Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Playing FPS Games with
Deep Reinforcement Learning

Guillaume Lample,” Devendra Singh Chaplot*
{glample,chaplot} @cs.cmu.edu
School of Computer Science
Carnegie Mellon University

Abstract

Advances in deep reinforcement learning have allowed au-
tonomous agents to perform well on Atari games, often out-
performing humans, using only raw pixels to make their de-
cisions. However, most of these games take place in 2D envi-
ronments that are fully observable to the agent. In this paper,
we present the first architecture to tackle 3D environments
in first-person shooter games, that involve partially observ-
able states. Typically, deep reinforcement learning methods
only utilize visual input for training. We present a method
to augment these models to exploit game feature information
such as the presence of enemies or items, during the training
phase. Our model is trained to simultaneously learn these fea-
tures along with minimizing a Q-learning objective, which is
shown to dramatically improve the training speed and perfor-
mance of our agent. Our architecture is also modularized to
allow different models to be independently trained for differ-
ent phases of the game. We show that the proposed architec-
ture substantially outperforms built-in Al agents of the game
as well as average humans in deathmatch scenarios.

1 Introduction

Deep reinforcement learning has proved to be very success-
ful in mastering human-level control policies in a wide va-
riety of tasks such as object recognition with visual atten-
tion (Ba, Mnih, and Kavukcuoglu 2014), high-dimensional
robot control (Levine et al. 2016) and solving physics-based
control problems (Heess et al. 2015). In particular, Deep Q-
Networks (DQN) are shown to be effective in playing Atari
2600 games (Mnih et al. 2013) and more recently, in defeat-
ing world-class Go players (Silver et al. 2016).

However, there is a limitation in all of the above appli-
cations in their assumption of having the full knowledge of
the current state of the environment, which is usually not
true in real-world scenarios. In the case of partially observ-
able states, the learning agent needs to remember previous
states in order to select optimal actions. Recently, there have
been attempts to handle partially observable states in deep
reinforcement learning by introducing recurrency in Deep
Q-networks. For example, Hausknecht and Stone (2015) use
a deep recurrent neural network, particularly a Long-Short-
Term-Memory (LSTM) Network, to learn the Q-function

*The authors contributed equally to this work.
Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2140

Figure 1: A screenshot of Doom.

to play Atari 2600 games. Foerster et al. (2016) consider
a multi-agent scenario where they use deep distributed re-
current neural networks to communicate between different
agent in order to solve riddles. The use of recurrent neural
networks is effective in scenarios with partially observable
states due to its ability to remember information for an arbi-
trarily long amount of time.

Previous methods have usually been applied to 2D envi-
ronments that hardly resemble the real world. In this paper,
we tackle the task of playing a First-Person-Shooting (FPS)
game in a 3D environment. This task is much more challeng-
ing than playing most Atari games as it involves a wide va-
riety of skills, such as navigating through a map, collecting
items, recognizing and fighting enemies, etc. Furthermore,
states are partially observable, and the agent navigates a 3D
environment in a first-person perspective, which makes the
task more suitable for real-world robotics applications.

In this paper, we present an Al-agent for playing death-
matches' in FPS games using only the pixels on the screen.
Our agent divides the problem into two phases: navigation
(exploring the map to collect items and find enemies) and
action (fighting enemies when they are observed), and uses
separate networks for each phase of the game. Furthermore,
the agent infers high-level game information, such as the
presence of enemies on the screen, to decide its current

'A deathmatch is a scenario in FPS games where the objective
is to maximize the number of kills by a player/agent.

phase and to improve its performance. We also introduce
a method for co-training a DQN with game features, which
turned out to be critical in guiding the convolutional layers
of the network to detect enemies. We show that co-training
significantly improves the training speed and performance
of the model.

We evaluate our model on the two different tasks adapted
from the Visual Doom AI Competition (ViZDoom)? using
the API developed by Kempka et al. (2016) (Figure 1 shows
a screenshot of Doom). The API gives a direct access to the
Doom game engine and allows to synchronously send com-
mands to the game agent and receive inputs of the current
state of the game. We show that the proposed architecture
substantially outperforms built-in Al agents of the game as
well as humans in deathmatch scenarios and we demonstrate
the importance of each component of our architecture.

2 Background

Below we give a brief summary of the DQN and DRQN
models.

2.1 Deep Q-Networks

Reinforcement learning deals with learning a policy for an
agent interacting in an unknown environment. At each step,
an agent observes the current state s; of the environment,
decides of an action a; according to a policy 7, and observes
a reward signal r;. The goal of the agent is to find a policy
that maximizes the expected sum of discounted rewards R;

T
R, = Z,yt’ftrt/
t'=t

where T is the time at which the game terminates, and v €
[0,1] is a discount factor that determines the importance of
future rewards. The QQ-function of a given policy 7 is defined
as the expected return from executing an action a in a state
s

Q7 (s,a) = E[R¢|s; = s,a; = a]

It is common to use a function approximator to estimate the
action-value function @. In particular, DQN uses a neural
network parametrized by 6, and the idea is to obtain an esti-
mate of the Q-function of the current policy which is close
to the optimal @-function QQ* defined as the highest return
we can expect to achieve by following any strategy:

Q*(s,a) =maxE [R|s; = s,ar = a] = max Q" (s, a)

In other words, the goal is to find 6 such that Qy(s,a) =~
Q*(s,a). The optimal @Q-function verifies the Bellman opti-
mality equation

Q*(s,a) = E[T + ’yma/,xQ*(s/,a/)ls,a}

2ViZDoom Competition ~—at IEEE Computational
Intelligence And Games (CIG) Conference, 2016
(http://vizdoom.cs.put.edu.pl/competition-cig-2016)

2141

If Qg =~ QF, it is natural to think that Qy should be close
from also verifying the Bellman equation. This leads to the
following loss function:

Li(6;) =Eqpre {(yt — Qo, (s, a))g]

where ¢t is the current time step, and r +
ymaxy Qp,(s',a’). The value of y; is fixed, which leads
to the following gradient:

VOtLt(et) = Es,a,r,s’ |:(yt - Q9(37 a))VQtht (57 CL):|

Instead of using an accurate estimate of the above gradient,
we compute it using the following approximation:

v(’tLt(gt) ~ (yt - Qﬁ(sva))VGtht (s,a)

Although being a very rough approximation, these up-
dates have been shown to be stable and to perform well in
practice.

Instead of performing the Q-learning updates in an online
fashion, it is popular to use experience replay (Lin 1993)
to break correlation between successive samples. At each
time steps, agent experiences (s, at, Tt, St+1) are stored in
a replay memory, and the Q-learning updates are done on
batches of experiences randomly sampled from the memory.

At every training step, the next action is generated using
an e-greedy strategy: with a probability € the next action is
selected randomly, and with probability 1 — € according to
the network best action. In practice, it is common to start
with € = 1 and to progressively decay e.

2.2 Deep Recurrent Q-Networks

The above model assumes that at each step, the agent re-
ceives a full observation s, of the environment - as opposed
to games like Go, Atari games actually rarely return a full
observation, since they still contain hidden variables, but
the current screen buffer is usually enough to infer a very
good sequence of actions. But in partially observable envi-
ronments, the agent only receives an observation o; of the
environment which is usually not enough to infer the full
state of the system. A FPS game like DOOM, where the
agent field of view is limited to 90 centered around its posi-
tion, obviously falls into this category.

To deal with such environments, Hausknecht and Stone
(2015) introduced the Deep Recurrent Q-Networks
(DRQN), which does not estimate (s az), but
Q(o¢, hi—1,a), where h; is an extra input returned by
the network at the previous step, that represents the hidden
state of the agent. A recurrent neural network like a LSTM
(Hochreiter and Schmidhuber 1997) can be implemented
on top of the normal DQN model to do that. In that case,
hi = LSTM(ht—1,0¢), and we estimate @Q(h¢,as). Our
model is built on top of the DRQN architecture.

Conv 2

64 filters
Shape 4 x 4
Stride 2

Conv 1

32 filters
Shape 8 x 8
Stride 4

Layer 4

Layer 1
3 feature maps
Shape 60 x 108

Layer 2
32 feature maps
Shape 14 x 26

Size 512 Game features
//\(7‘)\ (Size k for k features)
Action scores
/LJ (Size n for n actions)
/ @
@%%
Layer 3'
Size 4608
Layer 3
64 feature maps
Shape 6 x 12

Figure 2: An illustration of the architecture of our model. The input image is given to two convolutional layers. The output of
the convolutional layers is split into two streams. The first one (bottom) flattens the output (layer 3’) and feeds it to a LSTM, as
in the DRQN model. The second one (top) projects it to an extra hidden layer (layer 4), then to a final layer representing each
game feature. During the training, the game features and the Q-learning objectives are trained jointly.

3 Model

Our first approach to solving the problem was to use a
baseline DRQN model. Although this model achieved good
performance in relatively simple scenarios (where the only
available actions were to turn or attack), it did not perform
well on deathmatch tasks. The resulting agents were firing at
will, hoping for an enemy to come under their lines of fire.
Giving a penalty for using ammo did not help: with a small
penalty, agents would keep firing, and with a big one they
would just never fire.

3.1 Game feature augmentation

We reason that the agents were not able to accurately detect
enemies. The ViZDoom environment gives access to inter-
nal variables generated by the game engine. We modified
the game engine so that it returns, with every frame, infor-
mation about the visible entities. Therefore, at each step,
the network receives a frame, as well as a Boolean value
for each entity, indicating whether this entity appears in the
frame or not (an entity can be an enemy, a health pack, a
weapon, ammo, etc). Although this internal information is
not available at test time, it can be exploited during training.
We modified the DRQN architecture to incorporate this in-
formation and to make it sensitive to game features. In the
initial model, the output of the convolutional neural network
(CNN) is given to a LSTM that predicts a score for each
action based on the current frame and its hidden state. We
added two fully-connected layers of size 512 and k con-
nected to the output of the CNN, where k is the number of
game features we want to detect. At training time, the cost
of the network is a combination of the normal DRQN cost
and the cross-entropy loss. Note that the LSTM only takes
as input the CNN output, and is never directly provided with
the game features. An illustration of the architecture is pre-
sented in Figure 2.

Although a lot of game information was available, we

2142

only used an indicator about the presence of enemies on the
current frame. Adding this game feature dramatically im-
proved the performance of the model on every scenario we
tried. Figure 4 shows the performance of the DRQN with
and without the game features. We explored other architec-
tures to incorporate game features, such as using a separate
network to make predictions and reinjecting the predicted
features into the LSTM, but this did not achieve results bet-
ter than the initial baseline, suggesting that sharing the con-
volutional layers is decisive in the performance of the model.
Jointly training the DRQN model and the game feature de-
tection allows the kernels of the convolutional layers to cap-
ture the relevant information about the game. In our exper-
iments, it only takes a few hours for the model to reach an
optimal enemy detection accuracy of 90%. After that, the
LSTM is given features that often contain information about
the presence of enemy and their positions, resulting in accel-
erated training.

Augmenting a DRQN model with game features is
straightforward. However, the above method can not be ap-
plied easily to a DQN model. Indeed, the important aspect
of the model is the sharing of the convolution filters between
predicting game features and the Q-learning objective. The
DRON is perfectly adapted to this setting since the network
takes as input a single frame, and has to predict what is vis-
ible in this specific frame. However, in a DQN model, the
network receives k frames at each time step, and will have to
predict whether some features appear in the last frame only,
independently of the content of the k — 1 previous frames.
Convolutional layers do not perform well in this setting, and
even with dropout we never obtained an enemy detection ac-
curacy above 70% using that model.

3.2 Divide and conquer

The deathmatch task is typically divided into two phases,
one involves exploring the map to collect items and to find

Updated states

Q(h5 as) Q(he ap) Q(h7 az) Q(hs ag)

/2\/\/\/\/\

Observation history

Figure 3: DQN updates in the LSTM. Only the scores of the
actions taken in states 5, 6 and 7 will be updated. First four
states provide a more accurate hidden state to the LSTM,
while the last state provide a target for state 7.

enemies, and the other consists in fighting enemies (McPart-
land and Gallagher 2008; Tastan and Sukthankar 2011). We
call these phases the navigation and action phases. Having
two networks work together, each trained to act in a spe-
cific phase of the game should naturally lead to a better
overall performance. Current DQN models do not allow for
the combination of different networks optimized on different
tasks. However, the current phase of the game can be deter-
mined by predicting whether an enemy is visible in the cur-
rent frame (action phase) or not (navigation phase), which
can be inferred directly from the game features present in
the proposed model architecture.

There are various advantages of splitting the task into
two phases and training a different network for each phase.
First, this makes the architecture modular and allows dif-
ferent models to be trained and tested independently for
each phase. Both networks can be trained in parallel, which
makes the training much faster as compared to training a
single network for the whole task. Furthermore, the naviga-
tion phase only requires three actions (move forward, turn
left and turn right), which dramatically reduces the num-
ber of state-action pairs required to learn the Q-function,
and makes the training much faster (Gaskett, Wettergreen,
and Zelinsky 1999). More importantly, using two networks
also mitigates “camper” behavior, i.e. tendency to stay in one
area of the map and wait for enemies, which was exhibited
by the agent when we tried to train a single DQN or DRQN
for the deathmatch task.

We trained two different networks for our agent. We used
a DRQN augmented with game features for the action net-
work, and a simple DQN for the navigation network. Dur-
ing the evaluation, the action network is called at each step.
If no enemies are detected in the current frame, or if the
agent does not have any ammo left, the navigation network
is called to decide the next action. Otherwise, the decision is
given to the action network. Results in Table 2 demonstrate
the effectiveness of the navigation network in improving the
performance of our agent.

2143

4 Training
4.1 Reward shaping

The score in the deathmatch scenario is defined as the num-
ber of frags, i.e. number of kills minus number of suicides.
If the reward is only based on the score, the replay table is
extremely sparse w.r.t state-action pairs having non-zero re-
wards, which makes it very difficult for the agent to learn
favorable actions. Moreover, rewards are extremely delayed
and are usually not the result of a specific action: getting
a positive reward requires the agent to explore the map to
find an enemy and accurately aim and shoot it with a slow
projectile rocket. The delay in reward makes it difficult for
the agent to learn which set of actions is responsible for
what reward. To tackle the problem of sparse replay table
and delayed rewards, we introduce reward shaping, i.e. the
modification of reward function to include small intermedi-
ate rewards to speed up the learning process (Ng 2003). In
addition to positive reward for kills and negative rewards for
suicides, we introduce the following intermediate rewards
for shaping the reward function of the action network:

e positive reward for object pickup (health, weapons and
ammo)

e negative reward for loosing health (attacked by enemies
or walking on lava)

e negative reward for shooting, or loosing ammo

We used different rewards for the navigation network.
Since it evolves on a map without enemies and its goal is just
to gather items, we simply give it a positive reward when it
picks up an item, and a negative reward when it’s walking
on lava. We also found it very helpful to give the network a
small positive reward proportional to the distance it travelled
since the last step. That way, the agent is faster to explore the
map, and avoids turning in circles.

4.2 Frame skip

Like in most previous approaches, we used the frame-skip
technique (Bellemare et al. 2012). In this approach, the agent
only receives a screen input every k£ + 1 frames, where k is
the number of frames skipped between each step. The action
decided by the network is then repeated over all the skipped
frames. A higher frame-skip rate accelerates the training,
but can hurt the performance. Typically, aiming at an en-
emy sometimes requires to rotate by a few degrees, which is
impossible when the frame skip rate is too high, even for hu-
man players, because the agent will repeat the rotate action
many times and ultimately rotate more than it intended to. A
frame skip of k = 4 turned out to be the best trade-off.

4.3 Sequential updates

To perform the DRQN updates, we use a different approach
from the one presented by Hausknecht and Stone (2015). A
sequence of n observations o1, 09, ..., 0,, is randomly sam-
pled from the replay memory, but instead of updating all
action-states in the sequence, we only consider the ones that
are provided with enough history. Indeed, the first states of
the sequence will be estimated from an almost non-existent

— with dropout
— w/o dropout

Kill Death ratio
"

Kill / Death ratio
~

— with game features
— w/o game features

— 1update
4| — 5 updates
— 10 updates

Kill | Death ratic
"

i
Wiy \ It M \
Y it e A P A

20 0 40

Taining time {hrs)

20

30

Taining time (hrs)

10 20 0 40

Taining time {hrs)

40 50 &0

Figure 4: Plot of K/D score of action network on limited deathmatch as a function of training time (a) with and without dropout
(b) with and without game features, and (c) with different number of updates in the LSTM.

Single Player Multiplayer
Evaluation Metric Human Agent Human Agent
Number of objects 5.2 9.2 6.1 10.5
Number of kills 12.6 27.6 55 8.0
Number of deaths 8.3 5.0 11.2 6.0
Number of suicides 3.6 2.0 3.2 0.5
K/D Ratio 1.52 5.12 0.49 1.33

Table 1: Comparison of human players with agent. Single
player scenario is both humans and the agent playing against
bots in separate games. Multiplayer scenario is agent and
human playing against each other in the same game.

history (since hy is reinitialized at the beginning of the up-
dates), and might be inaccurate. As a result, updating them
might lead to imprecise updates.

To prevent this problem, errors from states oy ...0p, where
h is the minimum history size for a state to be updated, are
not backpropagated through the network. Errors from states
Op+1..0n—1 Will be backpropagated, o,, only being used to
create a target for the o,,_1 action-state. An illustration of the
updating process is presented in Figure 3, where h = 4 and
n = 8. In all our experiments, we set the minimum history
size to 4, and we perform the updates on 5 states. Figure 4
shows the importance of selecting an appropriate number of
updates. Increasing the number of updates leads to high cor-
relation in sampled frames, violating the DQN random sam-
pling policy, while decreasing the number of updates makes
it very difficult for the network to converge to a good policy.

S Experiments
5.1 Hyperparameters

All networks were trained using the RMSProp algorithm and
minibatches of size 32. Network weights were updated ev-
ery 4 steps, so experiences are sampled on average 8 times
during the training (Van Hasselt, Guez, and Silver 2015).
The replay memory contained the one million most recent
frames. The discount factor was set to v = 0.99. We used
an e-greedy policy during the training, where € was linearly
decreased from 1 to 0.1 over the first million steps, and then
fixed to 0.1.

2144

Different screen resolutions of the game can lead to a dif-
ferent field of view. In particular, a 4/3 resolution provides
a 90 degree field of view, while a 16/9 resolution in Doom
has a 108 degree field of view (as presented in Figure 1).
In order to maximize the agent game awareness, we used
a 16/9 resolution of 440x225 which we resized to 108x60.
Although faster, our model obtained a lower performance
using grayscale images, so we decided to use colors in all
experiments.

5.2 Scenario

We use the ViZDoom platform (Kempka et al. 2016) to con-
duct all our experiments and evaluate our methods on the
deathmatch scenario. In this scenario, the agent plays against
built-in Doom bots, and the final score is the number of
frags, i.e. number of bots killed by the agent minus the num-
ber of suicides committed. We consider two variations of
this scenario, adapted from the ViZDoom AI Competition:

Limited deathmatch on a known map. The agent is
trained and evaluated on the same map, and the only avail-
able weapon is a rocket launcher. Agents can gather health
packs and ammo.

Full deathmatch on unknown maps. The agent is trained
and tested on different maps. The agent starts with a pistol,
but can pick up different weapons around the map, as well as
gather health packs and ammo. We use 10 maps for training
and 3 maps for testing. We further randomize the textures of
the maps during the training, as it improved the generaliz-
ability of the model.

The limited deathmatch task is ideal for demonstrating the
model design effectiveness and to chose hyperparameters,
as the training time is significantly lower than on the full
deathmatch task. In order to demonstrate the generalizabil-
ity of our model, we use the full deathmatch task to show
that our model also works effectively on unknown maps.

5.3 Evaluation Metrics

For evaluation in deathmatch scenarios, we use Kill to death
(K/D) ratio as the scoring metric. Since K/D ratio is sus-
ceptible to “camper” behavior to minimize deaths, we also
report number of kills to determine if the agent is able to ex-
plore the map to find enemies. In addition to these, we also

Limited Deathmatch Full Deathmatch
Known Map Train maps Test maps

. . Without With Without With Without With

Evaluation Metric A
navigation navigation navigation navigation navigation navigation

Number of objects 14 46 52.9 92.2 62.3 94.7
Number of kills 167 138 43.0 66.8 32.0 43.0
Number of deaths 36 25 15.2 14.6 10.0 6.0
Number of suicides 15 10 1.7 3.1 0.3 1.3
Kill to Death Ratio 4.64 5.52 2.83 4.58 3.12 6.94

Table 2: Performance of the agent against in-built game bots with and without navigation. The agent was evaluated 15 minutes
on each map. The performance on the full deathmatch task was averaged over 10 train maps and 3 test maps.

report the total number of objects gathered, the total number
of deaths and total number of suicides (to analyze the ef-
fects of different design choices). Suicides are caused when
the agent shoots too close to itself, with a weapon having
blast radius like rocket launcher. Since suicides are counted
in deaths, they provide a good way for penalizing K/D score
when the agent is shooting arbitrarily.

5.4 Results & Analysis

Demonstrations of navigation and deathmatch on known and
unknown maps are available.? Arnold, an agent trained us-
ing the proposed Action-Navigation architecture placed sec-
ond in both the tracks Visual Doom AI Competition with the
highest K/D Ratio (Chaplot and Lample 2017).

Navigation network enhancement. Scores on both the
tasks with and without navigation are presented in Table 2.
The agent was evaluated 15 minutes on all the maps, and the
results have been averaged for the full deathmatch maps. In
both scenarios, the total number of objects picked up dra-
matically increases with navigation, as well as the K/D ra-
tio. In the full deathmatch, the agent starts with a pistol,
with which it is relatively difficult to kill enemies. Therefore,
picking up weapons and ammo is much more important in
the full deathmatch, which explains the larger improvement
in K/D ratio in this scenario. The improvement in limited
deathmatch scenario is limited because the map was rela-
tively small, and since there were many bots, navigating was
not crucial to find other agents. However, the agent was able
to pick up more than three times as many objects, such as
health packs and ammo, with navigation. Being able to heal
itself regularly, the agent decreased its number of deaths and
improved its K/D ratio. Note that the scores across the two
different tasks are not comparable due to difference in map
sizes and number of objects between the different maps. The
performance on the test maps is better than on the training
maps, which is not necessarily surprising given that the maps
all look very different. In particular, the test maps contain
less stairs and differences in level, that are usually difficult
for the network to handle since we did not train it to look up
and down.

3https://www.youtube.com/playlist?list=PLduGZax9wmiHg-
XPFSgqGg8PEAV51qlFT

2145

Comparison to human players. Table 1 shows that our
agent outperforms human players in both the single player
and multiplayer scenarios. In the single player scenario, hu-
man players and the agent play separately against 10 bots on
the limited deathmatch map, for three minutes. In the mul-
tiplayer scenario, human players and the agent play against
each other on the same map, for five minutes. Human scores
are averaged over 20 human players in both scenarios. Note
that the suicide rate of humans is particularly high indicating
that it is difficult for humans to aim accurately in a limited
reaction time.

Game features. Detecting enemies is critical to our
agent’s performance, but it is not a trivial task as enemies
can appear at various distances, from different angles and in
different environments. Including game features while train-
ing resulted in a significant improvement in the performance
of the model, as shown in Figure 4. After 65 hours of train-
ing, the best K/D score of the network without game features
is less than 2.0, while the network with game features is able
to achieve a maximum score over 4.0.

Another advantage of using game features is that it gives
immediate feedback about the quality of the features given
by the convolutional network. If the enemy detection accu-
racy is very low, the LSTM will not receive relevant infor-
mation about the presence of enemies in the frame, and Q-
learning network will struggle to learn a good policy. The
enemy detection accuracy takes few hours to converge while
training the whole model takes up to a week. Since the en-
emy detection accuracy correlates with the final model per-
formance, our architecture allows us to quickly tune our hy-
perparameters without training the complete model.

For instance, the enemy detection accuracy with and with-
out dropout quickly converged to 90% and 70% respectively,
which allowed us to infer that dropout is crucial for the
effective performance of the model. Figure 4 supports our
inference that using a dropout layer significantly improves
the performance of the action network on the limited death-
match.

As explained in Section 3.1, game features surprisingly
don’t improve the results when used as input to the DQN,
but only when used for co-training. This suggests that co-
training might be useful in any DQN application even with
independent image classification tasks like CIFAR100.

6 Related Work

McPartland and Gallagher (2008) and Tastan and Suk-
thankar (2011) divide the tasks of navigation and combat in
FPS Games and present reinforcement learning approaches
using game-engine information. Koutnik et al. (2013) previ-
ously applied a Recurrent Neural Network to learn TORCS,
a racing video game, from raw pixels only. Kempka et al.
(2016) previously applied a vanilla DQN to simpler scenar-
ios within Doom and provide an empirical study of the effect
of changing number of skipped frames during training and
testing on the performance of a DQN.

7 Conclusion

In this paper, we have presented a complete architecture for
playing deathmatch scenarios in FPS games. We introduced
a method to augment a DRQN model with high-level game
information, and modularized our architecture to incorpo-
rate independent networks responsible for different phases
of the game. These methods lead to dramatic improvements
over the standard DRQN model when applied to compli-
cated tasks like a deathmatch. We showed that the proposed
model is able to outperform built-in bots as well as human
players and demonstrated the generalizability of our model
to unknown maps. Moreover, our methods are complemen-
tary to recent improvements in DQN, and could easily be
combined with dueling architectures (Wang, de Freitas, and
Lanctot 2015), and prioritized replay (Schaul et al. 2015).

8 Acknowledgements

We would like to acknowledge Sandeep Subramanian and
Kanthashree Mysore Sathyendra for their valuable com-
ments and suggestions. We thank students from Carnegie
Mellon University for useful feedback and for helping us in
testing our system. Finally, we thank the ZDoom community
for their help in utilizing the Doom game engine.

References

Ba, J.; Mnih, V.; and Kavukcuoglu, K. 2014. Multiple
object recognition with visual attention. arXiv preprint
arXiv:1412.7755.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2012. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research.

Chaplot, D. S., and Lample, G. 2017. Arnold: An au-
tonomous agent to play fps games. In Thirty-First AAAI
Conference on Artificial Intelligence.

Foerster, J. N.; Assael, Y. M.; de Freitas, N.; and White-
son, S. 2016. Learning to communicate to solve riddles
with deep distributed recurrent q-networks. arXiv preprint
arXiv:1602.02672.

Gaskett, C.; Wettergreen, D.; and Zelinsky, A. 1999. Q-
learning in continuous state and action spaces. In Aus-
tralasian Joint Conference on Artificial Intelligence, 417—
428. Springer.

2146

Hausknecht, M., and Stone, P. 2015.
g-learning for partially observable mdps.
arXiv:1507.06527.

Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and
Tassa, Y. 2015. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Informa-
tion Processing Systems, 2944-2952.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; and
Jaskowski, W. 2016. Vizdoom: A doom-based ai research

platform for visual reinforcement learning. arXiv preprint
arXiv:1605.02097.

Koutnik, J.; Cuccu, G.; Schmidhuber, J.; and Gomez, F.
2013. Evolving large-scale neural networks for vision-based
reinforcement learning. In Proceedings of the 15th annual

conference on Genetic and evolutionary computation, 1061—
1068. ACM.

Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. Journal of Ma-
chine Learning Research 17(39):1-40.

Lin, L.-J. 1993. Reinforcement learning for robots using
neural networks. Technical report, DTIC Document.

McPartland, M., and Gallagher, M. 2008. Learning to be a
bot: Reinforcement learning in shooter games. In AIIDE.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-

ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Ng, A. Y. 2003. Shaping and policy search in reinforce-
ment learning. Ph.D. Dissertation, University of California,
Berkeley.

Schaul, T.; Quan, J.; Antonoglou, I; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, L;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484-489.

Tastan, B., and Sukthankar, G. R. 2011. Learning policies
for first person shooter games using inverse reinforcement
learning. In AIIDE. Citeseer.

Van Hasselt, H.; Guez, A.; and Silver, D. 2015.

reinforcement learning with double g-learning.
abs/1509.06461.

Wang, Z.; de Freitas, N.; and Lanctot, M. 2015. Dueling net-
work architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581.

Deep recurrent
arXiv preprint

Deep
CoRR,

