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Abstract 
A variety of feature selection methods based on sparsity 
regularization have been developed with different loss func-
tions and sparse regularization functions. Capitalizing on the 
existing sparsity regularized feature selection methods, we 
propose a general sparsity feature selection (GSR-FS) algo-
rithm that optimizes a -norm ( ) based loss 
function with a -norm ( ) sparse regularization 
function. The -norm ( ) based loss function 
brings flexibility to balance data-fitting and robustness to 
outliers by tuning its parameter, and the -norm (

) based regularization function is able to boost the sparsity 
for feature selection. To solve the optimization problem 
with multiple non-smooth and non-convex functions when 

, we develop an efficient solver under the general 
umbrella of Iterative Reweighted Least Square (IRLS) algo-
rithms. Our algorithm has been proved to converge with a 
theoretical convergence order of at least .
The experimental results have demonstrated that our method 
could achieve competitive feature selection performance on 
publicly available datasets compared with state-of-the-art 
feature selection methods, with reduced computational cost. 

1. Introduction   
Feature selection plays an important role in high-
dimensional data analysis for selecting informative features 
and removing irrelevant or redundant ones (Cawley et al., 
2006; Guyon & Elisseeff, 2003; Kira & Rendell, 1992;
Lewis, 1992; Peng et al., 2005). Among existing feature 
selection methods, sparsity regularization based methods 
are appealing for their excellent performance (Argyriou & 
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Evgeniou, 2007; Bradley & Mangasarian, 1998; Liu et al., 
2009; Nie et al., 2010; Obozinski et al., 2006; Tibshirani, 
1996; Wang et al., 2008; Xiang et al., 2012). In particular, 

-norm has been widely adopted in feature selection algo-
rithms, such as Lasso (Tibshirani, 1996) and sparse SVM 
(Bradley & Mangasarian, 1998; Wang, et al., 2008). Built 
upon -norm based regularization models, -norm has 
been used for feature selection in problems with multiple 
tasks or multiple classes (Argyriou & Evgeniou, 2007; Liu, 
et al., 2009; Nie, et al., 2010; Obozinski, et al., 2006;
Xiang, et al., 2012). More recently, -norm and -norm 
( ) based regularization models have gained in-
creasing attention (Bolon-Canedo, et al., 2013; Chartrand 
& Staneva, 2008; Kong & Ding, 2014; Liu et al., 2007;
Peng & Fan, 2016; Zhang et al., 2014) since they can yield 
sparser solutions than -norm and -norm based mod-
els (Chartrand, 2007; Zeng et al., 2014). 
 Although a variety of sparsity regularization based fea-
ture selection methods with different sparse regularization 
functions have been developed, most of them adopt a least 
square loss function. The least square loss function has 
good data-fitting performance. However, it is sensitive to 
outliers. A robust feature selection (RFS) method with 
joint -norm minimization on both the loss function and 
regularization function was proposed (Nie, et al., 2010;
Xiang, et al., 2012) and has been extended (Wang & Chen, 
2013) with joint -norm  ( ). However, it is not 
necessary to use the same norm for both the loss function 
and sparse regularization function. To make the sparsity 
regularized feature selection method more flexible, we 
propose a general sparsity regularized feature selection 
(GSR-FS) algorithm that optimizes a -norm ( )
based loss function and a -norm ( ) sparse 
regularization function. Particularly, the -norm (

) based loss function can balance the data fitting and 
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robustness to outliners and the -norm ( ) 
based regularization function is able to boost the model 
sparsity for feature selection.  
 The optimization algorithms used in the existing sparsity 
regularized methods typically handle optimization prob-
lems with one non-smooth term1 and are not suitable for 
our optimization problem with 2 non-smooth terms when 

. Iteratively reweighted least squares (IRLS) based 
methods have been widely used to solve sparse optimiza-
tion problems in many fields (Candes et al., 2008; Char-
trand & Yin, 2008; Gorodnitsky & Rao, 1997; Lu et al., 
2014). However, the existing IRLS based algorithms only 
handle optimization problems with no more than one non-
smooth function (Lu et al., 2015). To optimize our problem, 
we develop a novel algorithm based on IRLS with a con-
vergence order of at least . 
 Our method has been validated based on 6 publicly 
available datasets and achieved competitive feature selec-
tion performance with respect to both classification accu-
racy and computational cost compared with 6 state-of-the-
art feature selection algorithms, including Minimum-
Redundancy Maximum-Relevance (mRMR) (Peng, et al., 
2005), ReliefF (Kira & Rendell, 1992), Multi-Task Feature 
Selection (MTFS) (Argyriou & Evgeniou, 2007; Liu, et al., 
2009; Obozinski, et al., 2006), Robust Feature Selection 
(RFS) (Nie, et al., 2010; Xiang, et al., 2012), an extended 
RFS(E-RFS) (Wang & Chen, 2013), and Rank One Update 
Algorithm (RK1U) (Zhang, et al., 2014). 

2. A unified sparse feature selection algorithm  
Given a matrix , its -norm( ) is de-
fined as: 

  

where  denotes -norm of the -th row vector of .  
 Given  training samples , , be-
longing to  classes, and their class labels 

,  (the -th element is  
and others are  for the th data point belonging to the th 
class). In this paper, we adopt a -norm (  ) 
based loss function and a -norm (  ) based 
regularization function for feature selection, i.e., 

where  is the weight matrix to be learned, and 
non-zero rows of   indicate the selected features.  

                                                 
1RFS and the extended RFS reformulated the optimization objective func-
tion with 2 non-smooth terms as a problem with one non-smooth term 
since both the loss function and the regularization function adopt the same 

-norm( ) (Nie, et al., 2010; Wang & Chen, 2013). 
 

 We choose  ( ) instead of the 
traditional  as the loss function for following 
reasons. In general, a loss function with smaller  is more 
robust to outliers, whereas with larger  has better data-
fitting performance. As indicated by the plots shown in 
Figure 1 (a), a small  for -norm could reduce the 
impact of an outlier on the loss function compared with a 
larger . The impact of outliers in classification is also il-
lustrated by 2D linear classification models with different 
settings of the -norm based loss function. In particular, 
as shown in Figure 1 (b), the classification models remain 
the same for different values of  if no outlier sample is 
present in the training data. However, the classification 
model with a -norm based loss function could change 
dramatically with different values of  if the training data 
contain outlier samples, and the classification models with 
a smaller  are more robust to outlier samples, as illustrat-
ed by Figure 1 (c). The regularization function  has 
a direct impact on the solution’s sparsity, and small  
is able to boost sparsity.  The proposed method in Eqn. (2) 
is a generalization of existing sparsity regularization based 
feature selection methods, and many of them are special 
cases of the proposed method. Differences between our 
method and the existing methods under comparison are 
summarized in Table 1. 

3. A novel IRLS method 
The optimization problem of Eqn. (2) is a difficult problem 
with 2 non-convex, non-smooth functions when  
and . To solve this problem, we propose an it-
erative algorithm, and at each iteration step we remodel the 
optimization problem of Eqn. (2) as a re-weighted least 
square minimization problem with analytical solutions. 
 When  and  (  and 

 are the th row vector of  and , respectively), 
the gradient of  in Eqn. (2) with respect to  is  

where  and  are diagonal matrices 
with diagonal elements  and 

. When  and , 
we adopt the same strategy as (Nie, et al., 2010). Setting 

 to be 0, we have a solution of Eqn. (2), i.e., 

 

 If  and  are fixed, we construct an auxiliary objec-
tive function  to have the same gradient as  in 
Eqn. (2), 

where and , and their th diago-
nal elements are  and

, respectively.  
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(a) (b) (c) 

Figure 1  (a)  with different . (b) Optimal classification lines for -norm loss functions without any outlier. (c) Optimal 
classification lines for -norm loss functions with outliers 

Table1: Comparisons of MTFS, RK1U, RFS, Extended RFS and our method 
Method name Objective function   Same  and ? 
MTFS (Obozinski, et al., 2006)    NO 
RK1U (Zhang, et al., 2014)    NO 
RFS(Nie, et al., 2010)    YES 
E-RFS (Wang & Chen, 2013)    YES 
Ours    NO 

 
 Then, we can obtain a solution by solving the re-weighted 
least square minimization problem, i.e.,  

 

 Since  and  (or  and ) are functions of , we 
use an iterative algorithm to compute the solution. At each 
iterative step,  and  are fixed first, then  is obtained 
according to Eqn. (4), and finally we update  and  
based on , as summarized in Algorithm 1. Its convergence 
is proved in the following subsection. 

Algorithm 1. A unified sparse feature selection algorithm 

1. Input: data points ( ) and their correspond-

ing label ; loss function norm order ; sparse regu-
larization norm order ; regularization parameter ; 
number of features  to be selected. 

2. Construct  and  
3. Set  and initialize  and  as 

identity matrices 
4. Repeat 
5. Calculate  
6. Calculate    
7.   Update , where -th diagonal elements is  

8.   Update ,where -th diagonal elements is  

9.   Update  
10. Until convergence 
11. Output: Sort all features according to  and select 

the top largest  features. 

4.  Convergence analysis and convergence rate 
The objective function  monotonically decreases at 
every iteration step and Algorithm 1 finally converges.  

 Lemma 1. Given any nonzero vectors  and , we have  

where  and the equality holds if and only if .  
 Proof please see the supplementary material. 
 Based on Lemma 1, we have Lemma 2. 
 Lemma 2. Given an optimization problem: 

where  and  are matrix functions of , is the 
feasible region, and  is a diagonal matrix with its th diag-
onal element equal to  (  is one 
element in ,  is the th row vector of  and 

). If  is the optimal solution of the above opti-
mization problem Eqn. (8), we have  

 Proof. Since  is the optimal solution of Eqn.(8), we 
have 

 Therefore 

 

 When , according to Lemma 1, we have  

 

 Summing Eqn. (11) and Eqn. (12), we obtain  
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 Finally, we obtain  

where the equality holds if and only if  
 When ,  becomes an identity matrix, the equality 
in Eqn. (14) still holds.  
 Theorem 1. The objective function of Eqn. (2) monoton-
ically decreases at every iteration step, i.e., 

 

and it converges to a limit point. 
 Proof.  According to Eqn. (6), we have 

 

where the th diagonal elements of  and  are 
 and

, respectively. 
 According to Lemma 2, let  
and , we have 

 

 

 Setting  and , accord-
ing to Lemma 2  we have 

 

 

 So, , and the equality holds if and 
only if . Since the lower bound of  is 
limited,   converges to a limit point.  
 Theorem 2. Sequence  produced in Algorithm 1 
converges, and the limit point is a stationary point of Eqn. 
(2).  
 Proof can be found in the supplementary material. When 

 and , Eqn. (2) is a convex optimization problem, 
hence its solution obtained by Algorithm 1 is  the globally 
optimal. When  or , it may converge to 
a local optimum.  
 The convergence rate of Algorithm 1 is derived as follow-
ing. If  is the optimal solution of 

, then the optimal residual . When 
 is sparse, the rows of  can be split into two parts:  

and , where  and  is the remainder. In the 
same way as partitioning  into  and , the rows of 

 and the columns of  are partitioned into and , 
 and , respectively. Similarly,  can be split into  

and , where  and  is the remainder, and the 
rows of ( ) and the columns of  (

) are partitioned into  and ,  and , accord-

ingly. We define , ,
,  and

. Then we have Lemma 3.  
 Lemma 3. The following inequalities hold in the succes-
sive iteration steps of Algorithm 1. 

 

 

where  is the number of columns of , and 
.  

 Proof please see the supplementary material. According 
to Lemma 3, we can obtain the convergence order of Algo-
rithm 1. 
 Theorem 3. The convergence order of Algorithm 1 is 
at least .  
 Proof can be found in the supplementary material. 

5. Experiments 

5.1 Results based on a synthetic dataset 
To investigate how the loss function’s parameter  in our 
method affects the feature selection performance, we gener-
ated a synthetic dataset using following procedure. First, we 
generated  samples with features , where 
elements of  were randomly generated according to 
Gaussian distribution  . Second, we introduced re-
dundant features  to the 
samples, where elements of   were randomly generated 
according to . Third, irrelevant features 

 were injected into the samples, where elements of  
were randomly generated according to uniform distribution 

. So, we obtained samples with features 
] , . Then, we generated 

multi-tasks labels for these samples as 
, where ,  

and their elements were randomly generated according to  
uniform distribution , and  was randomly generated 
according to ( , 0.5). Finally, to simulate outlier samples, 
we randomly picked a subset of  with a percentage of , 
and reversed their positive or negative signs, yielding new 
labels . Setting 2000, 100, 700,  5, and 

 0, 0.01, and 0.1, we obtained 3 simulated data sets, each 
of them having 1000 features, among which 200 features 
were informative. 
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 We evaluated our method using 10-fold cross validation 
based on the simulated dataset with respect to different  
0.5, 1, 2 by setting . The performance was gauged 
with root mean square error (RMSE) between actual values 
and predicted values base on top 200 selected features. As 
shown in Figure 2, the least square loss function had the 
best data-fitting performance for samples without outliers. 
However, it was sensitive to outliers as reflected by relative-
ly larger RMSE when the samples contained 1% and 10% 
outliers. Not surprisingly, the feature selection with -
norm based loss functions (  was robust to outliers but 
might sacrifice data-fitting accuracy. All these results indi-
cated that the loss function’s parameter should be adaptive 
to the problem under study. 

 
Figure 2: Average RMSE of 10-fold cross-validation for least 
square loss, -norm loss, and -norm loss, respectively.  

5.2 Classification experiments on real-world da-
tasets  
We also evaluated our algorithm, referred to as general 
sparsity regularized feature selection (GSR-FS) based on 6 
publicly available real-world datasets. In particular, 2 da-
tasets were obtained from UCI, including ISOLET and SE-
MEION. Particularly, ISOLET is a speech recognition data 
set with 7797 samples in 26 classes, and each sample has 
617 features. SEMEION contains 1593 handwritten images 
from ~80 persons, stretched in a rectangular box of . 
Three face image datasets were obtained from AR, ORL, 
and the frontal pose sub-dataset (09) of CMU-PIE. Particu-
larly, AR has 1680 samples with 2000 features, ORL con-
tains 400 samples with  pixels as features, and the 

CMU-PIE subset contains images of 64 persons with differ-
ent illuminations. The 6th dataset contains confusable hand 
writing images 4 and 9, obtained from MNIST.  
 We compared our method with 4 sparsity regularized 
feature selection algorithms, including MTFS (Argyriou & 
Evgeniou, 2007; Liu, et al., 2009; Obozinski, et al., 2006), 
RFS (Nie, et al., 2010; Xiang, et al., 2012), an extended 
RFS (E-RFS) (Wang & Chen, 2013), and RK1U (Zhang, et 
al., 2014). We also compared our method with two filter 
feature selection methods, namely ReliefF (Kira & Rendell, 
1992) and mRMR (Peng, et al., 2005). 
 In our experiments, we first normalized all the features to 
have zero mean and unit standard deviation. Then, 10 trials 
were carried out on each dataset for feature selection. In 
each trial, each dataset was randomly spilt into training and 
testing subsets with a ratio of 6:4. Classification accuracy 
was used to evaluate the feature selection methods. Particu-
larly, linear SVM (Chang & Lin, 2011) was used to build 
classifiers based on the selected features. The parameter  
of linear SVM classifiers was tuned using a cross-validation 
strategy by searching a candidate set of [10-3, 10-2,  10-1, 1, 
101, 102]. The regularized parameter   in  our algoithm, 
MTFS, RFS and RK1U was tuned using the same cross-
validation strategy by searching a candidate set of [10-3, 10-2, 
10-1, 1, 101, 102]. 
 Our algorithm has 2 hyper parameters  and . For evalu-
ating the impact of  on the sparsity and directly comparing 
our method with MTFS, RFS and RK1U, we evaluated our 
algorithm by setting  1, 0.75, 0.5 and 0.25. Since the 
loss function with a smaller  is more robust to outliers but a 
larger  of the loss function may yield better data-fitting 
performance, in our experiments  was tuned by cross-
validation with a candidate set of [0.5, 1, 2]. For the E-RFS 
and RK1U,  since it had better classification per-
formance than other values (Wang & Chen, 2013; Zhang, et 
al., 2014). 
 Table 2 summarizes mean and standard deviation of the 
classification rates in 10 trails for classifiers built on the top 
50 features. The average classification accuracy rates with 
top [10, 20, …, 100] features are shown in Figure 3. These 
results demonstrated that our method with different   

Table 2  Mean and standard deviation of the classification accuracy (%, mean std) of Linear-SVM classifiers built on the top 50 
features selected by different algorithms on different datasets.  

Algorithm ReliefF mRMR MTFS RFS Extended 
RFS (p=0.5) 

RK1U  
( p=0.5) 

GSR-FS 
( p=1.0) 

GSR-FS 
( p=0.75) 

GSR-FS 
( p=0.5) 

GSR-FS 
( p=0.25) 

ISOLET 77.02 0.82 85.10 0.62 90.40 0.68 91.38 0.73 91.36 0.56 92.50 0.79 92.98 0.44 93.92 0.46 94.10 0.29 93.93 0.40 
SEMEION 78.70 1.39 78.75 1.82 84.11 1.12 85.82 1.25 85.89 1.61 85.45 1.01 86.24 1.45 86.97 1.13 86.87 0.89 86.58 1.17 
AR 57.89 4.58 87.77 1.36 85.24 2.99 88.90 1.41 88.36 1.82 87.90 1.88 92.38 1.24 94.49 0.56 94.51 0.96 94.06 0.89 
ORL 56.50 6.12 87.81 3.23 74.00 3.60 80.25 2.74 88.44 2.11 90.13 1.81 90.88 2.83 91.50 2.27 91.13 2.93 90.06 2.33 
CMU-PIE 75.35 1.50 89.91 1.04 85.41 1.39 90.83 0.79 90.98 1.01 91.70 0.97 93.01 0.87 93.85 0.83 93.67 1.08 93.39 0.79 
MNIST 90.62 0.35 92.55 0.19 95.30 0.21 94.25 0.38 94.04 0.55 95.31 0.20 95.53 0.21 95.85 0.24 95.53 0.18 95.49 0.35 

a = 0 a = 0.01 a = 0.1
0

1

2

3

4

5

Outlier Ratio

RM
SE

 

 
Least Square
L2,1 Norm

L2, 0.5 Norm
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( a )  ( b )  ( c )  

   
( d )  ( e )  ( f )  

Figure 3 Average classification accuracy of 10 trials for classifiers built on the selected features by different algorithms. The 
results shown were obtained on (a) ISOLET, (b)SEMEION, (c) AR, (d) ORL, (e) CMU-PIE, and (f) MNIST.  

Table 3  Running Time (unit: second) by different Algorithms  
 

ReliefF mRMR RFS Extended 
RFS(p=0.5) 

RK1U 
(p=0.5) 

GSR-FS 
( p=1.0) 

GSR-FS 
(p=0.75) 

GSR-FS 
(p=0.5) 

GSR-FS 
(p=0.25) 

ISOLET 319.48 52.85 2954.07 2100.20 6467.20 26.70 24.70 21.47 17.01 
SEMEION 6.18 4.70 56.38 32.93 101.69 11.11 5.52 5.58 5.60 
AR 37.13 24.67 67.44 48.92 2070.54 62.08 30.19 26.36 20.49 
ORL 23.04 157.69 12.01 7.81 5750.64 12.11 11.97 4.60 3.21 
CMU-PIE 89.35 62.24 66.47 67.31 4563.38 49.38 53.22 35.64 19.43 
MNIST 676.21 48.83 9275.84 6199.82 1050.98 26.87 22.56 18.81 18.87 

 
achieved overall the best classification accuracy on most of 
the datasets, especially when  0.75, 0.5. When  0.5, 
our method performed better than E-RFS and RK1U. Not 
surprisingly, the sparsity regularization methods had better 
performance than filter methods. 

5.3 Computational cost 
We also compared our algorithm with other methods with 
respect to their computation cost2. The convergence of all 
the sparse feature selection algorithms was determined 
based on the same criterion: the change of objective func-
tion value is less than 10-4 between 2 successive iteration 
steps with the regularized parameter λ=1. And the filter 
algorithms ran until the top 100 features were selected. We 
set  in our algorithm. We ran different methods on a 
desktop with an Intel i7-4470 CPU, 3.4GHz and 8G RAM. 
The computational costs of different algorithms are sum-
marized in Table 3. As shown in Table 3, our algorithm 
was faster than other sparse feature selection algorithms on 

                                                 
2 MTFS was implemented in C, and other algorithms were implemented 
in Matlab. So, we did not directly compare our algorithm with MTFS. 
However, RK1U was faster than MTFS (M. Zhang, et al, 2014), and our 
method was faster than RK1U. 

most of the datasets, and had similar costs as mRMR and 
ReliefF. Particularly, RK1U and our method achieved sim-
ilar classification performance on several datasets under 
study, but the computational time of RK1U was more than 
50 times longer than ours on average. 

6. Discussions and Conclusion 
We have presented a general framework for sparsity regu-
larization based feature selection and a novel iterative re-
weighted least square minimization optimization algorithm. 
Several existing sparsity regularized feature selection 
methods could be treated as its special cases. The objective 
function of our method consists of a -norm ( ) 
based loss function and a -norm ( ) sparse 
regularization function, yielding an adaptive solution for 
handling outliers by turning its parameters. Such flexibility 
could improve feature selection performance as demon-
strated by the experimental results. The novel IRLS algo-
rithm is capable of solving problems with multiple non-
smooth functions, and could find its applications in other 
fields.  
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 We will extend our method to constrained optimization 
problems and investigate how to choose optimal parame-
ters  and  in addition to the cross-validation strategy 
adopted in the present study. 
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