
Riemannian Submanifold Tracking
on Low-Rank Algebraic Variety

Qian Li
Chinese Academy of Sciences

Beijing, China
qianli.charlene@gmail.com

Zhichao Wang∗
Tsinghua University

Beijing, China
wzchary@gmail.com

Abstract

Matrix recovery aims to learn a low-rank structure from high
dimensional data, which arises in numerous learning applica-
tions. As a popular heuristic to matrix recovery, convex re-
laxation involves iterative calling of singular value decom-
position (SVD). Riemannian optimization based method can
alleviate such expensive cost in SVD for improved scalabil-
ity, which however is usually degraded by the unknown rank.
This paper proposes a novel algorithm RIST that exploits the
algebraic variety of low-rank manifold for matrix recovery.
Particularly, RIST utilizes an efficient scheme that automat-
ically estimate the potential rank on the real algebraic vari-
ety and tracks the favorable Riemannian submanifold. More-
over, RIST utilizes the second-order geometric characteriza-
tion and achieves provable superlinear convergence, which is
superior to the linear convergence of most existing methods.
Extensive comparison experiments demonstrate the accuracy
and efficiency of RIST algorithm.

Introduction

Matrix recovery is becoming a fundamental problem arising
in many applications ranging from machine learning, data
mining to computer vision (Vandereycken 2013; Liu et al.
2011; Candès et al. 2011). In particularly, low-rank matrix
recovery decomposes a possibly noisy data Z into a low-
rank component X and a sparse component E, and this can
be formalized as an optimization problem:

min
X,E

: rank(X) + λΥ(E) s.t. Z = A(X) + B(E) (1)

where rank(·) encourages variable X to be low-rank, Υ(·)
refers to a non-smooth regularizer and λ is the regulariza-
tion parameter. Both A(·) and B(·) are linear operators de-
termined by applications (Candès et al. 2011; Candès and
Recht 2009; Recht 2011).

Early attempts adopt the convex relaxation to make the
non-convex low-rank matrix recovery tractable (e.g., the
trace norm as the convex surrogates for the rank function),
such as EALM (Lin, Chen, and Ma 2010), IALM (Lin,
Chen, and Ma 2010) and LSADM (Goldfarb, Ma, and
Scheinberg 2013). Above algorithms are greatly influenced
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by the cost of iterative calling of singular value decom-
position (SVD) or truncated SVD (Bouwmans and Za-
hzah 2014). To reduce this cost, many algorithms trans-
form the problem into a convex programming on the pos-
itive semi-definite matrices and use the approximate SDP
solver (Hazan 2008; Jaggi, Sulovsk, and others 2010). How-
ever, these algorithms either converge slowly (Wang et al.
2014; Jaggi 2013) or are memory inefficient on large-scale
problems (Laue 2012; Tan et al. 2014). More significantly,
these algorithms resolve the convex-relaxed problem of low-
rank matrix recovery instead of the original non-convex
one, which may produce the solutions that seriously deviate
from the true ones (Papamakarios, Panagakis, and Zafeiriou
2011).

An alternative heuristic resorts to Riemannian optimiza-
tion by exploiting the smooth geometry for optimum search-
ing, which has shown superior scalability than the con-
vex relaxation methods (Vandereycken 2013; Candès et al.
2011). Most existing Riemannian optimization based algo-
rithms differ in their specific choice of Riemannian mani-
fold. For instance, RTRMC (Boumal and Absil 2011) and
Lingo (Li et al. 2015) constrain the searching space over
Grassmannian manifolds after adopting matrix factorization.
RP (Tan et al. 2014), LRGeomCG (Vandereycken 2013) and
ScGrassMC (Candès et al. 2011)) exploit the rank constraint
as the fixed-rank matrix manifold and directly optimize the
matrix recovery problem via Riemannian theory. Though
most Riemannian optimization based algorithms show su-
perior performance than classical heuristics on numerical
experiments, two main limitations still exist. First, the rank
of the matrix to be recovered determines the geometry of
Riemannian manifold, which is usually unknown and non-
trivial to specify. Moreover, most Riemannian optimization
approaches establish the linear convergence rate at best. In
addition, as Riemannian manifold is open without bound-
ary when the rank is fixed, this convergence analysis may be
limited due to the neglect of manifold boundary (Schneider
and Uschmajew 2015; Agarwal, Negahban, and Wainwright
2010; Yan et al. 2015).

To address above issues, this paper proposes an effec-
tive matrix recovery solver named Riemannian Submanifold
Tracking (RIST), which optimizes on the closure of fixed-
rank matrix manifolds and searches for the optimal solution
with the second-order information of Riemannian geometry.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2196



The main contributions of this work are as follows:
• Rather than using unbounded manifolds, RIST exploits

the searching space over the real-algebraic variety that
is closed with boundary. Theoretical analysis proves that
RIST achieves a super-linear convergence rate, which is
superior to the linear convergence rate of most state-of-
the-art methods.

• By tracking the submanifold of real-algebraic variety, the
rank can be automatically estimated, and this alleviates
the difficulty of rank estimation in most existing fixed-
rank matrix manifolds.

• RIST utilizes the second-order geometric characterization
and optimizes over the submanifold of the real-algebraic
variety, which benefits for achieving an accurate optimum
with fast convergence. Numerical experiments on the task
of Robust PCA and matrix completion also verify the ef-
fectiveness of RIST algorithm.

Preliminaries and Notations

Riemannian Manifolds can be considered as low dimen-
sional smooth surfaces embedded in a higher dimensional
Euclidean space. Given a positive integer k, the fixed-rank
matrix manifold is denoted as
Mk = {X ∈ R

m×n : rank(X) = k}
= {Udiag(σ)VT : U ∈ Stmk ,V ∈ Stnk , ‖σ‖0 = k}

(2)

where Stmk = {U ∈ R
m×k : UTU = I} specifies the

Stiefel manifold of m×k semi-orthogonal matrices. The set
Mk is a submanifold of dimension (m+n−k)k embedded
in R

m×n, and its tangent space at X ∈ Mk is given by

TXMk =

{
[UU⊥]

[
A B
C 0

]
[VV⊥]T

}
(3)

where A ∈ R
k×k, B ∈ R

k×(n−k), C ∈ R
(m−k)×k, and 0 ∈

R
(m−k)×(n−k). Given a smooth function f on manifold, its

Riemannian gradient grad f(X) is given as the orthogonal
projection of the Euclidean gradient ∇f(X) onto the tangent
space TXMk at X. Let PU = UUT , PV = VVT , the
orthogonal projection is computed as

PTXMk
(B) = {PUBPV + P⊥UBPV + PUBP⊥V} (4)

The Riemannian gradient grad f(X) satisfies Eq. (5):

grad f(X) = PTXMk
(∇f(X)) (5)

For any X = UΣVT ∈ Mk and ξ ∈ TXMk, Riemannian
Hessian in the direction of tangent vector ξ satisfies

Hessf(X) [ξ] =PUξPV + P⊥
U (ξ +∇f(X)VpΣ

−1VT )PV

+ PU(ξ +UΣ−1UT
p ∇f(X))PV

(6)

where UT
p U = 0 and VT

p V = 0.
The real-algebraic variety M≤k specifies the set of ma-

trices with rank less than k, which can be also considered as
the closure of fixed-rank matrix manifolds:

M≤k ={X ∈ R
m×n : rank(X) ≤ k}

=M1 ∪M2 ∪ · · · ∪Mk
(7)

Suppose that U = ran(X) and V = ran(XT ), the tangent
cone with respect to M≤k is as follows

TXM≤k = TXMk−κ ⊕ {Ξκ ∈ U⊥ ⊗ V⊥} (8)

Noted that Ξκ is the best rank-κ approximation of ∇f(X)−
PTXMk−κ

(∇f(X)). Then the Riemannian gradient can be
computed by

grad f(X) = PTXMk−κ
(∇f(X)) + Ξκ (9)

Given the tangent vector ξ defining a direction over the tan-
gent space, retraction operator smoothly maps the element
from tangent spaces to manifold as follows:

RM : ξ → R(X, ξ) = PM(X+ ξ) =

k∑
i=1

σiuiv
T
i (10)

It is worth noting that the projection PM(·) is the rank-k
approximation operation. Both ui and vi are the (ordered)
singular values and vectors from X + ξ, and for references
therein please refer to (Schneider and Uschmajew 2015).

RIST Algorithm

This section describes the RIST algorithm for non-convex
matrix recovery in detail, which exploits the geometry of
real-algebraic variety and adopts a trust-region method for
optimization. Moreover, this section also gives theoretical
justification on the superlinear convergence of RIST algo-
rithm.

Riemannian Submanifold Tracking

RIST algorithm reformulates the non-convex matrix recov-
ery of problem (1) as a Riemannian optimization over the
searching space of real-algebraic variety M≤k as follows:

min
X,E

: f(X,E) + λΥ(E) s.t. X ∈ M≤k, (11)

Let f(X,E) = ‖A(X) + B(E)− Z‖2F . The following part
describes the details of RIST algorithm for solving prob-
lem (11).

The rank determines the real-algebraic variety M≤k in
some sense. Most previous approaches initialize the rank
empirically or resort to full SVD, which is inaccurate
and expensive for large-scale problem. Motivated by Ran-
domSVD (Halko, Martinsson, and Tropp 2011), this pa-
per proposes a simple and effective schema to initialize the
rank through randomized partial matrix decompositions, as
shown in Algorithm 1. Given the observed matrix Z, only
few θ ≥ 1 singular values are computed sequentially by us-
ing a random matrix Θ. Algorithm 1 finally outputs the κ as
the initial rank until the following condition is satisfied:

σκ∑κ
i=1 σi

≤ η, 0 ≤ η ≤ 0.05 (12)

where σi ∈ σ = {σ1, σ2, · · · , σi, σκ} are arranged in de-
scending order. Moreover, the condition (12) is also signif-
icant for updating the rank by summing up a dynamic inte-
ger κ, which tracks the submanifold Mk within its closure
M≤k.
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Algorithm 1 Rank Initialization
Input: observed matrix Z ∈ R

m×n, θ ≥ 1.
Output: κ
1: U = 0 ∈ R

m×θ, Σ = 0 ∈ R
θ×θ, V = 0 ∈ R

n×θ;
2: repeat
3: Generate standard Guassian matrix Θ ∈ R

n×θ.
4: Compute the random SVD by calling:

[Uθ,Σθ,Vθ] = RandomSVD(Z−UΣVT , θ,Θ)
5: U ← [U Σθ], Σ ← [Σ Σθ], V ← [V Vθ].
6: Terminate if singular values in diag(Σ) satisfies

Eq. (12); otherwise let κ = κ+ θ.
7: until convergence
8: return κ.

To accelerate the convergence, RIST implements a warm-
start strategy over M≤k to yield initial point (X∗,E∗) for a
series of second-order Riemannian subproblems over fixed-
rank manifold Mk. To update X as in Algorithm 2, we fix
E = Et and minimize a local model of f(X,Et) with re-
spect to X. Given the search direction ξ = grad f(X,Et)
and the step size α obtained by Armijo rule, X∗ can be up-
dated by smooth line-search Riemannian algorithm as fol-
lows:

f(Xt−1,Et)− f(R(Xt,−αtξt),Et) ≥ αt〈ξt, ξt〉 (13)

For updating E, RIST fixes X and solves the objective func-
tion (11). The potential optimum E may vary. For Robust
PCA (RPCA) (Candès et al. 2011), the optimum E∗ satis-
fies

E∗ = S[Z−A(X0)] (14)

Algorithm 2 RIST: Riemann Submanifold Tracking
Input: estimated rank κ
Output: X, E
1: Initialize X1 = 0, E1 = 0, k = κ;
2: for t = 1, 2, . . . do
3: Compute the gradf(Xt,Et) on M≤k by Eq. (9).
4: Update X∗ = R(Xt, αtgrad f(Xt,Et)) on M≤k by

Eq. (10).
5: Compute E∗ by Eq. (14).
6: Let k = k + κ.
7: Use (X∗,E∗) as warm-start point on Mk and call:

(Xt+1,Et+1) = ROM(X∗,E∗, k)
8: Let σ = diag(Xt+1) and update κ by Eq. (12).
9: end for

10: return X and E.

Submanifold Optimization over Mk

After the initial points (X∗,E∗) are computed, RIST calls
an accurate second-order Riemannian optimization (ROM)
over Mk submanifold. We fix E = Ej as in Algorithm 3
of ROM. The second-order approximation over the tangent
space is

m(X,Ej ; δ) = f(X,Ej) + 〈grad f(X,Ej), δ〉+
1

2
〈Hessf(X,Ej) [δ] , δ〉

(15)

where δ ∈ TXMk, grad f(X,Ej) and Hessf(X,Ej) [δ]
are yielded by equation (5) and (6) respectively. The low-
rank problem (11) with respect to X can be reformulated as
follows:

min
δ

: m(X,Ej ; δ) + Υ(Ej)s.t. (X, δ) ∈ TXS, X ∈ Mk

(16)

It is worth mentioning that the tangent bundle TXS is as
follows:

TXS = {(X, δ)|X ∈ Mk, δ ∈ TXMk, 〈δ, δ〉 ≤ Δ} (17)

where Δ > 0 is called the trust-region radius determining
how far the movement can be made. RIST updates Δ itera-
tively by measuring the quotient as follows:

φj =
f(Xj)− f(RM(Xj))

m(Xj ;0))−m(RM(Xj); δj)
(18)

Depending on the value of φj , the new iterate Xj will
be accepted or rejected. When φj is exceedingly small by
φj < μ1, the step-length and direction are not appropriate,
the Xj should be rejected and the φj is reduced by a factor
d1 < 1. Moreover, the φj ∈ (μ1, μ2) demonstrates a quite
appropriate model producing the acceptable Xj and radius
φj . A third case is that the model is relatively appropriate
by φj > μ2, thus we accept Xj and enlarge φ by a fac-
tor d2 > 1. After yielding X, the updating process for E is
similar to the Step 5 in Algorithm 2.

Algorithm 3 ROM: Riemann Optimization over Mk

Input: k, Δmax > 0, Δ0 ∈ (0,Δmax), X∗, E∗.
Output: X, E
1: Initialize X0 = X∗, E0 = E∗, μ1 = 0.25, μ2 = 0.75,

d1 = 0.5, d2 = 3.
2: for j = 0, 1, . . . do
3: Compute G = grad f(Xj) over Mk by Eq. (5).
4: Let H = Hess f(Xj)[G] via (6) and compute

δj =

⎧⎪⎨
⎪⎩

− ‖G‖2F
〈H,G〉G 〈H,G〉 > 0

−G 〈H,G〉 ≤ 0

5: Update Xj+1 = R (Xj , βjδj) on Mk by Eq. (10).
6: Compute φj by Eq. (18).
7: if φj < μ1 then
8: Δj+1 = d1Δj

9: Xj+1 = Xj

10: else if μ1 < φj < μ2 then
11: Δj+1 = Δj

12: else
13: Δj+1 = min(d2Δj ,Δmax)
14: end if
15: Compute Ej+1 via Eq. (14).
16: end for
17: return X and E.
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Complexity Analysis

From above description, we can see that the complexity of
RIST algorithm is dominated by the computation of Rie-
mannian gradient, Riemannian Hessian and the retraction
operator. Both Riemannian gradient and Hessian involves
computing matrix-vector product and requires O(mnk)
flops. Rank estimation and retraction operator are im-
plemented by Randomized SVD (Halko, Martinsson, and
Tropp 2011) and PROPACK (Larsen 2004) respectively,
both with complexity O(mnk). Overall, RIST consumes
a computational complexity of O(mnk). It is a significant
complexity reduction since the estimated rank k is typically
very small compared to the problem size m × n. More sig-
nificantly, the above complexity will reduce to O((m+n)k)
when the matrix is sufficiently sparse.

Convergence Analysis

The optimum for E can either be zero in MC or obtained by
the closed-form in RPCA, this section considers the convex
function f with respect to X, namely f(X).
Lemma 1. (Absil, Mahony, and Sepulchre 2009) The se-
quence {Xt} generated by Algorithm 2 converges to the sta-
tionary point X∗ with grad f(X∗) = 0.
Theorem 1. Suppose δ∗ ∈ TXj

Mk is the unique solution
for the subproblem (15) at point Xj and the first-order nec-
essary condition gradf(Xj) + Hessf(Xj)[δ∗] = 0 is sat-
isfied. Assume that the Hessf(Xj) is positive definite, Algo-
rithm 3 has q-superlinear convergence.

Proof. Suppose the γ is the unique minimizing geodesic sat-
isfying γ(0) = Xj and γ(1) = Xj+1. Let P 1←0

γ denote the
parallel translator along γ by sending the vector of TXjMk

to the vector of TXj+1Mk and γ′(0) = δ∗.

P 0←1
γ gradf(Xj+1) = gradf(Xj) +

∫ 1

0

d

dτ
P 0←τ
γ ξdτ

=

∫ 1

0

(
d

dτ
P 0←τ
γ gradf(Xj)− Hessf(Xj)[δ∗]

)
dτ

Considering the fact that the parallel translation
is an isometry, we have

∥∥P0←1
γ gradf(Xj+1)

∥∥ =
‖gradf(Xj+1)‖. Also we have ‖gradf(Xj+1)‖

=

∥∥∥∥
∫ 1

0

(P0←τ
γ Hessf(γ)

[
γ′]− Hessf(Xj)[δ∗]

)
dτ

∥∥∥∥
� ‖δ∗‖

∫ 1

0

(‖P 0←τ
γ Hessf(γ)P τ←0

γ − Hessf(γ)P τ←0
γ ‖

+ ‖Hessf(γ)‖‖P τ←0
γ − I‖+ ‖Hessf(γ)− Hessf(Xj)‖)dτ

≤ c0‖δ∗‖2(‖X3
∞‖+ c1)

where γ is a function of τ , namely, γ = γ(τ).
Since δ∗ satisfies the first order necessary condition

gradf(Xj) + Hessf(Xj)[δ∗] = 0, then

δ∗ = −U0(U
T
0 [Hessf(Xj)]U0)

−1UT
0 gradf(Xj)

where U0 is an arbitrary orthonormal basis for TXS (Sun,
Qu, and Wright 2015). Therefore, it follows that

‖gradf(Xj+1)‖ ≤ o(‖X‖3∞)‖gradf(Xj)‖2 (19)

Applying the Taylors theorem to f(Xj) yields

‖gradf(Xj)‖ =
1

2
Hessf(X∗)(Xj−X∗)2+o(‖Xj−X∗‖2)

Let λmin and λmax be the eigenvalues of Hessf(X∗), then
there exist c2 < λmin and c3 > λmax such that

c2 ‖X∗ −Xj‖ ≤ ‖grad f(Xj)‖ ≤ c3 ‖X∗ −Xj‖ (20)

Combining (19) and (20) gives c2 ‖X∗ −Xj+1‖ �
‖gradf(Xj+1)‖ � o(‖X‖3∞)c23 ‖X∗ −Xj‖2

Consequently, it can be deduced that ‖X∗ −Xj+1‖ ≤
q ‖X∗ −Xj‖ where q = o(‖X‖3∞)c23 ‖Xj −X∗‖ /c2.

Experiments

In this section, the tasks of Robust PCA and matrix comple-
tion are carried out to evaluate the proposed RIST algorithm.
All comparison algorithms are implemented in Matlab and
tested on a desktop computer with a 3.20 GHz CPU and 4.00
GB of memory.

Experiments on Matrix Completion

This section chooses five state-of-the-art manifold related
completion algorithms including RTRMC (Boumal and Ab-
sil 2011), qGeom (Mishra, Apuroop, and Sepulchre 2012),
RP (Tan et al. 2014), LRGeom (Vandereycken 2013) and
ScGrass (Ngo and Saad 2012) for comparison.

Synthetic Experiments The low-rank matrix is generated
X = LRT ∈ R

m×m of rank k, where every entry in
the matrix L or R follows the standard Gaussian distribu-
tion independently. We define the test set Ω by sampling
k(2m − k)ρ entries from X uniformly and the set size is
|Ω| = k(2m− k)ρ. Note that m = 10000 and ρ is the over-
sampling ratio that determines the number of entries that are
observed. The parameters ρ and η of RIST are set as 1.5 and
0.04, respectively. We use the default parameters values for
the comparison methods. The Mean Squared Error (MSE)
is used as the comparison metric for synthetic experiments:
MSE = ‖PΩ(X̃) − PΩ(X)‖2F /|Ω|. For comparing the con-
vergence of RIST with several baseline methods, we set rank
k = 15, 25 and 35, respectively.

Fig. 1(a) first illustrates the numerical behavior of Algo-
rithm 2 with respect to rank estimation. The rank estimated
by RIST is 29, 103 and 148 receptively, which is approx-
imate to the ground-truth rank setting (e.g., 30, 100, 150).
More importantly, RIST takes less than six iterations to ac-
curately estimate the ground-truth rank. Consequently, it can
be concluded that RIST can accurately estimate the ground-
truth rank with small number of iterations. In addition, per-
formance evaluations in terms of MSE versus the run time
are shown in Fig. 1(b), Fig. 1(c) and Fig. 1(d). RTRMC,
qGeom, LRGeom and ScGrass optimize over fixed-rank
manifold, which all need to predefine the rank in advance.
We set the rank parameter of these comparison methods
as the ground-truth, namely, 15, 25 and 35. It can be seen
that RTRMC converges the slowest, while RP is faster than
RTRMC, ScGrass, qGeom and LRGeom. Note that the RIST
algorithm converges faster than other methods.
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Figure 1: Performance of matrix completion methods on
synthetic experiments: (a) shows the number of iterations
required for estimating the rank. (b), (c) and (d) describe the
results of MSE versus time.
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Figure 2: Performance of comparison methods on Jester-all
and Movie-10M.

Collaborative Filtering We then test the proposed RIST
algorithm on the real-world collaborative filtering task. Two
collaborative filter datasets: the Jester-all dataset (Goldberg
et al. 2001) and Movie-10M dataset (Herlocker et al. 1999)
are used for the collaborative filtering. Among them, the
Jester-all contains 4.1×106 ratings for 100 jokes from 73421
users, while the Movie-10M contains 107 ratings given by
69878 users on 10677 movies. The Normalized Mean Ab-
solute Error (NMAE) is used as the comparison metric:

NMAE =
∑

i,j∈Ω |X̃ij−Xij |
(rmax−rmin)|Ω| , where rmax and rmin are the

upper and the lower bounds for the ratings. 50% of ratings is
randomly selected as the test set Ω with the size defined by
|Ω|. The estimated rank of Jester-all and Movie-10M by the
proposed RIST algorithm is 19 and 16. For fair comparison,
the same rank settings are assumed for ScGrass, LRGeom,

qGeom, RTRMC and RP. The parameters η of RIST is 0.05.
We use the default parameters values for other methods.

The averaged results of 20 independent experiments are
reported in Fig. 2. RIST achieves the best NMAE values
with least computational time, when compared with other
methods. Noted that qGeom, RP and ScGrass perform com-
parable NMAE values with RIST on Jester-all and Movie-
10M, but they consume more time to obtain such satisfac-
tory results. These empirical results indicate that RIST is
more efficient than competing algorithms while achieving
the better or comparable NMAE for collaborative filtering.

Experiments on Robust PCA

For a systematic evaluation, we compare the proposed
RIST algorithm with three popular algorithms for Robust
PCA problem, including EALM (Lin, Chen, and Ma 2010),
IALM (Lin, Chen, and Ma 2010) and LSADM (Goldfarb,
Ma, and Scheinberg 2013).
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Figure 3: Performance of Robust PCA methods on synthetic
experiments.

Synthetic Experiments Each synthetic data is character-
ized by the sum of low-rank matrix X and sparse matrix E.
For the sparse matrix E, the percentage of nonzero entries
are both set as 10%. Those non-zero entries are generated
from a uniform distribution with the range (−100, 100). The
Relative Recovery Error (RRE) and time are used to mea-
sure the matrix recovery accuracy and efficiency: RRE =
‖X̃−X‖F /‖X‖F .

Performance evaluations in terms of RRE and compu-
tational time are shown in Figure 3, where m is set as
300×300 and the rank is defined as the percentage of matrix
dimension. Note that RIST with different η generally con-
verges faster than other three methods while LSADM per-

2200



Table 1: Performance evaluation on synthetic data in terms of RRE and time.

size rank EALM IALM LSADM RIST (η = 0.05) RIST (η = 0.04)

Time RRE Time RRE Time RRE Time RRE Time RRE

500

1% 11.0 3.4e-7 7.1 8.9e-8 49.7 8.4e-7 5.1 6.6e-8 5.0 6.4e-8
2% 13.5 1.4e-7 8.7 5.6e-8 72.9 7.6e-7 8.2 4.4e-8 8.3 4.3e-8
5% 13.8 5.1e-7 10.5 4.6e-6 77.6 2.7e-7 9.4 1.9e-7 9.8 1.7e-7

1000

1% 51.3 6.2e-7 19.5 9.1e-7 87.8 8.7e-7 17.0 7.4e-7 16.8 7.3e-7
2% 51.8 1.0e-6 28.0 9.2e-7 92.9 5.5e-6 27.1 3.7e-7 26.8 3.5e-7
5% 62.1 9.8e-7 30.6 3.3e-7 141.4 6.9e-7 30.3 2.8e-8 29.1 2.7e-8

forms the worst under three rank settings. Additionally, from
larger matrices of 500 × 500 and 1000 × 1000 in Table 1,
RIST outperforms all other three methods with fast conver-
gence and comparable accuracy, both under the scenario of
η = 0.04 and η = 0.05. IALM improves the convergence
speed of EALM but achieves worse RRE, since the partial
SVD in IALM usually produce approximate solutions. In
contrast, LSADM consumes more running time to achieve
the comparable RRE values with other methods.

Figure 4: Subway Station and Highway video frames and
their separated backgrounds and foregrounds.

Background Modeling Background modeling is an ac-
tive application of RPCA problem, where the background
sequence is modeled by a low-rank component X chang-
ing over time and the moving foreground objects E consti-
tute the correlated sparse noises. Two surveillance videos in-
cluding the Subway Station frames and Highway frames are
used. Specifically, 195 frames with the resolution 160× 130
are extracted from Subway Station frames and 90 frames
with the resolution 320 × 240 are extracted from the High-
way frames.

From Fig. 4 it is evident that IALM, EALM and LSADM

fail to completely remove the moving shadows marked by
the red circles. Especially, LSADM is affected by the vari-
ation of shadow and produces some white parts after the
objects moving. In contrast, RIST is robust to the shadow
changes and provides cleaner backgrounds without any re-
maining shadows. Moreover, the moving objects of Subway
Station images separated by EALM and LSADM still in-
volve some background shadow except human flows and
moving escalators, which verifies that EALM and LSADM
perform poorly than IALM and RIST. RIST algorithm is su-
perior to IALM through more accurately capturing the mov-
ing people and separating the backgrounds.

Conclusion

Though Riemannian optimization based matrix recovery
methods have shown superior scalability over convex relax-
ation methods, they are often degraded by inappropriate rank
estimation in practice. Moreover, due to the neglect of the
manifold boundary, their convergence analysis is not reli-
able. To alleviate these issues, this paper proposes an algo-
rithm RIST that adopts Riemannian optimization to recover
the matrix over low-rank algebraic variety. RIST represents
an effective rank estimation strategy and utilizes the second-
order geometric characterization, which achieves superlin-
ear convergence rate. Both numerical experiments and theo-
retical analysis validate the effectiveness of RIST.
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