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Abstract

Lack of sufficient training data with exact ages is still a chal-
lenge for facial age estimation. To deal with such problem,
a method called Label Distribution Learning (LDL) was pro-
posed to utilize the neighboring ages while learning a partic-
ular age. Later, an adaptive version of LDL called ALDL was
proposed to generate a proper label distribution for each age.
However, the adaptation process requires more training data,
which creates a dilemma between the performance of ALDL
and the training data. In this paper, we propose an algorithm
called Semi-supervised Adaptive Label Distribution Learning
(SALDL) to solve the dilemma and improve the performance
using unlabeled data for facial age estimation. On the one
hand, the utilization of unlabeled data helps to improve the
adaptation process. On the other hand, the adapted label dis-
tributions conversely reinforce the semi-supervised process.
As a result, they can promote each other to get better per-
formance. Experimental results show that SALDL performs
remarkably better than state-of-the-art algorithms when there
are only limited accurately labeled data available.

Introduction
Age estimation has attracted more attention in recent years
because of its potential applications in business intelligence,
human-computer interaction and so on. However, obtaining
enough data with exact ages is still difficult. Although with
the rise of big data, it is easier to collect a large scale of im-
ages for age estimation task, for example, from the Internet,
unfortunately, these images are mostly labeled very roughly
and contain large outliers of ages. They are harmful to learn
a good age estimator (Ni, Song, and Yan 2009). One solution
to utilize these images is to re-annotate them by humans. Ob-
viously, it is not only time-consuming and cost-consuming
but unreliable. The reason is that different people may age
quite differently, because of the gene differences as well as
life style and living condition differences. Correspondingly,
there was one research reported that annotating the face im-
ages with perceiving ages by humans is a challenging task
(Zeng et al. 2011). The mean absolute error (MAE) is 8.58
years for human age perception on images from MORPH
(Ricanek Jr and Tesafaye 2006), and is 8.13 years on images
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from FG-NET (Cootes and Lanitis 2008). The other possi-
ble solution is to design a robust age estimator to tolerate
the ill-labeled images. However, it has been also proved to
be impractical. In detail, applying the age estimator learned
from the collected face aging data from the Internet to some
standard datasets, the MAE could be 8.60 years on MORPH
(Ricanek Jr and Tesafaye 2006) and 9.49 years on FG-NET
(Cootes and Lanitis 2008), respectively.

To estimate ages as precisely as possible, it is more fea-
sible to make the most of existing slight well-labeled ag-
ing data. Motivated by this, one novel method was proposed
to use the neighboring ages while learning a particular age
based on the fact that aging is a slow and gradual process
(Geng, Yin, and Zhou 2013). This is achieved by assigning
a label distribution instead of a single label of the chronolog-
ical age to each face image. The label distribution covers a
certain number of neighboring ages, representing the degree
that each age describes the corresponding face image. The
shape of label distributions is same at all ages. Later, they
found that the aging process could be significantly different
at different aging stages (Geng, Wang, and Xia 2014). Gen-
erally speaking, the change of facial appearance during the
childhood and senior ages is more apparent than that during
the middle age. To accord with the tendency of aging varia-
tion, an adaptive method called Adaptive Label Distribution
Learning (ALDL), was proposed to generate the proper label
distribution for each age. But the adaptation process itself
requires more labeled training data. Specially, if the training
data are extremely limited, the performance of ALDL will
get worse with the increase of the number of the adaptation
iterations. An example is shown in Fig. 2. The horizontal or-
dinate represents the label distribution adaptation step. The
vertical ordinate represents the MAE on 5,000 test images.
The number of the training images for ALDL is 500. As
can be seen that the MAE increases with the increase of the
adaptation step. This demonstrates the poor performance of
ALDL with limited training images.

Semi-supervised learning is an efficient technique to
make use of unlabeled data to improve performance (Zhu
2005). As discussed above, the images with faces are ex-
tremely easy to obtain today. Tens of millions of face
images are produced by people all over the world ev-
ery day. If the images are treated as unlabeled, semi-
supervised learning can be used. Correspondingly, there was
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a semi-supervised approach proposed for age estimation task
(Kazuya, Sugiyama, and Ihara 2010). However, it is about
perceived ages by humans rather than real ages estimated
by a computer. In other words, in this research, there is no
ground truth age labels for face images. Another research at-
tempted to apply the general semi-supervised algorithms to
solve the age estimation problem (Zhang and Guo 2013).
Nevertheless, the algorithms are not very appropriate be-
cause they are not designed specially for age estimation.

To solve the dilemma between the performance of ALDL
and the available labeled training data, we combine the la-
bel distribution adaptation and semi-supervised learning to-
gether to propose a novel method called Semi-supervised
Adaptive Label Distribution Learning (SALDL). Generally
speaking, there are three advantages of SALDL:

1. It utilizes the face images at neighboring ages when mod-
eling a particular age via the label distribution and accords
with the tendency of facial aging at different ages via the
label distribution adaptation.

2. The semi-supervised process solves the dilemma between
the performance of label distribution adaptation and the
labeled training data by utilizing the unlabeled data. With
more training data, the label distributions can be better
adapted to the reality.

3. The better adapted label distributions can conversely en-
hance the utilization of unlabeled data. The reason is that,
for the unlabeled data, the label distribution reflects not
only the aging process but also the uncertainty of label
assignment, which are more flexible than many traditional
semi-supervised methods, where the label for each unla-
beled image must be explicitly determined.

The rest of this paper is organized as follows. First, the al-
gorithms about supervised age estimation and general semi-
supervised learning are reviewed. Then, the SALDL algo-
rithm is proposed. After that, the experimental results are
reported. Finally, conclusions are drawn.

Related Work
There have been many algorithms proposed for age esti-
mation. The early works were the Weighted Appearance
Specific (WAS) method and the Appearance and Age Spe-
cific (AAS) method in which the aging pattern was rep-
resented by a quadratic function (Lanitis, Draganova, and
Christodoulou 2004). Then, the algorithm called AGES was
proposed, which learned a subspace from the aging pattern
vectors (Geng et al. 2006; Geng, Zhou, and Smith-Miles
2007). In (Fu and Huang 2008), multiple linear regression
was used to the discriminative aging manifold of face im-
ages. After that, a locally adjusted robust regressor was de-
signed for the prediction of human ages (Guo et al. 2008).
Later, the feature extractor BIF (Biologically Inspired Fea-
tures) and the KPLS (Kernel Partial Least Squares) regres-
sion method were used for age estimation (Guo et al. 2009).
Besides, some work regarded age estimation as a regres-
sion problem with nonnegative label intervals and solved
the problem through semidefinite programming (Yan et al.
2007a). Correspondingly, a method tried to model the age

estimation as a multi-instance regression problem (Ni, Song,
and Yan 2009). Ordinal Hyperplane Ranking (OHRank) al-
gorithm was based on the transformation from the age es-
timation task into multiple cost-sensitive binary classifica-
tion subproblems (Chang, Chen, and Hung 2011). A re-
gressor for age estimation using a cumulative attribute was
proposed (Chen et al. 2013) too. Especially, deep learning
(Schmidhuber 2015) recently gets more and more attention
and achieves great success in computer vision community.
The corresponding deep algorithms for age estimation were
also developed (Dong, Liu, and Lian 2015). However, al-
most all these algorithms require a large number of data with
exact ages for training.

Semi-supervised learning is a relatively well-explored
area (Chapelle et al. 2006). Self-training is the learning pro-
cess which uses its own predictions to teach itself (Rosen-
berg, Hebert, and Schneiderman 2005). Co-training assumes
the existence of two separate views in the feature space
(Nigam and Ghani 2000). Then the two classifiers are ap-
plied to different views separately and they can enhance each
other. S3VM is the extension of the popular support vector
machine to semi-supervised learning condition (Joachims
1999). There are also some graph-based methods like La-
bel Propagation (Wang and Zhang 2008) and mixture mod-
els like GMM (Gaussian Mixture Models) (Grandvalet and
Bengio 2004). Although there are so many general semi-
supervised algorithms proposed, it is not much appropriate
to apply them to facial age estimation directly, because they
cannot utilize the facial appearance characteristics.

Semi-supervised Adaptive Label Distribution
Learning

Problem Foumulation
The name of SALDL, i.e., Semi-supervised Adaptive Label
Distribution Learning, includes three key concepts: semi-
supervised, adaptive and label distribution. Next we will in-
troduce the concepts in the reverse order.

First, for a face image x, its label distribution is defined as
a vector dx, which contains the description degrees of a cer-
tain number of neighboring ages. The label distribution has
two properties. One is that each element of the distribution
vector dx,y is a nonnegative real number representing the
degree to which the age y describes x. The other is that all
elements involved in the distribution vector sum up to 1, i.e.,∑

y dx,y = 1, which means that the face image can always
be fully described using all ages.

The form of the label distribution is a crucial issue, which
should reflect the aging process correctly. According to the
fact that aging is a slow and gradual process (Geng, Yin, and
Zhou 2013), there are two constraints that the label distribu-
tion should satisfy. First, for the face image at the chronolog-
ical age μ, the description degree of μ should be the highest
in the label distribution. Second, the description degrees of
the neighboring ages should decrease with the increase of
distance away from μ. The discretized Gaussian distribution
centered at the age μ might be a suitable choice, i.e.,

dx,y =
1

σ
√
2πZ

exp(− (y − μ)2

2σ2
), (1)
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where σ is the standard deviation of the Gaussian dis-
tribution, and Z is a normalization factor that makes sure∑

y dx,y = 1, i.e.,

Z =
1

σ
√
2π

∑

y

exp(− (y − μ)2

2σ2
). (2)

The other fact is then observed that the facial aging pro-
cess could be significantly different at different aging stages
(Geng, Wang, and Xia 2014). Fortunately, this difference
can be reflected by the standard deviation σ of the Gaus-
sian label distribution at each age. For those ages where the
facial appearance changes faster, the σ should be smaller,
resulting in sharper label distributions. On the contrary, for
those ages where the facial appearance changes slower, the
σ should be larger, resulting in smoother label distributions.
Thus, the standard deviations at different ages may be dif-
ferent. However, the label distributions are not available in
the training data. This requires the algorithm to be able to
learn the label distributions adapted to different ages. In this
sense, label distribution adaptation means finding a proper σ
for each age.

Unfortunately, to find a good σ for each age, a certain
number of labeled training data are needed. This is against
the general condition of limited labeled training data as dis-
cussed in the first section. Noticing the fact that the unla-
beled data are abundant and quite easy to obtain, we turn
to semi-supervised learning to utilize both labeled and un-
labeled data. In one word, SALDL is a semi-supervised
method aiming to enhance the label distribution adaptation
using the unlabeled data for facial age estimation.

According to the above description, label distribution
shares the same properties with probability distribution, i.e.,
dx,y ∈ [0, 1] and

∑
y dx,y = 1. Thus, many theories and

methods can be borrowed from statistics to deal with label
distributions. First of all, the description degree dx,y can
be represented by the form of conditional probability, i.e.,
dx,y = p(y|x). This might be explained as that the proba-
bility of y is equal to its description degree. Then we suppose
p(y|x) is a parametric model p(y|x;Θ), where Θ ∈ R

r×q

is the parameter matrix, r and q are the number of feature
vector and age set respectively. Therefore, there are two opti-
mization targets for SALDL, i.e., the parameter matrix Θ in
the conditional probability function and the standard devia-
tion σ for each age in Eq. (1). These targets can be optimized
alternatively in a loop of four main steps as the following.

SALDL Algorithm

Label Distribution Initialization The first step is to ini-
tilize the label distributions. Because the ages of unlabeled
images are unknown, the initialization is only for the la-
beled images. The original label distributions are initialized
by Eq. (1) with the same standard deviation σ0 at all ages,
i.e., σ0

μ = σ0, ∀μ ∈ Y , where σ0 is predefined and Y is the
age set. For example, for the labeled image xi, the label dis-
tribution d0

i = [d0xi,y1
, d0xi,y2

, . . . , d0xi,yq
] is calculated by

d
0
xi,yj

=
1

σ0
μi

√
2πZi

exp(− (yj − μi)
2

2(σ0
μi

)2
),

j = 1, 2, . . . , q.

(3)

Algorithm 1 SALDL
Input:

The initial standard deviation σ0;
The number of nearest neighbors K;
The balance parameter C;
The maximum number of iterations T ;
The labeled image set Sl = {(x1, μ1), . . . , (xl, μl)};
The unlabeled image set Su = {xl+1, . . . ,xl+u}.

Output: p(y|x;Θ).
1: k ← 0;
2: Sk ← Sl;
3: Initialize the label distributions in Sk by the real ages

and σ0 according to Eq. (3);
4: repeat
5: k ← k + 1;
6: Train a LDL model Mk based on Sk−1 by solving

Eq. (4) for the model parameter matrix Θk;
7: Based on the Mk, predict the label distributions in

(Sl ∪ Su) according to Eq. (5);
8: Based on the predicted label distributions, estimate

the pseudo ages μk in Su according to Eq. (9);
9: Based on the real ages in Sl, the pseudo ages μk in Su

and the predicted label distributions, select the confi-
dent images;

10: Devide the selected confident images according to
their real ages or pseudo ages, and estimate the stan-
dard derivation σk for each age group according to
Eq. (14);

11: Update Sl and Su by the real ages, pseudo ages and
σk according to Eq. (1);

12: Sk ← (Sl ∪ Su);
13: until k ≥ T .
14: p(y|x;Θ) = 1

Λ exp((θT
y )

Tx)

If we have l labeled images, then the initial la-
bel distribution training set S0 is covered as S0 =
{(x1,d

0
x1
), . . . , (xl,d

0
xl
)}.

Label Distribution Learning In this step, the label distri-
bution for each training image in the set Sk−1 is available,
where k is the iteration number. Thus, the aim of this step is
to find a Θk that can generate label distributions most sim-
ilar to the ones in Sk−1. This process is called LDL, i.e.,
Label Distribution Learning (Geng 2016). If the Kullback-
Leibler distance is used to measure the similarity between
distributions, then the best parameter matrix is determined
by

Θ
k
= argmin

Θ

∑

i,j

d
k−1
xi,yj

ln
dk−1
xi,yj

p(yj |xi;Θ)

= argmax
Θ

∑

i,j

d
k−1
xi,yj

ln p(yj |xi;Θ)

(4)

According to the maximum entropy criterion (Berger,
Pietra, and Pietra 1996), p(y|x;Θ) can be expressed as

p(yj |x;Θ) =
1

Λ
exp(θ

T
yj

x) (5)

where Λ =
∑

j exp(θ
T
yj
x) is the normalization factor, and

θyj
is the j-th column vector of the matrix Θ corresponding
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to the age yj . Substituting Eq. (5) into Eq. (4) yields

Θ
k
= argmax

Θ

∑

i,j

d
k−1
xi,yj

θ
T
yj

xi −
∑

i

ln
∑

j

exp(θ
T
yj

xi). (6)

There are many optimization algorithms such as conju-
gate gradient and quasi-Newton methods to optimize Eq. (6).
If the quasi-Newton method BFGS is used, then the opti-
mization is mainly related to the first order gradient, which
can be obtained through

∂L(Θ)

∂θyj

=
∑

i

exp(θT
yj

xi)xi

∑
j exp(θT

yj
xi)xi

−
∑

i

d
k−1
xi,yj

xi. (7)

Estimate the Pseudo Ages for Unlabeled Images The
parameter matrix Θk in the conditional probability mass
function is available after the LDL step. Then, it can be used
to predict the label distribution for each training image x
according to Eq. (5). To keep consistent between the labeled
and unlabeled data, we need to estimate a temporary pseudo
age for each unlabeled image. Here, we adopt the simple and
efficient algorithm KNN, i.e., K-Nearest Neighbor (Peterson
2009). In detail, for each unlabeled image, the pseudo age
is estimated as the mean age of its K nearest labeled image
neighbors. Note that, because only the ages of the labeled
images are known, the neighbors should be searched only in
the labeled training set. Furthermore, to find the neighbors
more appropriately, the similarity metric is modified as one
balance between the Euclidean distance of the feature vec-
tors and the Kullback-Leibler divergence of the predicted
label distributions. For example, the similarity between the
unlabeled image xm and the labeled image xn is

λm,n = ‖ xm − xn ‖2
2 +C

∑

j

p(yj |xm;Θ
k
) ln

p(yj |xm;Θk)

p(yj |xn;Θk)
, (8)

where C is the predefined balance parameter. Then, the
pseudo age for xm in the iteration k is estimated as

μ
k
m =

1

K

∑

xn∈Nm

μn. (9)

where Nm is the labeled neighbor set for xm.
There are two interesting things needed bo be concerned.

First, the uncertainty of label assignment for the unlabeled
data can be exactly depicted by the label distribution. Sec-
ond, the predicted label distribution for each image may
change in each iteration, thus, the pseudo age μk

m is alter-
able. These makes SALDL more robust than other general
semi-supervised learning methods.

Update the Adapted Label Distributions Similar to
ALDL, we assume that the aging process is different at dif-
ferent aging stages. This difference can be reflected by the
standard deviations of the Gaussian label distributions. Un-
fortunately, the standard deviations can not be obtained di-
rectly from the traning data set. Thus, in this step, we expect
to approximate the real standard deviation for each age.

According to the predicted label distribution, the age of
image x can be estimated as the one which has the largest
description degree

μ̂ = argmax
y

p(y|x;Θk
). (10)

However, this age may be different from the real age for
the labeled image or the pseudo age for the unlabeled im-
age. To approximate the standard deviations as precisely as
possible, we should firstly select the confident images whose
predicted ages are accurate. In detail, we calculate the abso-
lute error of the predicted age for each image as

e = |μ − μ̂|. (11)

Note that for the labeled images, the μ corresponds to the
real chronological age. For the unlabeled images, it is sub-
stituted by the pseudo ages estimated in the previous step.
Then, those images with the absolute age estimation errors
lower than the MAE (Mean Absolute Error) of the whole
image set are selected as the candidate set for the update of
standard deviations. The MAE is calculated as

MAE =
1

l + u

∑

i

ei. (12)

where l and u are the number of labeled and unlabeled im-
ages, respectively.

After that, we assume all people have the same aging pro-
cess. That means the label distributions are same for those
images with the same age. Thus, the selected confident im-
ages can be divided into q subsets by their real ages or
pseudo ages. Let Sk

μ denote the selected image set with the
same age μ in the k-th iteration, then the corresponding la-
bel distributions of the images in Sk

μ are all generated with
the same standard deviation σk

μ, i.e.,

dxr,yj
=

1

σk
μ

√
2πZμ

exp(− (yj − μ)2

2(σk
μ)

2
), (13)

However, even the images with the same age are in the
same subset, their predicted label distributions calculated ac-
cording to Eq. (5) may be different. To deal with this situ-
ation, we define the best σk

μ for age μ as the one that can
generate a label distribution most similar to the all predicted
label distributions in Sk

μ . If the Kullback-Leibler divergence
is again used to measure the similarity between two distri-
butions, then

σ
k
μ =argmin

σμ

∑

xr∈Sk
μ

∑

j

dxr,yj
ln

dxr,yj

p(yj |xr;Θk)
,

s.t. σμ > 0.

(14)

Substituting Eq. (13) into Eq. (14) yields a nonlinear pro-
gramming problem, which can be effectively solved by the
log barrier interior-point method (Waltz et al. 2006).

After σk
μ is determined for each age in Y , the label dis-

tributions of all training images are updated with the new
standard deviation σk

μ to get dk
x according to Eq. (1). Note

that for the labeled images, the μ in Eq. (1) corresponds
to the real chronological age. For the unlabeled images,
the μ is again substituted by the estimated pseudo age. Fi-
nally, the training set with the updated label distributions
Sk = {(x1,d

k
x1
), . . . , (xl,d

k
xl
), (xl+1,d

k
xl+1

), . . . , (xl+u,

dk
xl+u

)} is sent into the LDL step again to start the next it-
eration k + 1. The whole process repeats until k is not less
than the predefined maximum number of iterations T . Since
both the LDL step and the adaptation step iteratively reduce
the K-L divergence, the iteration procedure will converge at
last. The pseudo-code is shown as Algorithm. 1.
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Figure 1: The standard deviations σμ at different ages estimated by LDL, ALDL and SALDL.
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Figure 2: MAE variation of ALDL w.r.t. the label distribu-
tion adaptation steps using 500 labeled training images.

Experiments
Configuration
The dataset used in the experiments is MORPH (Ricanek Jr
and Tesafaye 2006). There are 55,132 face images from
more than 13,000 subjects in this database. In average, each
subject has 4 face images. The ages range from 16 to 77 with
a median age of 33. The faces are from different races, where
about 77% are African faces, 19% are European faces, and
remaining 4% includes Hispanic, Asian, Indian and other
races. The feature extractor is the Biologically Inspired Fea-
tures (BIF) (Guo et al. 2009). The dimensionality of the
BIF vectors is further reduced to 200 using Marginal Fisher
Analysis (MFA) (Yan et al. 2007b).

For SALDL, the initial standard deviation σ0 is set to 3,
the number of nearest neighbors K is set to 10, the balance
weight C is set to 0.001. The maximum number of iterations
T decreases with the increase of the number of the labeled
training images. All parameters are determined through the
10-fold cross validation process. After the optimal model pa-
rameter matrix Θ∗ is obtained, the predicted age for a test
image x′ is determined by y∗ = argmaxy p(y|x′;Θ∗).

Several existing facial age estimation algorithms are com-
pared, which include KPLS (Guo and Mu 2011), OHRank
(Chang, Chen, and Hung 2011), LDL (Geng, Yin, and Zhou
2013), and ALDL (Geng, Wang, and Xia 2014). As sug-
gested in the papers, KPLS uses the RBF kernel with the
inverse width of 1. OHRank uses the absolute cost function
and the RBF kernel. For ALDL, the parameters σ0 is set to

3 and the convergence threshold ε is set to 0.02.
The age estimation can be treated as a multi-class problem

in fact. There have been some semi-supervised multi-class
algorithms proposed in the recent years, like Boosting (Val-
izadegan, Jin, and Jain 2008) and Support Vector Machine
(Xu and Schuurmans 2005). However, LP (Label Propaga-
tion) is more scalable and commonly used in multi-class
condition. Thus, we adopt the one proposed in (Wang and
Zhang 2008) as a representer. For LP, the number of near-
est neighbors is set to 10. In addition, to show the effect of
the semi-supervised process, we modify SALDL by remov-
ing the adaptation process and call it as SLDL method. In
SLDL, the initialization step, the LDL step and the pseudo
age estimation are same as SALDL. Then, SLDL assigns the
label distributions to the unlabeled images with the pseudo
ages and σ0 according to Eq. (1). After that, each image,
either labeled or unlabeled, has a corresponding label distri-
bution, but the standard deviations of the distributions are all
equal to σ0. Last, LDL step is executed again on the whole
image set and the parameter matrix Θ is got. The parameters
in SLDL are set to be same as the ones in SALDL.

The test images are randomly selected firstly and fixed in
all experiments. The number of the test images is 5,000. For
the semi-supervised methods, i.e., LP, SLDL and SALDL,
the number of training images they use in all experiments
is always 50,000. In other words, if the number of labeled
training images increase, then the number of unlabeled im-
ages will decrease, but the sum of them is still 50,000.

Results
Motivation Justification To reveal the performance of
ALDL with limited training images, the MAE variation with
respect to the label distribution adaptation steps is shown in
Fig. 2. Note that the number of labeled training images is
500. As shown in Fig. 2, the MAE increases with the in-
crease of label distribution adaptation step. Thus, the adap-
tation process generates negative effect if the training images
are rare for ALDL. On this occasion, ALDL degenerates to
LDL with the best performance without adaptation.

Further, Fig. 1(b) shows the estimated adapted standard
deviations σμ by ALDL with 500 labeled training images.
Each block in Fig. 1 represents one age, where higher gray
scale (lighter) means larger σμ, and further indicates slower
facial appearance change. Note that the ages older than 54
are omitted because the training examples on these ages are
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Figure 3: Comparison among all methods

too few to get a reasonable result. Generally speaking, the
facial appearance changes slower during middle ages than
that during childhood and senior ages. Thus, the gray should
be lighter at age 30 than that at age 16 and 54. However,
limited by the training images, the estimated standard de-
viations by ALDL are chaotic and can not correctly accord
with the tendency of aging variation as shown in Fig. 1(b).
As a contrast, the standard deviations σμ in LDL are same
at all ages, thus the gray bar is completely black as shown in
Fig. 1(a). For SALDL, as shown in Fig. 1(c), the estimated
standard deviations perfectly accord with the aging process.

Effects of the Semi-supervised and Adaptation Processes
To demonstrate the effects of the semi-supervised process
more sufficiently, some experiment results of ALDL, SLDL
and SALDL are shown in Fig. 3. The horizontal ordinate
represents the number of labeled training images, and the
vertical ordinate represents the MAE. Note that the results
can be divided into three parts according to the value of hor-
izontal axis. The first part ranges from 100 to 1,000, and the
step interval is 100. The second part ranges from 1,000 to
10,000, and the step interval is 1,000. The last part ranges
from 10,000 to 50,000, and the step interval is 10,000. As
can be seen from the figure, SLDL and SALDL perform bet-
ter than ALDL, especially when the number of labeled train-
ing images is less than 1,000. This strongly demonstrates the
effect of semi-supervised process under the condition of lim-
ited training data.

Furthermore, SALDL performs better than SLDL, and
this shows the positive effect of the label distribution adap-
tation. Besides, because of the diversity of intervals in dif-
ferent parts, the change rates of MAEs are also different. As
shown in Fig. 3, the MAE changes faster in the first part than
that in the third part. In particular, the MAEs in the third part,
i.e., when the number of labeled training images is larger
than 10,000, have little variation with the increase of labeled
training images. This is probably because the training data
are already enough, and adding either the labeled data or the
unlabeled data will not have much effects.

Comparison between SALDL and State-of-the-art Meth-
ods The comparison results between SALDL and other
state-art-of methods are also shown in Fig. 3. First, the green
line for LDL and the magenta line for ALDL in Fig. 3 are
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Figure 4: Using unlabeled images from different sources.

overlapped when the number of labeled training images is
less than 500. It is consistent with the former conclusion
that when the training images are rare, ALDL degenerates to
LDL. Then the semi-supervised method LP performs worst.
The reason might be that other compared methods are all de-
signed for the facial age estimation task, so the general semi-
supervised method has no advantages even there are enough
unlabeled data used. Moreover, there are several fluctuations
for the methods LP and KPLS, this illustrates that they may
be unstable when the training data are rare. Last, SALDL
performs remarkably better than the compared methods es-
pecially when the labeled training images are extremely rare.
For example, the MAE of SALDL with 100 labeled training
images is 5.124. To get similar performance, the numbers of
labeled training images required are 1,000 for KPLS, 800 for
OHRank, 2,000 for LDL, 900 for ALDL, and 30,000 for LP,
respectively. This essentially illustrates the advantages and
effectiveness of SALDL. In particular, if the training images
are all labeled, i.e., the number of labeled training images is
50,000, SALDL will degenerate to ALDL.

Utilization of Unlabeled Data from Different Sources
In the above experiments, the sources of labeled and unla-
beled images used in SALDL are same. However, this may
be not satiable in real applications. In more general condi-
tions, they are likely different. Thus, to illustrate the perfor-
mance of SALDL fully, we design two more experiments
with different races and genders, respectively. In the first
one, we use 500 Caucasian face images as the labeled train-
ing data, the rest Caucasian face images, about 10,167 im-
ages, as the test data, and randomly select images from 1,000
to 10,000 images from other races as the unlabeled training
data. The second one is almost same except that the labeled
and test data are female face images and the unlabeled data
are male face images. The results are shown in Fig. 4. We
can see that the MAE decreases with the increase of the
number of the unlabeled data in both experiments. It can
well demonstrate the effectiveness of semi-supervised pro-
cess in SALDL as the above part.

Conclusion
This paper proposes a novel semi-supervised method called
SALDL for facial age estimation. The motivation of SALDL
is to solve the dilemma between the performance of label

2020



distribution adaptation and the limited training data. This
is achieved by combining the semi-supervised process and
the adaptation process uniformly via the label distribution.
In SALDL, the two procedures can promote each other and
get better performance. Experimental results show that the
proposed SALDL algorithm can make good use of the unla-
beled data and perform significantly better than state-of-the-
art algorithms when the available labeled images are limited.
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