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Abstract

In this paper, we recast the subspace clustering as a veri-
fication problem. Our idea comes from an assumption that
the distribution between a given sample x and cluster cen-
ters €2 is invariant to different distance metrics on the mani-
fold, where each distribution is defined as a probability map
(i.e. soft-assignment) between x and €2. To verify this so-
called invariance of distribution, we propose a deep learn-
ing based subspace clustering method which simultaneously
learns a compact representation using a neural network and
a clustering assignment by minimizing the discrepancy be-
tween pair-wise sample-centers distributions. To the best of
our knowledge, this is the first work to reformulate clustering
as a verification problem. Moreover, the proposed method is
also one of the first several cascade clustering models which
jointly learn representation and clustering in end-to-end man-
ner. Extensive experimental results show the effectiveness of
our algorithm comparing with 11 state-of-the-art clustering
approaches on four data sets regarding to four evaluation met-
rics.

Introduction

Data clustering is a popular unsupervised learning technique
to analyze unlabeled data (Jain, Murty, and Flynn 1999),
which aims to group a collection of samples into different
clusters by simultaneously minimizing inter-cluster similar-
ity and maximizing intra-cluster similarity. Two challenging
problems in applying clustering in realistic data are the curse
of high-dimensionality and linear inseparability of the in-
herent clusters — which have attracted numerous researches
during the past several decades. These two problems are ac-
tually two sides of one coin. Specifically, many real-world
data such as images and documents are very high dimen-
sional, which are generally believed to be separated better
within non-Euclidean space. In other words, it is difficult to
separate these data using Euclidean distance based cluster-
ing approaches such as vanilla kmeans.

To cluster high-dimensional data, various methods have
been proposed (Ng, Jordan, and Weiss 2001; Zhao and Tang
2009; Yu et al. 2015), among which subspace clustering is
quite popular (Vidal 2011). Subspace clustering implicitly
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seeks a low-dimensional subspace to fit each group of data
points and separates these data in the projection space with
the following two steps: 1) learning low-dimensional repre-
sentation for a given data set, and 2) clustering data based on
the representation. Through exploiting the low-dimensional
subspace structure, both the problem of dimensionality curse
and linear inseparability can be effectively alleviated.

During the past several years, most existing subspace
clustering methods focus on how to learn a good data rep-
resentation that is beneficial to discover the inherent clus-
ters (Elhamifar and Vidal 2013; Liu et al. 2013; Feng et
al. 2014; Wang, Zhu, and Yuan 2014; Hu et al. 2014;
Peng, Yi, and Tang 2015; Xiao et al. 2015; Peng et al.
2016c¢). Like the standard spectral clustering (SC) (Ng, Jor-
dan, and Weiss 2001), those methods cluster data by: 1)
building an affinity graph to describe the relationship among
data points. 2) using the graph as a prior to learn low-
dimensional data representation, and 3) performing kmeans
on the obtained representation to obtain clustering results. In
fact, the first two steps can be regarded as conducting mani-
fold learning (Belkin and Niyogi 2003; Wang, Lin, and Yuan
2016) which preserves a similarity graph from input space
into a low-dimensional one.

Although those subspace clustering methods have shown
encouraging performance, we observe that they suffer from
the following limitations. First, most subspace clustering
methods learn data representation via shallow models which
may not capture the complex latent structure of big data.
Second, the methods require to access the whole data set
as the dictionary, and thus making difficulty in handling
large scale and dynamic data set. To solve these problems,
we believe that deep learning could be an effective solution
thanks to its outperforming representation learning capac-
ity and fast inference speed. In fact, (Peng et al. 2016b;
Yang, Parikh, and Batra 2016; Xie, Girshick, and Farhadi
2016) have very recently proposed to learn representation
for clustering using deep neural networks. However, most
of them do not work in an end-to-end manner which how-
ever is generally believed to be the major factor for the suc-
cess of deep learning (Bengio, Courville, and Vincent 2013;
Lecun, Bengio, and Hinton 2015).

In this paper, we propose a novel end-to-end trainable
deep subspace clustering method, termed cascade subspace
clustering (CSC). Our basic idea comes from an assump-
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Figure 1: Key observation that motivates our idea. In the
plot, the left y-axis indicates the discrepancy between Py
and P, and the right one is the corresponding clustering Ac-
curacy, where P; and Py are two probability maps based on
Euclidean and Cosine distance that reflect the distributions
between data sets and cluster centers in a 10-dimensional
space. Specifically, we project the full mnist data set into a
latent space using a 784-500-500-2000-10 encoder, and then
calculate P, P2, and their discrepancy based on the KL di-
vergence loss. More details about the experiment can refer to
our experiments. With more training epochs for the encoder,
ones can see that 1) the clustering accuracy increases from
58% to 77%, and 2) the discrepancy between two distribu-
tions P; and P2 monotonically decreases. The plot demon-
strates that better representation always leads to smaller dis-
crepancy between P; and P; and better clustering results.

tion that we called invariance of distribution. Figure 1 gives
an example to illustrate the idea. In details, for a given
data point x, the conditional distribution P(h|Q) should be
invariant to different distance metrics in the latent space,
where h denotes the representation of x, and P(h|Q) is the
probability map of h w.rz. cluster centers €2. Based on this
assumption, we recast the clustering problem as a variant
of verification. Noticed that, the traditional verification aims
to judge whether a given pair of samples belong to the same
subject. In contrast, our new formulation models the sample-
centers distribution using a collection of “positive” pairs and
minimizes the discrepancy between different distributions,
where we called “positive” as the pairwise distributions are
based on the same data point and cluster centers.

To implement our idea, we propose CSC which first en-
codes each sample into a latent space and then minimizes the
difference between two sample-centers distributions defined
by Euclidean and Cosine distance. CSC is a cascade model
of which the first step (representation learning) is performed
in the forward pathway to map input into a latent space, and
the second step (clustering) is performed in the backward
pathway to provide a supervision signal for updating the
neural network. With this strategy, even no human annota-
tion is provided for the data, the cascade model can still be
trained end-to-end and such an end-to-end manner leads to
better representation and clustering results. The novelty and
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contribution of this work could be summarized as follows:

e To the best of our knowledge, this is the first work to re-
cast the clustering problem as verification. Although ver-
ification has been extensively studied for various super-
vised learning tasks such as face verification, there is no
work trying to bridge clustering and verification. Thus,
we believe that this work would provide novel insights
and bridge unsupervised clustering and verification.

e The propose CSC is among the first cascade clustering
models. Different from existing methods, CSC works in
end-to-end rather than plug-in manner. By jointly learning
data representation and performing clustering, CSC could
give better clustering results and representation. More-
over, unlike most existing subspace clustering algorithms,
our algorithm does not require to use the whole data set
as the dictionary. This enables our method to perform fast
inference and more efficiently handle large scale data sets.

Related Works

Subspace clustering: Benefit from the effectiveness of
manifold learning (Belkin and Niyogi 2003), subspace clus-
tering has achieved remarkable developments in various ap-
plications such as image segmentation, data clustering, and
motion segmentation (Vidal 2011). Most recent subspace
clustering methods could be regarded as extensions of spec-
tral clustering (Ng, Jordan, and Weiss 2001). Both all of
them learn a compact representation using manifold learn-
ing and obtain clustering assignment by performing kmeans
on the representation. The main difference among them is
the way to learn representation. Since the key of manifold
learning based representation learning is similarity graph,
most recent subspace clustering methods have focused on
how to construct a good graph. These works propose build-
ing the graph using the following reconstruction coefficient:

min Jx; — Xei[} + AR(co), M)
where x; and c; denote the ¢-th data point of X and the cor-
responding self-expression coefficients, respectively. || - ||»
denotes Frobenius norm, and R(c;) is the adopted prior
on c;. Different works adopt different R(-) and three of
them are most popular, i.e. ¢;-norm based sparsity (El-
hamifar and Vidal 2013; Feng et al. 2014), nuclear-norm
based low rankness (Liu et al. 2013; Vidal and Favaro 2014,
Xiao et al. 2015), and Frobenius norm based sparsity (Peng
et al. 2016a; 2016¢).

Unlike those approaches, our method learns representa-
tion using neural network instead of manifold learning. This
brings several advantages. First, our CSC could handle large
scale data set since it obtains data representation without
requirements of using the whole data set as dictionary and
solving an X n (i.e. data size) singular value decomposition
(SVD) problem. Second, CSC jointly learns representation
and performs clustering in end-to-end manner, while these
two steps are separately treated by those existing subspace
clustering methods. As our method utilizes clustering results
as a supervisor, it could learn a better representation. Third,
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Figure 2: The architecture of our CSC. For a given data point x, CSC jointly learns representation and performs clustering in
two successive steps, one is an encoder which maps x into a latent space to get h, and the other is a clustering module which
minimizes the discrepancy among different distributions of h w.rt. cluster centers €2. In this work, the encoder is initialized in
self-supervised manner (i.e. autoencoder) and €2 is initialized by kmeans. Py (h|€2), P2(h|€2), - - -, Pp, (h|Q2) are distributions
of h w.r.t. © regarding to m metrics, and the loss f(-) describes the discrepancy between two distributions.

CSC is a deep model which could be more effective to cap-
ture the latent structure of complex real-world data set.

Deep Learning: As the most effective representation
learning technique, deep learning has been extensively stud-
ied for various applications, especially, in the scenario of su-
pervised learning (Krizhevsky, Sutskever, and Hinton 2012;
Hu, Lu, and Tan 2014). In contrast, only a few of works
have devoted to unsupervised scenario which is one of major
challenges faced by deep learning (Bengio, Courville, and
Vincent 2013; Lecun, Bengio, and Hinton 2015). Clustering
as one of the most important unsupervised learning tasks,
fewer works investigate how to make it benefiting from deep
learning (Peng et al. 2016b; Yang, Parikh, and Batra 2016;
Xie, Girshick, and Farhadi 2016).

Unlike those deep clustering approaches, our method
is the first work to recast the clustering as a verification
problem. Moreover, some of these approaches obtain re-
sults in off-the-shelf manner, whereas our deep model is
a clustering-oriented cascade model. It is generally believ-
able that the task specific on-the-shelf deep learning is more
promising and attractive (Bengio, Courville, and Vincent
2013; Lecun, Bengio, and Hinton 2015).

Cascade Subspace Clustering

In this section, we first elaborate on the details of the pro-
posed CSC model and then give the implementation details
of the algorithm.

The Model of CSC

For a given data set X € R"*"™, we aim to assign each data
point x; € X into one of k clusters of which each is rep-
resented by a centroid w; € €2, where m denotes the input
dimension and n is the data size. To this end, CSC obtains re-
sults with two joint modules. One is learning representation
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with an encoder and the other is clustering data by minimiz-
ing the discrepancy among different distributions. Figure 2
gives an illustration to the proposed CSC.

To learn a good representation H € R?*™, CSC progres-
sively maps X into a low-dimensional space via a series of
nonlinear transformations. Here, d denotes dimension of the
latent space. The transformations are modeled by a collec-
tion of stacked neural components such as convolution net-
work (Lecun et al. 1998). In this paper, we build a fully con-
nected network for our CSC. The experiment studies will
show that such a simple network can also achieve promising
improvement upon well-established baseline methods.

For clarity, we start explanation on our model with the
simplest case (i.e. 1-hidden layer network) as follows:

h; = g(x;|®) = g(Wx; + b), )

where ¢(-) is a nonlinear activation function, ® = {W, b}
denotes the parametric network, W & RI*m denotes the
weight, and b € R? is the bias. To obtain a good initializa-
tion of ®, we adopt self-supervised learning approach (Hin-
ton and Salakhutdinov 2006). To be exact, we train an au-
toencoder by
nmin | X — X|| g, 3)
©
where X is the reconstruction of X, i.e. the output of the
autoencoder. Once the autoencoder converges, we use the
learned weights of encoding module to initialize our CSC.
To perform clustering, we propose the following KL di-
vergence based objective function:

min Y~ f(Pi, P;) = min > Pjlog
i#] Ui

where P; and P; are conditional distributions (probabil-
ity maps) between H [hi,hy,--- ,h,] and Q

Pj

P “4)



[w1,wa, -, wg] in terms of two different metrics, and €2 de-
notes cluster centers. Clearly, our objective function is pro-
posed to achieve invariance of distribution by minimizing
the discrepancy between the target distribution P; and the
predicted distribution P;. Noticed that, P; is only used as a
target and will not lead to the update of model according to
the definition of KL divergence loss.

In this paper, we consider the binary-distribution case of
eqn.(4) as below:

P2
i log — 5
s P log P )
where the final cluster assignment corresponds to the index
of the maximal entry of P;.
Let P(h;|w;) be the entry of P(H|Q), i.e. the conditional

distribution of h; w.r.t. w;, we give its definition by:

__ Q(hifw))/f;
225 @ (hilw;)/ f

where Q(h;|w;) denotes the closeness between h; and w;,
and f; is the frequency for each cluster which is used to nor-
malize loss contribution of each center, i.e. to prevent larger
clusters from distorting the hidden space (Xie, Girshick, and
Farhadi 2016).

Many existing distance metrics can be used to define
Q(h;|w,). In this paper, we adopt two most widely-used,
i.e. Euclidean and Cosine distance. Specifically, we have

P(hilw;) ©)

(N

where z;; = ||h; — wj||2 is the Euclidean distance between
the ¢-th data and the j-th cluster centroid. p; is the mean of
z;, i.e. the average distance between the i-th sample to all
the cluster centroids. With eqn.(7), the Euclidean distance
based dissimilarity is transformed into similarity, and mean-
while guaranteeing sparsity to the distribution (Coates, Lee,
and Ng 2011). Another distribution Q5 is defined as the re-
ciprocal of Cosine distance. In mathematic,

Q1 (hilw;) = max(0, p; — 2ij),

. hi s Wy 1
2 fleosll=

noticed that, we use the constant with value of 2 instead of 1
to avoid trivial solutions.

It should be pointed out that, our clustering-oriented ver-
ification is different from traditional verification. The tradi-
tional one aims to judge whether a pair of samples comes
from the same subject, whereas our formulation aims to
minimize the difference between two distributions based on
different distance metrics. More specifically, the traditional
verification involves negative pairs (samples from different
subjects) as well as positive pairs, whereas CSC only consid-
ers positive case since the distributions are modeled based on
the same data point and cluster centroids. In fact, we assume
that the performance of CSC could be further improved by
considering negative pair since it would brings more diver-
sity into our model. However, this is beyond the scope of
this work and may be further explored in future.

Qa(hilw;) = (2 ®)
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Table 1: The used parameters of CSC. [ denotes learning rate
which is divided by de for each ep epochs and this operation
is repeated re — 1 times unless convergence. bs denotes the
batch size.

datasets | d Ir de ep re bs
mnist-full 10 107% 0.9 300 15 256
mnist-test 10 10~ 0.5 1,000 3 256
reuters 10 1.0 0.9 500 6 256
cifar10 100 107* 0.9 300 10 256

Implementation Details

We optimize CSC using stochastic sub-gradient descent
(SGD) with momentum and weights decay.

To initialize CSC, we train an m-500-500-2000-d-2000-
500-500-m denoising autoencoder (Vincent et al. 2010) with
a corruption ratio of 0.3, a momentum of 0.9, and a weight
decay rate of 1075, where m and d are the dimension of in-
put and feature space, respectively. Moreover, we adopt rec-
tifier linear units (ReLu) (Glorot, Bordes, and Bengio 2011)
as the activation function. Once the autoencoder converges,
we use the weights of first four hidden layers to initialize ®
and the cluster centers identified by kmeans to initialize 2.

Experimental Results

In this section, we report the performance of our CSC for
subspace clustering and compare it with 11 state-of-the-art
approaches. For comprehensive studies, we adopt four met-
rics to evaluate the clustering quality.

Experiment Settings

For the proposed CSC, we implement it in Theano (Theano
Development Team 2016) based Keras (Chollet 2015) which
is a modular neural networks library. For baseline algo-
rithms, we obtain the MATLAB codes from corresponding
authors’ websites. The experiments are conducted on a ma-
chine with a Titan X GPU and 24x Intel Xeon CPU.

Baseline Algorithms: We compare CSC with 10 clus-
tering methods including kmeans, locality preserving non-
negative matrix factorization (NMF-LP) (Cai et al. 2009),
Zeta function based agglomerative clustering (ZAC) (Zhao
and Tang 2009), agglomerative clustering with average link-
age (ACAL) (Jain, Murty, and Flynn 1999) and weighted
linkage (ACWL) (Jain, Murty, and Flynn 1999), standard
spectral clustering (SC) (Ng, Jordan, and Weiss 2001),
LRR (Liu et al. 2013), low rank subspace clustering
(LRSC) (Vidal and Favaro 2014), SSC (Elhamifar and Vi-
dal 2013), and smooth representation clustering (SMR) (Hu
et al. 2014). Moreover, we also report the results of our CSC
without backpropagation which is identical to kmeans with
denoising autoencoder (DAE+kmeans). For each algorithm,
we tune their parameters for different data sets and then re-
port their best performance. For our CSC, we only tune the
parameters of SGD to guarantee convergence. The used pa-
rameters of CSC are summarized in Table 1.



Table 2: Performance comparisons with 11 clustering approaches. The bold numbers indicate the best results, and Pars reports
the tuned parameters for the evaluated algorithms, i.e. ZAC (K, a, z), LRR (\), LRSC (\), NMF-LP («), SC («), SMR (a, €),

SSC (), €).

Data Set mnist-full mnist-test

Methods Accuracy NMI ARI Precision Pars Accuracy NMI ARI Precision Pars
kmeans 5527% 5274% 40.28%  44.99% - 56.07% 53.58% 41.54%  46.41% -
NME-LP 48.85% 42.63% 29.89%  36.39% 7.0 | 66.48% 46.40% 39.84%  59.99% 5
ZAC 60.00% 6547% 54.07%  44.35% 20,0.95,0.02 | 60.16% 66.01% 5430%  44.42% 60,0.95,0.01
ACAL 11.77%  051%  0.02% 10.04% - 1220%  0.81%  0.00% 10.03% -
ACWL 30.83% 22.31% 11.59% 17.03% - | 41.58% 3896% 26.18%  28.46% -
LRR 11.07%  0.43%  0.03% 10.01% 0.01 5927% 59.16%  46.29%  47.07% 0.01
LRSC 13.67%  098%  0.26% 10.16% 0.05 60.21% 53.90% 43.14%  47.12% 0.03
Ne 71.28% 73.18% 62.18%  62.58% 10 | 6933% 7097% 59.75%  60.43% 1.0
SMR 2289% 3574%  9.78%  41.81% 2741073 67.59% 4133% 3623%  56.35% 2716 0.01
ssc 67.65% 69.37% 58.61%  60.36% 0.01,0.01 60.96% 64.65% 50.79%  50.28% 0.01,0.01
DAE+kmeans | 74.15% 69.70% 63.90%  65.44% - 8520% 72.07% 1047%  12.87% -
(e 87.16% 7550% 7427%  76.43% - | 86.49% 73.34% 72.88% @ 7537% -

Table 3: Performance comparisons with 11 clustering approaches. The bold numbers indicate the best results, and Pars reports
the tuned parameters for the evaluated algorithms, i.e. ZAC (K, a, z), LRR (), LRSC (\), NMF-LP (a), SC («), SMR («a €),

SSC (A, e).
Data Set cifar10 reuters
Methods Accuracy NMI ARI Precision Pars Accuracy NMI ARI Precision Pars
kmeans 19.88% 6.39%  3.09% 12.67% - 54.01% 3491% 27.79% 45.51% -
NMF-LP 17.97% 5.10% 2.58% 12.26% 10 66.48% 34.40%  39.84% 59.99% 5
ZAC 10.14% 0.17%  0.00% 9.99%  20,0.95,0.01 43.66% 1.11% 0.71% 31.38%  20,0.95,0.01
ACAL 10.90% 0.51% 0.03% 10.00% - 43.98% 0.16% 0.06% 31.48% -
ACWL 15.79%  3.62% 1.87% 11.01% - 42.17% 0.75% -0.65% 30.90% -
LRR 11.07% 0.43% 0.03% 10.01% 0.01 53.94% 33.42% 27.35% 45.54% 0.1
LRSC 20.79% 6.31% 3.81% 12.23% 0.05 64.26%  32.33% 32.01% 51.97% 1074
SC 20.18% 6.73%  3.33% 12.83% 10 66.33% 33.91% 30.40% 48.69% 50
SMR 20.76%  6.29%  3.81% 12.13% 27160.1 67.59% 34.33% 3623% = 56.35% 2716,0.02
SSC 19.82% 6.10% 3.25% 12.84% 0.01,0.01 43.22% 0.21% 0.07% 31.15% 0.01,0.01
DAE+kmeans 20.86% 6.95% 3.67% 12.94% - 63.96% 35.81% 38.63% 61.52% -
CSC 21.88% 7.01% 3.90% 13.29% - 69.72% 3598% 44.45% 62.12% -
Data Sets: We use four data sets for our experiments, Comparisons with State-of-the-art Methods

i.e. full mnist data set (Lecun et al. 1998) (mnist-full),
the test partition of mnist (mnist-test), the testing subset
of cifar10 (Krizhevsky and Hinton 2009), and a subset of
reuters (Lewis et al. 2004). mnist-full and mnist-test con-
sist of 70,000 and 10,000 28 x 28 images, respectively. All
mnist images are distributed over 10 handwritten digits. The
cifar10 testing partition includes 10,000 32 x 32 images
that are sampled from 10 objects. The used reuters data set
includes 10,000 documents from four root categories and
each document is represented as a term-frequency-inverse-
document-frequency feature vector with 2,000 most fre-
quently words. For all the used data sets, we do not perform
any pre-processing steps excepted centering each sample to
their centroids and truncating over-high values resulted from
noises.

Evaluation Criteria: Four popular metrics are used to
evaluate the clustering quality, i.e. Accuracy, normalized
mutual information (NMI), adjusted rand index (ARI), and
Precision. Higher value of these metrics indicates better per-
formance.
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We first compare our method with some popular clustering
algorithms on four data sets. Tables 2-3 report the results
from which we observe that:

Our CSC method achieves remarkable improvements
comparing with 11 clustering approaches. For example,
on the mnist-full data set, the Accuracy of CSC is 15.88%
at least higher than that of the best baseline approach.
Specifically, 87.16% of CSC versus 71.28% of SC.

In terms of other three evaluation metrics, CSC is also the
best algorithm on all the used data sets. For example, it
is 2.37%, 13.13%, and 14.94% higher than the other al-
gorithms on mnist-full regarding to NMI, ARI, and Preci-
sion, respectively.

The results of DAE+kmeans and CSC show the effective-
ness of our method. Considering mnist-full, for example,
the performance gains in Accuracy, NMI, ARI, and Preci-
sion of CSC over DAE+kmeans are 13%, 6%, 10%, and
9%, respectively.

On the small scale data set (e.g. mnist-test), although ex-
isting clustering methods are inferior to our deep model,
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Figure 3: The influence of the learning rate decay of SGD. For every 300 epochs, the learning rate is reduced by multiplying

with the decay ratio.

but the performance of these approaches is still accept-
able. When a larger scale data set is used (e.g. mnist-full),
almost all these approaches are failed to achieve a desir-
able result. In contrast, our CSC still performs stable and
separates most data point into corrected clusters.

Influence of Different Parameters

One of major challenges of deep neural network is re-
quiring tuning various parameters, which is an exhausted
task. In this section, we investigate the influence of user-
specified parameters. In evaluations, we also report the per-
formance of kmeans with denoising autoencoder, denoted
by DAE+kmeans. All experiments are conducted on the full
mnist data set and all parameters excepted the evaluated one
are fixed as shown in Table 1.

The choice of learning rate directly decides whether our
model converges, but we experimentally found that learning
rate decay plays a more important role than learning rate.
Thus, we examine the influence of learning rate decay in-
stead of learning rate in this section. The result is demon-
strated in Figure 3. From results, we could see that CSC
achieves a reasonable fluctuation when the learning rate de-
cay is larger than 0.6 in terms of four performance metrics.

Conclusion

In this paper, we proposed reformulating subspace cluster-
ing as a verification problem by minimizing the discrepancy
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between pairwise sample-centers distributions. To verify the
effectiveness of our idea, we designed a fully connected neu-
ral network based subspace clustering method, termed CSC.
CSC jointly learns a collection of hierarchical representa-
tion and cluster assignment in end-to-end manner. In future,
we plan to investigate the performance of our method when
other modules such as convolution neural network are used.
Moreover, it is also interesting to further improve the perfor-
mance of CSC using multiple metrics learning and incorpo-
rating contrastive divergence with negative pairs.
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