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Abstract

As a fundamental constituent of machine learning, domain
adaptation generalizes a learning model from a source do-
main to a different (but related) target domain. In this paper,
we focus on semi-supervised domain adaptation and explic-
itly extend the applied range of unlabeled target samples into
the combination of distribution alignment and adaptive clas-
sifier learning. Specifically, our extension formulates the fol-
lowing aspects in a single optimization: 1) learning a cross-
domain predictive model by developing the Fredholm integral
based kernel prediction framework; 2) reducing the distribu-
tion difference between two domains; 3) exploring multiple
kernels to induce an optimal learning space. Correspondingly,
such an extension is distinguished with allowing for noise re-
siliency, facilitating knowledge transfer and analyzing diverse
data characteristics. It is emphasized that we prove the differ-
entiability of our formulation and present an effective opti-
mization procedure based on the reduced gradient, guaran-
teeing rapid convergence. Comprehensive empirical studies
verify the effectiveness of the proposed method.

Introduction

Conventional supervised learning aims at generalizing a
model inferred from labeled training samples to test sam-
ples. For well generalization capability, it is required to col-
lect and label plenty of training samples following the same
distribution of test samples, however, which is extremely ex-
pensive in practical applications. To relieve the contradiction
between generalization performance and label cost, domain
adaptation (Pan and Yang 2010) has been proposed to trans-
fer knowledge from a relevant but different source domain
with sufficient labeled data to the target domain. It gains in-
creased importance in many applied areas of machine learn-
ing (Daumé III 2007; Pan et al. 2011), including natural lan-
guage processing, computer vision and WiFi localization.

Supervised domain adaptation takes advantage of both
abundant labeled samples from source domain and a rel-
atively small number of labeled samples from target do-
main. A line of recent work in this supervised setting (Ay-
tar and Zisserman 2011; Daumé III and Marcu 2006; Liao,
Xue, and Carin 2005; Hoffman et al. 2014) learns cross-
domain classifiers by adapting traditional models, e.g., sup-
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port vector machine, logistic regression and statistic clas-
sifiers, to the target domain. However, they do not ex-
plicitly explore the distribution inconsistency between the
two domains, which essentially limits their capability of
knowledge transfer. To this end, many semi-supervised do-
main adaptation methods are proposed within the classifier
adaptation framework (Chen, Weinberger, and Blitzer 2011;
Duan, Tsang, and Xu 2012; Sun et al. 2011; Wang, Huang,
and Schneider 2014). Compared with supervised ones, they
take into account unlabeled target samples to cope with the
inconsistency of data distributions, showing improved clas-
sification and generalization capability. Nevertheless, most
work in this area only incorporates unlabeled target samples
in distribution alignment, but not in adaptive classifier learn-
ing. Large quantities of unlabeled target samples potentially
contain rich information and incorporating them is desir-
able for noise resiliency. Moreover, some work in this semi-
supervised setting is customized for certain classifiers, and
the extension to other predictive models remains unclear.

In conventional supervised learning, kernel methods pro-
vide a powerful and unified prediction framework for build-
ing non-linear predictive models (Rifkin, Yeo, and Poggio
2003; Shawe-Taylor and Cristianini 2004; Yen et al. 2014).
To further incorporate unlabeled samples with labeled ones
in model learning, the kernel prediction framework is de-
veloped into semi-supervised setting by formulating a regu-
larized Fredholm integral equation (Que, Belkin, and Wan
2014). Although this development is proven theoretically
and empirically to be effective in noise suppression, the per-
formance heavily depends on the choice of a single prede-
fined kernel function. The reason is that its solution is based
on Representer Theorem (Scholkopf and Smola 2001) in the
Reproducing Kernel Hilbert Space (RKHS) induced by the
kernel. More importantly, the kernel methods are not devel-
oped for domain adaptation, and the distribution difference
will invalidate the predictive models across two domains.

In this paper, we focus on semi-supervised domain adap-
tation and extend the applied range of unlabeled target sam-
ples from the distribution alignment into the whole learn-
ing process. This extension further explores the structure in-
formation in target domain, enhancing robustness in com-
plex knowledge propagation. The key challenge is to accom-
plish this extension through a single optimization combining
the following three aspects: 1) learning a predictive model
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across two domains based on Fredholm integrals utilizing
(labeled) source data and (labeled and unlabeled) target data;
2) reducing the distribution difference between domains; 3)
exploring a convex combination of multiple kernels to op-
timally induce the RKHS. In dealing with the above diffi-
culties, the proposed algorithm named Transfer Fredholm
Multiple Kernel Learning (TFMKL) has a three-fold contri-
bution. First, compared with traditional semi-supervised do-
main adaptation, TFMKL learns a predictive model for noise
resiliency and improved adaptation power. It is also of high
expansibility due to the compatibility with many classifiers.
Second, from the view of kernel prediction, the challenge of
reducing distribution difference is suitably addressed. More-
over, multiple kernels are optimally combined in TFMKL,
allowing for analyzing the useful data characteristics from
various aspects and enhancing the interpretability of predic-
tive model. Third, instead of employing alternate optimiza-
tion technique, we prove the differentiability of our formula-
tion and propose a simple but efficient procedure to perform
reduced gradient descent, guaranteeing rapid convergence.
Experimental results on a synthetic example and two real-
world applications verify the effectiveness of TFMKL.

Relative Work

Domain Adaptation

In supervised domain adaptation, cross-domain classi-
fiers (Aytar and Zisserman 2011; Hoffman et al. 2014)
are learnt by using labeled source samples and a small
number of labeled target samples. Meanwhile, some semi-
supervised methods (Chen, Weinberger, and Blitzer 2011;
Duan, Tsang, and Xu 2012; Sun et al. 2011; Wang, Huang,
and Schneider 2014) are proposed by combining the trans-
fer of classifiers with the match of distributions. This setting
encourages the domain-invariant characteristics, leading to
improved adaptation results for classification. Specifically,
(Chen, Weinberger, and Blitzer 2011) minimizes conditional
distribution difference and adapts logistic regression to tar-
get data simultaneously. Inspired from Maximum Mean Dis-
crepancy (Borgwardt et al. 2006), the methods in (Sun et al.
2011; Wang, Huang, and Schneider 2014) match conditional
or marginal distributions by transforming or re-weighting,
and then use all processed labeled data to train traditional
classifiers. The above methods ignore unlabeled target data
in the process of learning adaptive classifiers, while the unla-
beled data is desirable for robustness and noise resiliency. In
(Duan, Tsang, and Xu 2012), although unlabeled target data
is used during learning adaptive Support Vector Regression
(SVR), it lacks theoretical support for noise suppression and
is specific to SVR.

Kernel Prediction Framework

In conventional supervised setting, the kernel prediction
framework (Shawe-Taylor and Cristianini 2004) specifies a
positive definite kernel function K and then estimates a pre-
dictive function f : X → Y from the labeled training set
D = {(x1, y1), ..., (xn, yn)} ⊂ X ×Y . Let H be the RKHS
induced by K, and this estimation is generally modeled as

the following optimization problem over H:

f = argmin
f∈H

1

n

n∑
i=1

L(f(xi), yi) + β‖f‖2H, (1)

where β is a tradeoff parameter, L(z, y) is a risk function,
e.g., square loss: (z − y)2 and hinge loss: max(1− zy, 0).

In semi-supervised setting, suppose the labeled and the
unlabeled training data are drawn from the distribution
P (X,Y) and the marginal distribution P (X) respectively.
Associated with an outside kernel kP (x, z), the regular-
ized Fredholm integral KP for f(x) (Que, Belkin, and Wan
2014) is introduced to explore unlabeled data: KP f(x) =∫
kP (x, z)f(z)P (z)dz. In this term, Eq. (1) can be rewrit-

ten as: f = argmin 1
n

∑n
i=1 L(KP f(xi), yi) + β‖f‖2H. It

has been shown that the performance of supervised algo-
rithms could be degraded under the “noise assumption”. By
contrast, the f based on the Fredholm integral will be re-
silient to noise and closer to the optimum, because this inte-
gral provides a good approximation to the “true” data space.
However, this framework is effective only when labeled and
unlabeled data follow the same distribution. In addition, it
relies on the single kP and the choice of kP heavily influ-
ences the performance.

Method

In this section, the problem in TFMKL is firstly defined.
Second, we improve the kernel prediction framework and
extend it to semi-supervised domain adaptation. Third,
the distribution difference is minimized, which is a cru-
cial element to gain more support from source to tar-
get domain. Fourth, the above two goals are unified to-
gether in TFMKL. Furthermore, Multiple Kernel Learn-
ing (MKL) (Bach, Lanckriet, and Jordan 2004) is exploited
within the framework to improve the flexibility. Finally, we
propose a reduced gradient descent procedure to update the
kernel function and the predictive model simultaneously, ex-
plicitly enabling rapid convergence.

Notations and Settings

Suppose the data originates from two domains, i.e., source
and target domains. The source data is a set of ns fully
labeled points Ds = {(xs

1, y
s
1), ..., (x

s
ns
, ysns

)} ⊂ Rd ×
Y drawn from the distribution Ps(X,Y). The target data
is divided into nl (nl � ns) labeled points Dl

t =
{(xt

1, y
t
1), ..., (x

t
nl
, ytnl

)} ⊂ Rd × Y from the distribution
Pt(X,Y) and nu (nu � nl) unlabeled points Du

t =
{xt

nl+1, ...,x
t
nl+nu

} ⊂ Rd from the marginal distribution
Pt(X). The label set Y is assumed to be either {+1,−1} in
binary classification or the real line R in regression for sim-
plicity, but it can be easily generalized to multi-class setting.
By making full use of all available data (i.e., labeled and un-
labeled points) in every learning aspect, the task of TFMKL
is to find an optimal predictive model f : Rd → Y having
low prediction error with respect to the target domain.

Adaptive Kernel Prediction Framework

Fredholm Integral on Source Domain Suppose an out-
side kernel ks(xs, zs) is given for source domain, where xs
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and zs follow the marginal distribution Ps(X). As stated in
the relative work, we define the Fredholm integral KPs as:
KPs

f(xs) =
∫
ks(xs, zs)f(zs)Ps(z

s)dzs. Following the
law of large number, KPs

f(xs) can be approximated with
the labeled data points xs

1, ...,x
s
ns

, as:

KPsf(x
s) =

1

ns

ns∑
i=1

ks(xs,xs
i )f(x

s
i ). (2)

Fredholm Integral on Target Domain kt(xt, zt) is given
for target domain, where xt and zt follow Pt(X). KPt is
defined as: KPtf(x

t) =
∫
kt(xt, zt)f(zt)Pt(z

t)dzt. As-
sociated with the labeled and the unlabeled data points
xt
1, ...,x

t
nl+nu

, KPt
f(xt) can be approximated as:

KPtf(x
t) =

1

nl + nu

nl+nu∑
i=1

kt(xt,xt
i)f(x

t
i). (3)

Minimizing Prediction Error To eliminate the assump-
tion that both source and target data follow the identical
distribution in traditional kernel prediction, we have con-
structed two Fredholm integrals on the two domains respec-
tively. Furthermore, we adjust the relative importance of
each domain by parameters λs and λt, and then estimate f
by minimizing the combined prediction error:

f =argmin
f∈H

�(f,K, Ds, Dt) = argmin
f∈H

{β‖f‖2H

+
λs

ns

ns∑
i=1

L(KPsf(x
s
i ), y

s
i )+

λt

nl

nl∑
i=1

L(KPtf(x
t
i), y

t
i)},

(4)
where H is some RKHS defined by a kernel K. Eq. (4) in-
tuitively considers the gap between the two domains, hence
naturally boosts the performance on target domain.

Reducing Mismatch of Data Distributions

In this section, we explicitly minimize the distribution dif-
ference between domains. Following (Pan et al. 2011), the
empirical Maximum Mean Discrepancy (MMD) (Borgwardt
et al. 2006) is adopted as the measure of comparing marginal
distributions. Specifically, given the source data Ds and the
target data Dt, the distance between the data distributions of
two domains in the RKHS H induced by the kernel K can be
estimated as the distance between the empirical data means:

dK(Ds, Dt) = ‖ 1

ns

ns∑
i=1

φ(xs
i )− 1

nu + nl

nu+nl∑
i=1

φ(xt
i)‖2H

= tr(ΦTΦS) = tr(KS),

(5)

where φ : Rd → H with K(xi,xj) = φ(xi)
Tφ(xj),

Φ = {φ(xs
1), ..., φ(x

s
ns
), φ(xt

1), ..., φ(x
t
nl+nu

)}, S(i, j) =
1/n2

s if xi,xj ∈ Ds; S(i, j) = 1/(nl+nu)
2 if xi,xj ∈ Dt;

S(i, j) = −1/ns(nl + nu) otherwise. Based on the optimal
K obtained by minimizing Eq. (5), the two distributions are
drawn close in the induced H.

Transfer Fredholm Multiple Kernel Learning

Semi-Supervised Learning Framework For achieving
the noise resiliency and assisting the information transfer,

TFMKL formulates the predictive model f and the kernel
K in a unified framework. Taking advantage of unlabeled
samples, the optimal f and K are found by simultaneously
matching the distributions and minimizing the prediction er-
rors on both source and target data. Based on Eq. (4) and
Eq. (5), the learning framework is concisely written as:

[f,K] = argmin
f,K

�(f,K, Ds, Dt) + θΩ(dK(Ds, Dt)), (6)

where Ω(·) is a monotonic increasing function and θ is the
tradeoff parameter to balance the mismatch and the errors.

Multiple Kernel Learning Instead of predefining the ker-
nel K in Eq. (6) as the standard kernel prediction frame-
work, our framework explicitly explores the optimal K
for domain adaptation. However, directly learning a non-
parametric kernel matrix by solving an semidefinite pro-
gramming (Boyd and Vandenberghe 2004) is computation-
ally prohibitive with O(n6.5) complexity. As an efficient
solution to this dilemma, MKL considers the learnt ker-
nel as a convex combination of given (base) kernels Km:
K(xi,xj) =

∑M
m=1 dmKm(xi,xj), where dm ≥ 0 and

∑M
m=1 dm = 1. Consequently, the problem of kernel learn-

ing is translated to the choice of optimal weights dm, and
thus the Ω(dK(Ds, Dt)) in Eq. (6) can be rewritten into:

Ω(dK(Ds, Dt)) = (tr((

M∑
m=1

dmKm)S))2 = dTppTd, (7)

where d = [d1, ..., dM ]T, p = [p1, ..., pM ]Twith pm =
tr(KmS). Due to the advantages in exploring prior knowl-
edge, describing data characteristics and enhancing inter-
pretability, the adoption of MKL provides improved perfor-
mance and generalization for our proposed algorithm.

Discussion: In contrast to previous semi-supervised do-
main adaptation methods, the proposed framework provides
a natural way of incorporating unlabeled target data in two
parts: 1) learning the adaptive predictive model f ; 2) min-
imizing the distribution difference. The first part benefits
robustness and noise resilience for domain adaptation. Dif-
ferent from “cluster assumption” (Chapelle, Weston, and
Schölkopf 2003) or “manifold assumption” (Belkin, Niyogi,
and Sindhwani 2006), the Fredholm integral is discussed un-
der the “noise assumption” (Que, Belkin, and Wan 2014): in
the neighbor of every sample, the directions with low vari-
ance are uninformative with respect to class labels and can
be regarded as noise. Based on this assumption, the Fred-
holm integral is proven to have noise-suppression power.
Specifically, when samples are polluted by noise, it will pro-
vide a more accurate estimate of the true data, and the re-
sulting f will be more closer to the true optimum. The sec-
ond part facilitates the knowledge transfer from Ds to Dt,
thus f trained in H will make high-confidence predictions
on Du

t . Note that our domain adaptation setting is different
from multi-task learning which tries to learn both target and
source tasks (Evgeniou, Micchelli, and Pontil 2005).

Implementation and Optimization

TFMKL Using Square-Loss For a concrete implementa-
tion, square loss is applied in Eq. (6), but it is emphasized
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that other loss functions can also be employed, e.g., hinge
loss and logistic loss. Substituting Eq. (7) into Eq. (6), the
square loss based formulation is:

min
f,d

{β‖f‖2H +
λs

ns

ns∑
i=1

(KPsf(x
s
i )− ys

i )
2

+
λt

nl

nl∑
i=1

(KPtf(x
t
i)− yt

i)
2 + θdTppTd}

s.t. dm ≥ 0,

M∑
m=1

dm = 1.

(8)

One standard approach for optimizing TFMKL is to alter-
natively update f and d, however, it lacks the convergence
guarantees and may lead to numerical problems. Therefore,
we make great efforts to propose a solution to this challenge.
Generally, the cost function in Eq. (8) can be rewritten as:

min
d

J(d) with dm ≥ 0,

M∑
m=1

dm = 1, (9)

where J(d) =min
f∈H

{ β‖f‖2H +
λs

ns

ns∑
i=1

(KPsf(x
s
i )− ys

i )
2

+
λt

nl

nl∑
i=1

(KPtf(x
t
i)− yt

i)
2 + θdTppTd}.

(10)

In the following paragraphs, we will firstly prove the dif-
ferentiability of J(·), which is at the core of the optimiza-
tion. Afterwards, Problem (9) can be optimized by a reduced
gradient method, ensuring the convergence to local mini-
mum. It should be noticed that the above procedure holds
for TFMKL with other loss functions, as long as the loss
functions provide differentiable J(·). For instance, the pro-
cedure is applicable to TFMKL with hinge loss, because we
can prove that it has a SVM-like formulation and provides a
differentiable J(·) in a similar way as the proof of TFMKL
using square loss.

The Differentiability of J(·) Although Eq. (10) is an opti-
mization problem in a potentially infinite dimensional space
H, the following proposition reduces Eq. (10) to a finite di-
mensional problem.
Proposition 1. The solution of Eq. (10) has the form:

f∗(x) =
ns+nl+nu∑

i=1

M∑
m=1

dmKm(x,xi)vi, (11)

for some v ∈ Rns+nl+nu .
The proof is similar to that of Representer Theo-

rem (Scholkopf and Smola 2001). Given KPs
in Eq. (2) and

KPt
in Eq. (3), Eq. (10) is translated to the quadratic opti-

mization with the following closed-form solution v∗ based
on Proposition 1:

v∗ = (

M∑
m=1

dmK̄T K̃Km + βI)−1K̃Ty, (12)

where y = [ys
1, ..., y

s
ns
, yt

1, ..., y
t
nl
]T , K̄ =

(
Ks

ns
0

0 Kt

nl+nu

)
, K̃ =(

λsK
s

n2
s

0

0 λtK
t

(nl+nu)nl

)
. Note that (Ks)i,j = ks(xs

i ,x
s
j) for 1 ≤

Algorithm 1 Transfer Fredholm Multiple Kernel Learning
Initialization:

Set {dm}Mm=1 with random admissible values.
Iteration:
1: while not convergence do
2: Compute v∗ and f∗ with {dm}Mm=1.
3: Compute ∂J

∂dm
and D.

4: d ← d+ γD, where γ is the step size.
5: end while

The final prediction on Du
t :

KPtf
∗(xt

i) =
1

nl+nu

∑nl+nu
j=1 kt(xt

i,x
t
j)f

∗(xt
j).

i ≤ ns, 1 ≤ j ≤ ns, and (Kt)i,j = kt(xt
i,x

t
j) for 1 ≤ i ≤ nl,

1 ≤ j ≤ nl + nu.
Using Eq. (11), KPsf

∗(xs
i ) and KPtf

∗(xt
i) can be vector-

ized as: KPsf
∗(xs

i ) =
∑M

m=1 dmks
iKmv∗ and KPtf

∗(xt
i) =∑M

m=1 dmkt
iKmv∗, where ks

i = 1/ns[(K
s)i,1, ..., (K

s)i,ns ]
T

and kt
i = 1/(nl + nu)[(K)ti,1, ..., (K

t)i,nl+nu ]
T . As the opti-

mal objective value of Eq. (10), function J(d) is equal to the
following expression:

β

M∑
m=1

dm(v∗)TKmv∗ +
λs

ns

ns∑
i=1

(

M∑
m=1

dmks
iKmv∗−ys

i )
2

+
λt

nl

nl∑
i=1

(

M∑
m=1

dmkt
iKmv∗ − yt

i)
2 + θdTppTd.

(13)

Proposition 2. J(·) is differentiable and ∂J
∂dm

can be calcu-
lated by the differentiation of Eq. (13) with respect to dm.

Proof. The closed-form solution of f∗ ensures its unicity for
any admissible value of d. Following Theorem 4.1 in (Bon-
naus and Shaoiro 1998), J(·) can be proven to be differen-
tiable based on the unicity of f∗. Furthermore, the theorem
enables to calculate the derivative ∂J

∂dm
by the direct differ-

entiation of Eq. (13) with respect to dm.

The Reduced Gradient Algorithm The existence and the
computation of the gradient of J(·) have been discussed.
For solving Problem (9), we propose an efficient and ef-
fective procedure which performs the reduced gradient de-
scent on the differentiable J(·). This procedure does con-
verge to the local minimum of J(·) (Luenberger 1984).
Specifically, when the gradient is obtained, d is updated in
the descent direction D computed using Eq. (12) in (Rako-
tomamonjy et al. 2008). Meanwhile, D ensures that the
constraints {d|∑m dm = 1, dm > 0} are satisfied. The
procedure is summarized in Algorithm 1 with O(Tmax ×
(ns + nl + nu)

3) complexity, where Tmax is the itera-
tion number. It has been shown that this update scheme
leads to rapid convergence (Rakotomamonjy et al. 2008;
Wang et al. 2015).

Experiments

Experiment Setup

TFMKL is systematically compared with: 1) SVM trained
on the union of labeled source and labeled target data (SVM-
st); 2) SVM trained on labeled target data (SVM-t); 3) the
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kernel prediction framework which simply combines (la-
beled) source data and (labeled and unlabeled) target data in
the Fredholm integral operator by ignoring distribution dif-
ference (Fred-st) (Que, Belkin, and Wan 2014); 4) the ker-
nel prediction framework trained on (labeled and unlabeled)
target data in the Fredholm integral operator (Fred-t); 5) un-
supervised Kernel Mean Matching (KMM) (Huang et al.
2006); 6) unsupervised Geodesic Flow Kernel (GFK) (Gong
et al. 2012) + 1NN; 7) supervised Maximum Margin Do-
main Transform (MMDT) (Hoffman et al. 2014) and 8)
semi-supervised Domain Transfer Multiple Kernel Learning
(DTMKL-f) (Duan, Tsang, and Xu 2012).

We evaluate all the methods by empirically search-
ing the parameter space, and the best results are re-
ported. For SVM-st, SVM-t, DTMKL-f and KMM, we
choose C ∈ {0.001, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}.
For Fred-st, Fred-t and TFMKL, β is searched in the range
[10−7, 101]. For DTMKL-f, we search θ, λ and ζ in the range
[10−2, 102]. The parameters λs, λt and θ in TFMKL are
searched in the range [10−1, 101]. Across the experiments,
TFMKL is found to be robust to these parameters. Base ker-
nels are predetermined as: linear kernel, polynomial kernels
with six degrees (i.e., 1.5,1.6,...,2.0) and Gaussian kernels
with six bandwidths (i.e., 0.0001, 0.001, 0.01, 0.1, 1, 10).
The comparative methods (except TFMKL and DTMKL-f)
are evaluated with these 13 base kernels respectively and the
best results are reported.

Figure 1: Synthetic example.

Synthetic Example

We construct a synthetic example to illustrate the noise-
suppression power of TFMKL in semi-supervised domain
adaptation, shown in Figure 1. The two-dimensional syn-
thetic data violates the cluster assumption where multi-
variate Gaussian noise with variance σ = 0.01 is added.
TFMKL is compared with the semi-supervised DTMKL-f,
as well as the standard SVM-st and Fred-st. For each class,
3 labeled target samples are selected. We conduct 50 ran-
dom selections and the average classification results on the
other unlabeled target data are reported in Table 1. As can
be seen, DTMKL-f and TFMKL outperform SVM-st and
Fred-st due to the exploration of distribution inconsistency.
Nevertheless, although DTMKL-f also uses unlabeled target
points during classifier learning, it gains limited discrimina-
tive information from these noisy data. By contrast, TFMKL
provides superior robustness and accuracy, demonstrating its
effectiveness in noise resiliency and knowledge transfer.

Table 1: Classification accuracy and standard error.
SVM-st Fred-st DTMKL-f TFMKL

87.86±0.02 90.95±0.01 91.07±0.01 96.02 ±0.11

Cross-Domain Object Recognition

Data Preparation Amazon, DSLR, Webcam and Caltech-
256 are four benchmark databases widely used for visual
domain adaptation evaluation (Gong et al. 2012). The 10
classes common to these four image databases are ex-
tracted, yielding 2,533 images in total. Each database is
regarded as a domain and 12 cross-domain image data
sets are constructed: A→D, A→W, A→C, D→A, D→W,
D→C,...,C→W. SURF features are extracted and quantized
to 800-bin histograms with the codebook trained from a sub-
set of Amazon images.

Results of Visual Object Recognition Following (Hoff-
man et al. 2014): the source data contains 20 examples per
class randomly selected from Amazon source (8 from other
source domains); the labeled target data contains 3 labeled
examples per class from target domain. Gaussian kernel
with the bandwidth 0.001 is employed as outside kernel in
Fredholm integral. The averaged classification results on the
other unlabeled target data over 20 random splits are shown
in Table 2 and some observations can be drawn.

First, SVM-st (or Fred-st) shows higher accuracies than
SVM-t (or Fred-t) on A→C, D→W, D→C, W→D, W→C
and C→A. The possible explanation is that under the fol-
lowing two cases, direct involving the source data may be
helpful for recognition in the target domain: a) the two do-
mains have some similarities and the distributions may over-
lap between each other, e.g., DSLR and Webcam, Amazon
and Caltech-256; b) the target domain contains relatively
rich images and has an extensive distribution in the feature
space, e.g., Caltech-256. Second, KMM, GFK, MMDT and
DTMKL-f generally outperform SVM-st and SVM-t, veri-
fying the advantage of bridging the gap between domains
in domain adaptation. Nevertheless, their results are slightly
worse than those of Fred-st and Fred-t. The reason is that
noise suppression is exactly required in these challenging vi-
sual recognition tasks which contain a great number of noisy
images. However, SVM, 1NN and SVR, which are the cus-
tomized classifiers of these transfer methods, show their lim-
itation in noise suppression. Third, TFMKL performs im-
pressively better than all other methods on most of the data
sets (8 out of 12). The average accuracy of TFMKL on the
12 data sets is 57.0%, equivalent to a 4.1% improvement
compared to the most competitive Fred-st. Note that Fred-st
yields higher accuracies than TFMKL on D→W and W→D,
since the two domains are significantly similar. These results
show the effectiveness and the robustness of TFMKL, in-
dicating it can successfully minimize distribution mismatch
and make confident predictions.

Cross-Domain Text Classification

Data Preparation 20-Newsgroups is a benchmark text
corpora organized in a hierarchical structure with differ-
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Table 2: Classification accuracy and standard error on the 12 cross-domain object categorization data sets. The best recognition
rates are in red and bold font. The second best recognition rates are in blue and italics font.

Data Set Standard Learning Transfer Learning
SVM-st SVM-t Fred-st Fred-t DTMKL-f MMDT KMM GFK TFMKL

A→D 45.6±0.7 55.9±0.8 46.4±0.8 58.2±0.9 46.4±0.7 56.7±1.3 49.0±0.7 50.7±0.8 62.1±0.9

A→W 46.3±0.7 62.4±0.9 50.3±0.9 69.2±1.1 48.6±0.8 64.6±1.2 47.4±0.9 58.6±1.0 69.8±0.9

A→C 39.8±0.3 32.0±0.8 39.0±0.4 35.3±0.9 40.5±0.4 36.4±0.8 40.8±0.3 36.0±0.5 43.6±0.6

D→A 41.6±0.4 45.7±0.9 51.5±0.5 51.7±0.8 42.6±0.4 46.9±1.0 42.6±0.4 45.7±0.6 52.9±0.7

D→W 77.4±0.6 62.1±0.8 82.4±0.3 65.4±0.8 76.1±0.5 74.1±0.8 78.5±0.6 76.5±0.5 77.8±0.6
D→C 35.9±0.4 31.7±0.6 37.7±0.4 35.2±0.8 37.5±0.5 34.1±0.8 36.9±0.4 32.9±0.5 37.9±0.4

W→A 43.4±0.3 45.6±0.7 49.5±0.5 52.3±0.7 45.3±0.4 47.7±0.9 44.4±0.3 44.1±0.4 54.4±0.4

W→D 69.5±0.8 55.1±0.8 73.2±0.6 58.2±0.8 69.9±1.1 67.0±1.1 70.4±0.8 70.5±0.7 67.7±0.9
W→C 36.4±0.4 30.4±0.7 37.5±0.3 34.6±0.9 37.8±0.4 32.2±0.8 37.6±0.4 31.1±0.6 36.1±0.8
C→A 46.9±0.6 45.3±0.9 52.1±0.6 49.9±1.0 49.5±0.9 49.4±0.8 48.0±0.6 44.7±0.8 54.2±0.9

C→D 52.0±1.0 55.8±0.9 55.7±0.9 57.2±1.1 53.1±0.9 56.5±0.9 53.0±1.0 57.7±1.1 59.2±1.1

C→W 53.6±0.9 60.3±1.0 60.6±1.2 62.0±1.1 55.4±1.1 63.8±1.1 54.6±0.9 63.7±0.8 68.2±0.9

Mean 49.0±0.6 48.5±0.8 52.9±0.6 52.3±0.8 50.2±0.7 52.5±1.0 50.3±0.6 51.0±0.7 57.0±0.8

Figure 2: Classification accuracy and standard error: (a) 20-Newsgroups with s = 5; (b) 20-Newsgroups with s = 10.

ent categories and subcategories (Pan et al. 2011). Data
from different subcategories under the same category is re-
lated, making the corpora well-suited for constructing cross-
domain data sets. As in (Duan, Tsang, and Xu 2012), the
four largest main categories in 20-Newsgroups (i.e., comp,
rec, sci and talk) are selected to construct the following six
cross-domain data sets: comp vs rec, comp vs sci, comp vs
talk, rec vs sci, rec vs talk and sci vs talk.

Results of Text Classification Following the setup in
(Duan, Tsang, and Xu 2012): the source data contains all
the labeled samples in source domain; the labeled target data
contains 2s labeled examples (s positive and s negative sam-
ples) randomly selected from target domain and the unla-
beled target data contains the remaining unlabeled examples
for training and testing. Linear kernel is used as outside ker-
nel. The classification results are shown in Figure 2 by av-
eraging over 5 random splits with s = 5 or s = 10 and we
have the following observations. (1) The supervised and the
semi-supervised transfer methods (MMDT and DTMKL-f)
are better than the unsupervised methods (KMM and GFK)
in terms of accuracy, verifying the effectiveness of utilizing
labeled target data. (2) MMDT and DTMKL-f generally out-
perform the standard SVM-st, SVM-t, Fred-st and Fred-t on
all the data sets except sci vs talk, which validates the neces-
sity of domain adaptation. As can be seen, SVM-t (or Fred-t)
achieves higher accuracy than SVM-st (or Fred-st) on sci vs
talk. It means that the two domains have significantly varied

distributions, which challenges the existing transfer meth-
ods. (3) TFMKL performs consistently better than all other
methods, especially when s = 5. These results illustrate the
superiority of TFMKL in handing multiple difficult cases
(e.g., significantly varied distributions and a small amount
of labeled target data) for domain adaptation.

Conclusion
In this paper, we have proposed a novel Transfer Fred-
holm Multiple Kernel Learning (TFMKL) approach to in-
troduce a new paradigm in semi-supervised domain adapta-
tion. Specifically, TFMKL harnesses unlabeled target sam-
ples in both the alignment of distributions and the adaptation
of predictive models. Such a paradigm is of great impor-
tance in tackling challenging cross-domain problems, since
it possesses the following advantages: 1) noise resiliency re-
sulting from a good approximation to the “true” data space;
2) capacity of propagating complex knowledge by minimiz-
ing distribution difference; 3) flexibility due to the explo-
ration of a unified RKHS from multiple base kernels. For the
convergence guarantee, we propose a simple but effective
optimization procedure based on the differentiability proof.
Comprehensive experimental results validate the advantages
of the proposed method.
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