) and Jensen-
Shannon (JS) divergence (Cover and Thomas 1991).

In our algorithm, samples was selected using the logistic
disagreement according to Equation 6, i.e.,

x∗LD = argmax
x

− log(ef̄/2 + e−f̄/2) (9)

where f̄ is the average output of the base classifiers. This
disagreement measure can be used with all kinds of outputs,
including class labels, probabilities and scores. When the
base classifiers output class labels, the logistic disagree-
ment is equivalent to vote entropy.

We used 20 datasets from the UCI Repository (Lichman
2013) in our experiments. An ensemble of 5 CART decision
trees (Breiman et al. 1984) was trained using the Bagging
(Breiman 1996) algorithm. The initial dataset size was set
to be 10. Each time the sample with the largest disagree-
ment was selected out of 200 randomly chosen candidates.
The results were averaged over 100 runs, and representative
results were shown in Figure 1.

Among the algorithms, random ones performed the worst,
which showed the effectiveness of active learning. In
the case of class label outputs, Logistic-Label performed
equally with Entropy-Label. In the case of probability out-
puts, with the probabilities scaled to [−1, 1], Logistic-Prob
achieved better results than KLDiv-Prob and JSDiv-Prob.
All these results confirmed that active learning would benefit
from our theoretical results.

Figure 2: Representative test errors of compared ensemble
pruning methods.

Unsupervised Ensemble Pruning

Ensemble pruning is a typical procedure in ensemble learn-
ing. Many ensemble pruning algorithms in classification
problems need the label y as input, i.e., in a supervised man-
ner. As was stated before, when using logistic loss as the loss
function and y ∈ {−1, 1}, the Ambiguity term in Theorem 1
or 2 is independent with y. Thus, it is possible to carry out
unsupervised ensemble pruning with logistic loss function.

In this section, we experimented on two Error-Ambiguity
pruning (EAP) methods: one with 0-1 loss and the other with
logistic loss. In our ensemble pruning method, we used a
greedy forward procedure, and Ē/Ā was used as the selec-
tion criterion. Ē was estimated using the average generaliza-
tion error of the base classifiers, and can be estimated before
the pruning procedure. Ā was computed using Theorem 2
and Equation 4. The pruning method with 0-1 loss is super-
vised while the one with logistic loss is unsupervised.

We compared our methods on 20 datasets from the UCI
Repository to several comparative methods, i.e., Bagging
(Bag) (Breiman 1996), Reduce-Error (RE) (Margineantu
and Dietterich 1997), Complementarity (CP) (Martinez-
Muoz, Hernández-Lobato, and Suarez 2009) and Margin
Distance (MD) (Martinez-Muoz, Hernández-Lobato, and
Suarez 2009). All the methods were evaluated 30 times on
each dataset, and the final performance was obtained by
averaging the error rates on test set. Each time we con-
ducted the following steps. First, we randomly split the
data set into train/valid/test set. Secondly, we used Bagging
(Breiman 1996) to build an ensemble of 101 CART deci-
sion trees (Breiman et al. 1984) on the training set. Thirdly
the base classifiers were pruned by different ensemble prun-
ing methods. Lastly the performance of the pruned ensemble
was evaluated on the testing set. Representative results were
shown in Figure 2.

In Figure 2, EAP 01 and EAP Log methods correspond
to our Error-Ambiguity Pruning methods with 0-1 loss and
logistic loss, respectively. Interestingly but not surprisingly,
although EAP Log is an unsupervised method, it achieved
competitive results compared with other methods. Amongst
the pruning methods, our methods decreased faster than the
others, which proved the effectiveness of our methods.

Conclusion and Future Work

In this paper, we presented two Generalized Ambiguity De-
composition for classification problems, and discussed sev-
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eral important properties of the Ambiguity term. We demon-
strated the applications of our theoretical results in active
learning and unsupervised ensemble pruning, and the exper-
imental results confirmed the effectiveness of our methods.
Interesting directions for future research include more appli-
cations of the decompositions, such as base classifier gener-
ation, ensemble weight optimization, and so forth.
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