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Abstract

In multi-task learning, when the number of tasks is large, pair-
wise task relations exhibit sparse patterns since usually a task
cannot be helpful to all of the other tasks and moreover, sparse
task relations can reduce the risk of overfitting compared with
the dense ones. In this paper, we focus on learning sparse
task relations. Based on a regularization framework which
can learn task relations among multiple tasks, we propose a
SParse covAriance based mulTi-taSk (SPATS) model to learn
a sparse covariance by using the �1 regularization. The result-
ing objective function of the SPATS method is convex, which
allows us to devise an alternating method to solve it. Moreover,
some theoretical properties of the proposed model are studied.
Experiments on synthetic and real-world datasets demonstrate
the effectiveness of the proposed method.

Introduction

Multi-task learning (Caruana 1997; Baxter 1997), which is
inspired by human learning ability, aims to help improve the
generalization performance of several tasks simultaneously
by leveraging useful but hidden common knowledge among
them. Multi-task learning has many applications in various
areas, including data mining, computer vision, bioinformatics,
and health informatics.

A key issue in multi-task learning is to understand the
relations between tasks since this understanding can be in-
corporated into the learning process to improve the general-
ization performance of all the tasks. At the early stage, many
multi-task methods focus on utilizing a priori information on
the task relations. For example, based on the domain knowl-
edge that all the tasks are similar to each other, Evgeniou and
Pontil (Evgeniou and Pontil 2004) extend the support vector
machine to the multi-task setting by proposing a regularizer
to enforce the model parameters of all the tasks to be close
to the average one and Evgeniou et al. (Evgeniou, Micchelli,
and Pontil 2005) as well as Kato et al. (Kato et al. 2007)
devise some Laplacian-based regularizers depending on the
given task similarity graphs to make the model parameters
corresponding to any pair of similar tasks close to each other.
Moreover, Han et al. (Han et al. 2014) utilize the given hierar-
chical structure among different tasks as a priori information
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to help learn model parameters. However, in real-world appli-
cations, such a priori information on task relations may be not
easy to obtain or even does not exist, bringing difficulties to
the wide use of such approaches. In recent years, many multi-
task methods are proposed to learn the task relations directly
from data. Usually the task relations appear in different forms
and hence different approaches are proposed to learn them.
For example, the multi-task feature learning method proposed
in (Argyriou, Evgeniou, and Pontil 2006) aims at learning a
common subset of features for all the tasks based on group-
sparsity regularizers after some linear transformation on the
original feature representation, and the multi-task feature se-
lection method (Obozinski, Taskar, and Jordan 2006) adopts
the same idea by learning the common features based on the
original feature representation. By assuming that the model
parameters of all the tasks share a low-rank subspace, Ando
and Zhang (Ando and Zhang 2005) directly learn the shared
subspace as well as the task-specific spanning coefficients
under a non-convex formulation and then Chen et al. (Chen
et al. 2009) relax the non-convex formulation to a convex
one, which is easier to solve. With a similar idea to (Ando
and Zhang 2005), Pong et al. (Pong et al. 2010) use the trace
norm regularization to learn a low-rank parameter matrix
and then Han and Zhang (Han and Zhang 2016) extend it
to the capped trace norm penalty. The task clustering ap-
proach such as (Xue et al. 2007; Jacob, Bach, and Vert 2008;
Kang, Grauman, and Sha 2011; Jawanpuria and Nath 2012;
Han and Zhang 2015a) can detect the cluster structure among
tasks where tasks from a cluster are similar to each other
in terms of model parameters or feature representations. All
these methods in this approach can identify task clusters
but in different ways, including utilizing the Dirichlet pro-
cess in (Xue et al. 2007), devising some regularizer inspired
by the k-means clustering in (Jacob, Bach, and Vert 2008),
integer programming in (Kang, Grauman, and Sha 2011),
group-sparsity regularizers in (Jawanpuria and Nath 2012;
Han and Zhang 2015a) and so on. Interestingly, Han and
Zhang (Han and Zhang 2015b) propose a method to learn
hierarchical structure among tasks based on sequential con-
straints. Moreover, several methods directly learn pairwise
relations among tasks, where the pairwise relations are repre-
sented by a covariance matrix (Bonilla, Chai, and Williams
2007; Zhang and Yeung 2010a; 2010b; Zhang and Schneider
2010) or just a square matrix (Zhang 2013). The task relations
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reflected in the matrix can give us deep insight and under-
standing on the tasks, which can enhance the interpretation
of the multi-task models. When the number of tasks is large,
usually one task cannot be helpful to all of the other tasks,
implying that the pairwise task relations could be sparse.
Moreover, learning densely pairwise relations may lead to
high model complexity and also increased risk for overfitting.
In this sense, learning sparse task relations is an important
problem.

In this paper, we propose a new method to learn the sparse
task relations. Based on a regularization framework for multi-
task learning to learn task relations, we propose a SParse
covAriance based mulTi-taSk (SPATS) method for learning
sparse task relations. Since the covariance used in the frame-
work is to model the task relations, the proposed SPATS
method learns a sparse covariance by placing a �1 regular-
ization on it. The resulting objective function of the SPATS
method is convex, which allows us to devise an alternating
method to solve it. Some theoretical properties of the pro-
posed SPATS method are studied. Experiments on synthetic
and real-world datasets demonstrate the effectiveness of the
proposed method.

A Framework to Learn Task Relations
Suppose we are given a set of m tasks {Ti}mi=1. For task
Ti, its training set contains ni data points {xi

j}ni
j=1 as well

as their labels {yij}ni
j=1 where xi

j ∈ R
d and yij ∈ R for

regression problems and yij ∈ {−1, 1} for classification
problems. The learning function for task Ti is defined as
fi(x) = wT

i φ(x) + bi, where φ(·) denotes the feature map-
ping from R

d to R
d̂. Some examples for φ(·) are φ(x) = x

and the feature mapping induced by some kernel function
such that the dot product between φ(x1) and φ(x2) is equal
to k(x1,x2) where k(·, ·) denotes a kernel function.

In the following, we present a regularized framework for
learning multiple tasks and modeling the task relations simul-
taneously:

min
W,b,Ω�0

m∑
i=1

1

ni

ni∑
j=1

l
(
wT

i φ(xi
j) + bi, y

i
j

)
+

λ1

2
tr(WΩ−1WT )

+ λ2g(Ω), (1)

where W = (w1, . . . ,wm), b = (b1, . . . , bm)T , l(·, ·) de-
notes a loss function, 0 denotes a zero vector or matrix with
appropriate size, A � (�)B for two square matrices A
and B means that A−B is positive definite (PD) (positive
semidefinite (PSD)), tr(·) denotes the trace of a square ma-
trix, M−1 denotes the inverse or pseduoinverse of a square
matrix depending on whether it is nonsingular or not, and
λ1, λ2 are regularization parameters to control the trade-off
among three terms in problem (1).

Problem (1) contains three terms. The first term measures
the empirical loss on the training data based on the loss func-
tion l(·, ·). The second term is a regularizer on W based on
Ω. For example, when Ω ∝ I where I denotes an identity
matrix with appropriate size, the second term is the squared
Frobenius norm regularization on W and if Ω is a diago-
nal matrix, it becomes the weighted Frobenius norm regu-
larization for W. Similar to (Zhang and Yeung 2010a), Ω,

which is assumed to be PSD, can be viewed as a covariance
matrix to describe the pairwise task relations. The function
g(·) in the last term of problem (1) can be considered as a
regularizer on Ω to specify its structure. When g(·) is an
indicator function for some set, problem (1) becomes a con-
strained problem with the constraints defining the structure
of Ω. Problem (1) defines a framework for multi-task learn-
ing, which depends on the choice of the function g(·), to
learn the task relations via Ω. It is not difficult to reveal that
many existing multi-task methods (Evgeniou and Pontil 2004;
Evgeniou, Micchelli, and Pontil 2005; Jacob, Bach, and
Vert 2008; Pong et al. 2010; Zhang and Yeung 2010a;
Zhang and Schneider 2010; Rai, Kumar, and Daume 2012;
Zhang and Yeung 2014) can be viewed as concrete instances
under this framework.

As proved in (Zhang and Yeung 2010a), the second term
in problem (1) is jointly convex with respect to W and Ω.
Given a convex loss function l(·, ·) and a convex function g(·),
problem (1) is also convex, which can bring computational
benefits.

Moreover, problem (1) can be viewed as a regularized
multi-task framework as

min
W,b

m∑
i=1

1

ni

ni∑
j=1

l
(
wT

i φ(x
i
j) + bi, y

i
j

)
+ λ1R(W),

where R(W) is defined as

R(W) = min
Ω�0

1

2
tr(WΩ−1WT ) +

λ2

λ1
g(Ω). (2)

Different choices of g(·) lead to different regularizers R(·).
It is easy to see that some simple g(·) can induce several
well-known regularizers including the (squared) trace norm
regularizer and the (squared) Schatten norm regularizer.

The SPATS Method

Recall that the goal here is to learn the sparse task relations.
In the proposed framework (1), Ω corresponds to the task
relations and hence we expect to learn a sparse Ω, which is
different from existing multi-task models which learn dense
Ω’s.

Here we propose the SParse covAriance based mulTi-taSk
(SPATS) method, which assumes that the task covariance
is sparse. Specifically, the objective function of the SPATS
method is formulated as

min
W,b,Ω�0

m∑
i=1

1

ni

ni∑
j=1

l
(
wT

i φ(xi
j) + bi, y

i
j

)
+

λ1

2
tr(WΩ−1WT )

+ λ2‖Ω‖1, (3)

where the �1 norm is used to enforce the sparsity of the
task covariance Ω. Problem (3) is an instance of problem
(1) by setting g(Ω) to be ‖Ω‖1. Since ‖Ω‖1 = tr(Ω) +∑m

i=1

∑m
j=1,j �=i |ωij |, problem (3) not only behaves sim-

ilarly to the trace norm regularization by penalizing the
trace of Ω but also learns sparse task relations via the
penalization of the off-diagonal entries in Ω. Note that
problem (3) is different from the methods proposed in
(Zhang and Schneider 2010; Rai, Kumar, and Daume 2012)
whose g(·) takes the form of g(Ω) = ‖Ω−1‖1 by assum-
ing that Ω−1 is sparse. Moreover, given the convex loss
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function l(·, ·), problem (3) is jointly convex with respect
to W, b, and Ω according to (Zhang and Yeung 2010a)
but the methods proposed in (Zhang and Schneider 2010;
Rai, Kumar, and Daume 2012) are non-convex.

Properties

By placing the �1 regularization on Ω, we expect to learn a
sparse Ω and meanwhile restrict the complexity of Ω. The
zero entries in Ω implies the corresponding pairs of tasks are
unrelated. To see this, we have the following theorem.

Theorem 1 Suppose ωij , the (i, j)th element in Ω, is equal
to 0. Then the optimal wi is not spanned by φ(Xj) and
similarly wj is not spanned by φ(Xi), where φ(Xj) =

(φ(xj
1), . . . , φ(x

j
nj
)) is the data matrix for the jth task.

Proof. First we consider multi-task classification problems
where the loss function l(y1, y2) can be reformulated as a
function of the margin y1y2, that is, l

(
wT

i φ(x
i
j) + bi, y

i
j

)
=

c
(
yij(w

T
i φ(x

i
j) + bi)

)
for some function c(·). In this case,

we set the derivative of problem (3) with respect to W to be
zero and get

λ1WΩ−1 =

m∑
p=1

−1

np

np∑
q=1

c′
(
ypq (w

T
p φ(xp

q) + bp)
)
ypqφ(x

p
q)(e

m
p )T ,

where c′(·) denotes the (sub)gradient of c(·) and emi
denotes the ith canonical basis of R

m. By denoting
− 1

ni
c′
(
yij(w

T
i φ(x

i
j) + bi)

)
by αi

j and utilizing a fact that
wi = Wemi , we can obtain the representer theorem as

wi =
1

λ1

m∑
p=1

np∑
q=1

αp
qy

p
qφ(x

p
q)(e

m
p )TΩem

i

=
1

λ1

m∑
p=1

np∑
q=1

αp
qy

p
qφ(x

p
q)ωpi.

When ωij is 0 which implies that ωji = 0 due to the symme-
try of Ω, the above equation can be simplified as

wi =
1

λ1

m∑
p=1
p �=j

np∑
q=1

αp
qy

p
qφ(x

p
q)ωpi. (4)

So wi lies in a span of all the training data except those from
the jth task. So does wj .

For multi-task regression problems, the loss function
can be formulated as l(y1, y2) = ĉ(y2 − y1) for some
function ĉ(·). The optimality condition for W gives
λ1WΩ−1 =

∑m
p=1

∑np

q=1 β
p
qφ(x

p
q)(e

m
p )T , where βp

q =
1
ni
ĉ′
(
yij −wT

p φ(x
p
q) + bp

)
. Similarly, when ωij = 0, we

have

wi =
1

λ1

m∑
p=1
p �=j

np∑
q=1

βp
qφ(x

p
q)ωpi, (5)

in which we reach the conclusion. �
According to Theorem 1, we can see that when ωij is 0,

the training data of the jth task are not used to compute wi,
which verifies the unrelatedness of those two tasks. Moreover,
based on Eqs. (4) and (5), the �1 regularization on Ω leads to

a ‘sparse’ representer theorem in Corollary 1, which is dif-
ferent from the conventional multi-task representer theorem
(Argyriou, Micchelli, and Pontil 2009) where each wi lies in
the span of the training data from all the tasks.
Corollary 1 For problem (3), the optimal solution satisfies
the following representer theorem as

wi =
1

λ1

∑
p:ωpi �=0

np∑
q=1

γp
qφ(x

p
q)ωpi for i = 1, . . . ,m,

where γp
q ∈ R.

Moreover, we investigate the regularizer R(W) defined
in Eq. (2) for problem (3). That is, we need to solve the
following problem

min
Ω�0

tr(Ω−1S) + τ‖Ω‖1, (6)

where S = 1
2W

TW and τ = λ2

λ1
. By utilizing the dual norm

of the �1 norm, we can rewrite problem (6) as

min
Ω�0

max
‖U‖∞≤τ

tr(Ω−1S) + tr(UTΩ), (7)

where U is a dual variable and ‖·‖∞, the �∞ norm of a vector
or matrix, is equal to the maximum entry of the corresponding
vector or matrix. Problem (7) is convex with respect to Ω as
proved in Theorem 3 and concave with respect to U, leading
to an equivalent formulation as

max
‖U‖∞≤τ

min
Ω�0

tr(Ω−1S) + tr(UTΩ). (8)

By solving the inner optimization problem with respect to Ω,
we can obtain the relation between the primal variable Ω and
the dual variable U as

U = Ω−1SΩ−1. (9)

According to this relation, the dual variable U is PSD since S
is PSD. Moreover, for the optimal Ω, we have the following
result.
Theorem 2 The optimal Ω of problem (6) satisfies Ω �
μm(W)√

2mτ
I.

Proof. Based on Eq. (9), the smallest eigenvalue of S, μm(S),
satisfies

μm(S) = μm(ΩUΩ) = μm(UΩ2)

≤ μm(Ω2)μ1(U) = μ2
m(Ω)μ1(U),

where the first equality holds due to Eq. (9), the second
equality holds due to a fact that AB and BA have the same
spectrum for two square matrices A and B, the inequality
holds because of a fact that μm(AB) ≤ μm(A)μ1(B) for
any PSD matrices A,B ∈ R

m×m, and the last equality holds
since μi(M

2) equals μ2
i (M) for any PSD matrix M. Since

‖U‖∞ ≤ τ , then we have μ1(U) ≤ tr(U) ≤ mτ , where
the first inequality holds since U is PSD and the second
one holds since each diagonal element in U is no larger
than τ . Combining the above two inequalities, we can get

μm(Ω) ≥
√

μm(S)
mτ . Note that S = 1

2W
TW. We can get

μm(S) = 1
2μ

2
m(W) and hence we reach the conclusion. �

According to Theorem 2, we can see that the smallest
eigenvalue of Ω has a lower bound depending on the smallest
singular value of W. Therefore, when W is of rank m, the
optimal Ω is PD and otherwise PSD.
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Optimization Procedure

In this section, we discuss how to solve problem (3). In
order to study both multi-task classification and regression
problems, we adopt the square loss, that is, l(y1, y2) = (y1−
y2)

2. The optimization procedure can be easily extended to
other loss functions.

The objective function of the SPATS method with the
square loss is formulated as

min
W,b,Ω�0

m∑
i=1

1

ni

ni∑
j=1

(
wT

i φ(xi
j) + bi − yij

)2
+

λ1

2
tr(WΩ−1WT )

+ λ2‖Ω‖1. (10)

In order to solve problem (10), we use an alternating method
which first optimizes problem (10) with respect to W and b
by fixing Ω and then solves problem (10) with respect to Ω
given the fixed W and b. In the following, we discuss these
two steps in details.

When Ω is fixed, the problem with respect to W and b
is the same as problem (9) in (Zhang and Yeung 2010a) and
hence we can obtain an analytical solution or use an SMO-
style method to solve it iteratively.

When W and b are fixed, the problem with respect to Ω
is formulated as

min
Ω�0

λ1

2
tr(Ω−1R) + λ2‖Ω‖1, (11)

where R = WTW. Given that R is PSD, in the following
theorem we can prove that problem (11) is convex.

Theorem 3 When R is PSD, problem (11) is convex.

Proof. We only need to prove that tr(Ω−1R) is convex
with respect to Ω since both the second term in the ob-
jective function and the constraint are convex. We define
r(Ω) = tr(Ω−1R). For any PSD matrix P ∈ R

m×m and
any α ∈ [0, 1], we can easily have (1 − α)I + αP−1 �
((1 − α)I + αP)−1 since the ith largest eigenvalue of
(1− α)I+ αP−1, which is equal to 1− α+ αμm−i(P)−1,
is larger than that of ((1 − α)I + αP)−1, which is equal
to (1 − α + αμm−i(P))−1, and those two matrices share

the same eigenvectors. By letting P = Ω
− 1

2
2 Ω1Ω

− 1
2

2 where
Ω1 and Ω2 are PSD and then left- and right-multiplying the
inequality by Ω

− 1
2

2 , we can get αΩ−1
1 + (1 − α)αΩ−1

2 �
(αΩ1 + (1− α)Ω2)

−1. Then we have

αr(Ω1) + (1− α)r(Ω2)− r(αΩ1 + (1− α)Ω2)

=tr
((

αΩ−1
1 + (1− α)αΩ−1

2 − (αΩ1 + (1− α)Ω2)
−1

)
R
) ≥ 0,

where the inequality holds since the trace of the product
between two PSD matrices is nonnegative. Based on the
definition of convex functions, we reach the conclusion. �

Based on Theorem 3, problem (11) is convex since R =
WTW is PSD and hence we can use the FISTA algorithm
(Beck and Teboulle 2009) to solve problem (11). The FISTA
algorithm aims to minimize a combination of two convex
function as: minΘ∈Cθ f(Θ)+h(Θ), where Cθ defines a set of
constraints on Θ, f(Θ) is a differentiable Lipschitz function,
and h(Θ) can be non-smooth. Then we define

QL(Θ, Θ̂) = f(Θ̂) +�Θf(Θ̂)T (Θ− Θ̂) +
L

2
D(Θ, Θ̂) + h(Θ),

where 	Θf(Θ̂) denotes the derivative of f(·) with respect to
Θ at Θ = Θ̂ and D(·, ·) measures the Euclidean distance be-
tween variables. We define qL(Θ̂) = argminΘ QL(Θ, Θ̂).

In order to apply the FISTA algorithm to problem (11),
we set Θ = {Ω}, f(Θ) = λ1

2 tr(Ω−1R), h(Θ) = λ2‖Ω‖1,
and Cθ = {Ω � 0}. In the FISTA algorithm, we need to
minimize QL(Θ, Θ̂), which is formulated as

min
Ω

L

2

∥∥∥∥Ω−
(
Ω̂− 1

L
�Ω f(Ω̂)

)∥∥∥∥
2

F

+ λ2‖Ω‖1, (12)

where 	Ωf(Ω̂) = −λ1

2 Ω−1RΩ−1. The PSD constraint
on Ω is satisfied according to the numerical determina-
tion of L in step 6 of the FISTA algorithm and hence
problem (12) does not include such constraint. Problem
(12) is a Lasso problem with an analytical solution as

[Ω]ij = κ

([
Ω̂− 1

L 	Ω f(Ω̂)
]
ij
, λ2

L

)
, where [·]ij returns

the (i, j)th element of a matrix, sgn(·) defines the sign func-
tion, | · | gives the absolute value when the argument is a

scalar, and κ(a, b) =

{
0 if |a| ≤ b
sgn(a) (|a| − b) otherwise is the

soft-thresholding operator.
The above two steps will iterate until convergence. In

our experiments, we find that the convergence of the alter-
nating method is very fast compared with using the FISTA
algorithm to solve problem (3) directly. Moreover, no mat-
ter whatever the function g(·) is, the learning of W and b
keeps unchanged, which makes the implementation of the
alternating method partially re-useable, which can speedup
the implementation of different methods under the proposed
framework.

Discussion

Under the proposed framework, we can devise more concrete
learning models. For example, in some case, outlier tasks
that have no relations to other tasks may exist among those
tasks under investigation. In such situation, if the outlier tasks
are still assumed to be helpful to other tasks, then they will
definitely cause the performance of other tasks to deteriorate.
Therefore, it is better to detect such outlier tasks during the
learning process of multi-task learning. Under this setting,
we expect one or more columns except the diagonal entries in
Ω is a zero vector and hence the function g(·) in problem (1)
can be defined as g(Ω) =

∑m
i=1 ‖ωc

i ‖2, where ωc
i ∈ R

m−1

is the ith column of Ω by excluding the ith entry in that
column. Another advantage of the proposed framework (1) is
that we can combine two or more instances of g(·) to form a
new regularizer, which can aggregate the characteristics of
individual regularizers, for Ω.

Experiments

In this section, we empirically test the performance of the
proposed SPATS method.

We compare the proposed SPATS model with state-of-the-
art models including the STL method which is the single-task
model with the square loss or equivalent the ridge regres-
sion model, the MTLΩ method (Evgeniou and Pontil 2004)
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which is the multi-task model with a given Ω, the MTL-TNR
method (Pong et al. 2010) which is the multi-task model with
trace norm regularization, the MTL-STNR method (Argyriou,
Evgeniou, and Pontil 2006) which is the multi-task model
with the squared trace norm regularization, the MTL-CNR
method (Jacob, Bach, and Vert 2008) which is the multi-task
model with the cluster norm regularization, and the MTL-
gLasso method (Zhang and Schneider 2010) which is the
multi-task model with graphical Lasso to enforce the sparsity
of the inverse of Ω.

Experiments on Synthetic Data

In this section, we test the SPATS method on some synthetic
datasets. To begin with, we generate the sparse task covari-
ance Ω∗ as follows. We first generate an m×m matrix U∗Ω
with each of its entries sampling from the standard normal
distribution. Each row in U∗Ω has 40% probability to be se-
lected and 80% of the entries in each selected row of U∗Ω will
set to be 0 with equal probability. After that, we can obtain
a sparse Ω∗ as Ω∗ = U∗Ω(U

∗
Ω)

T . After obtaining Ω∗, we
can generate the parameter matrix W∗ ∈ R

d×m with each
of its rows sampling from a multivariate normal distribution
N (0,Ω∗) independently. Each entry in the data matrix for
the ith task, Xi ∈ R

d×ni , is sampled according to the stan-
dard normal distribution. Then the vector of labels in the ith
task, yi ∈ R

ni , is generated as yi = XT
i w

∗
i + ξi where w∗i

is the ith column of W∗ and ξi ∈ R
ni contains Gaussian

noises each of which is sampled from N (0, 0.5).
We adopt two settings for (m, d), i.e., (20, 10) and

(40, 10), to generate two synthetic datasets. For each task,
we generate 50 data points for training, 50 data points for
validation to choose the regularization parameter with the set
of candidate values as {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1},
100 data points for testing. Each setting will repeat for 10
times and the mean as well as the standard deviation is re-
ported. The performance measure is the normalized mean
squared error (NMSE) which equals the mean squared error
divided by the variance of the ground truth. The experimen-
tal results are shown in Table 1 and the best results under
the significant t-test with 95% confidence are shown in bold.
According to the results, we can see that on the synthetic
datasets, the MTLΩ model performs worse than the STL
model and one reason for that is that the assumption adopted
by the MTLΩ model does not hold in this dataset. Other
multi-task models outperform the STL model and among
them, the SPATS model has the best performance.

In Fig. 1, we plot the ground-truth of the task covariance in
the first dataset as well as its estimation learned by the SPATS
model. We can see that the difference between the ground-
truth and the estimation is very small, which demonstrates the
effectiveness of the SPATS method on the synthetic dataset
to recover the sparse task relations.

Experiments on Real-World Datasets

Five benchmark datasets, including School, Parkinson, Sen-
timent, Landmine and MHC-I datasets, are used in the ex-
periment. The School dataset contains examination scores
of 15362 students from 139 secondary schools in London

Table 1: Experimental results in terms of mean±standard
deviation on the two synthetic datasets

Method Synthetic Data 1 Synthetic Data 2
STL 0.1033±0.0118 0.1029±0.0263
MTLΩ 0.1287±0.0230 0.1173±0.0298
MTL-TNR 0.0766±0.0066 0.0401±0.0056
MTL-STNR 0.0763±0.0033 0.0691±0.0069
MTL-CNR 0.0765±0.0073 0.0382±0.0042
MTL-gLasso 0.1013±0.0149 0.0930±0.0157
SPATS 0.0646±0.0052 0.0280±0.0042
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Figure 1: Comparison between the true task covariances and
the estimations by the SPATS method on the first synthetic
data. Here Ω∗ denotes the ground-truth and Ω̃ is the corre-
sponding estimation.

during years 1985, 1986 and 1987, hence, there are totally
139 tasks. The input consists of the year of the examina-
tion, four school-specific and three student-specific attributes.
Following (Evgeniou, Micchelli, and Pontil 2005), we re-
place each categorical attribute with one binary variable for
each possible attribute value and as a result, there are 27
input attributes. The Parkinson dataset is used to predict the
Parkinson’s disease symptom score for patients based on 16
biomedical features. The Parkinson dataset contains 5,875 ob-
servations for 42 patients and hence predicting the symptom
score for each patient is treated as a regression task, leading
to 42 regression tasks with the number of instances for each
task ranging from 101 to 168. In the Sentiment dataset, there
are four different products (tasks) from Amazon.com: books,
DVDs, electronics, and kitchen appliances. For each task,
there are 1000 positive and 1000 negative data points corre-
sponding to positive and negative reviews, respectively and
the goal is to classify the reviews of some products into two
classes: positive and negative reviews. Each data point has
473856 feature dimensions. The Landmine dataset contains
examples collected from 29 landmine fields. Each example
contains nine numeric features and each of the 29 tasks is a
binary classification problem to predict landmines (positive
class) or clutters (negative class). The number of data points
in each task varies from 445 to 690. The dataset is highly
imbalance against the positive class. The MHC-I dataset
contains binding affinities of various peptides with different
MHC-I molecules and the goal is to predict whether a peptide
binds a molecule. Each MHC-I molecule is considered as a
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Table 2: Experimental results on five real-world datasets. ↑ after the name of each dataset means that a larger value indicates
better performance and ↓ implies that a smaller value corresponds to better performance.

Method School↓ Parkinson↓ Sentiment↑ Landmine↑ MHC-I↑
STL 1.1453±0.0599 1.1327±0.0866 0.8303±0.0098 0.6854±0.0261 0.6677±0.0234
MTLΩ 1.1004±0.0631 1.0828±0.0460 0.8237±0.0209 0.7015±0.0244 0.6879±0.0227
MTL-TNR 1.0247±0.0879 1.0744±0.0415 0.8764±0.0078 0.7236±0.0249 0.7076±0.0203
MTL-STNR 0.9048±0.0981 1.0207±0.0162 0.8808±0.0085 0.7496±0.0287 0.6943±0.0230
MTL-CNR 1.1040±0.0474 1.0203±0.0119 − 0.7228±0.0204 0.7070±0.0084
MTL-gLasso 1.1559±0.0538 1.1182±0.0617 0.8267±0.0279 0.7286±0.0202 0.7232±0.0297
SPATS 0.9110±0.0291 0.9894±0.0229 0.8576±0.0103 0.7420±0.0121 0.7299±0.0240

task and there are 35 tasks. The number of instances per task
varies from 59 to 197 and the the dataset is biased against the
positive class.

For all the datasets, we randomly choose 20% data for
training, 20% for validation, and the rest for testing. The
random split is repeated for 10 times and the mean as
well as the standard deviation is reported for each dataset.
Here the validation set is to choose the regularization pa-
rameters in all of the methods in comparison and the set
of the candidate values for the regularization parameters
is {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. Similar to the syn-
thetic datasets, the performance measure used for multi-task
regression problems is the NMSE and that for multi-task
classification problems is the area under curve (AUC) for the
receiver operating characteristic curve since some datasets
(e.g., the Landmine and MHC-I data) are imbalance. So in the
regression problems, the smaller the value reported, the bet-
ter the performance, but for classification problems, a larger
value indicates better performance.

We present the experimental results in Table 2, where the
best results under the significant t-test with 95% confidence
are shown in bold. Since the MTL-CNR method proposed
in (Jacob, Bach, and Vert 2008) is a linear method which
cannot handle high-dimensional text data, we do not include
it in the comparison on the Sentiment dataset. According
to the results, all the multi-task methods have better perfor-
mance than the single-task method. Moreover, on the four
datasets including the School, Parkinson, Landmine, and
MHC-I datasets, the SPATS method achieves the best or
nearly the best performance among all the methods in com-
parison. On the Sentiment dataset, the situation is slightly
different. we can see that the MTL-TNR and MTL-STNR
methods have the best performance and the SPATS method
performs slightly worse than them. One reason for that is
when the number of tasks is very small, each task will not
receive enough knowledge transferred from other tasks if task
relations are assumed to be sparse and hence under this situa-
tion, learning dense task relations is a better choice. Based on
this observation, we believe that learning sparse task relations
is a good strategy when there are lots of learning tasks.

Analysis on Learned Task Covariances

In this section, we present some analysis on the learned task
covariances.

In order to study the sparse task covariance learned in the

SPATS method, we record in Table 3 the average sparsity of
the learned Ω in the SPATS method on all the datasets except
the Sentiment dataset which has only 4 tasks. According to
Table 3, the learned Ω is very sparse and this observation
together with the good performance of our proposed meth-
ods reported in the last section verifies the motivation that
learning sparse task relations is useful when the number of
tasks is large.

Table 3: The average sparsity (in percentage) of the learned
Ω in the SPATS method on the four datasets.

School Parkinson Landmine MHC-I
73.79% 77.62% 79.19% 81.14%

We plot in Figure 2 the task correlation matrices derived
from the learned Ω’s in the SPATS, MTL-TNR, and MTL-
STNR methods on the Landmine dataset, where darker colors
indicate values closer to zero. According to Figure 2, we can
see that the learned Ω’s in the SPATS method have more
entries close to zero, which again verifies that the SPATS
method can learn sparse task relations.
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Figure 2: The comparison of the task correlation matrices
learned by the MTL-TNR, MTL-STNR and SPATS methods
on the Landmine dataset.

Conclusion

In this paper, we investigate the learning of sparse task re-
lations. Based on the proposed framework, which can ac-
commodate several state-of-the-art multi-task models as spe-
cial instances, for multi-task learning, we devise the SPATS
method to learn the sparse task relations. Through the ex-
periments, we have shown that when the number of tasks
is large, learning sparse task relations is helpful to improve
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the performance. In our future study, we are interested in
devising more multi-task models to learn different sparsity
patterns in Ω such as the outlier task case discussed before.
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