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Abstract

This paper studies a top-k hierarchical classification problem.
In top-k classification, one is allowed to make k predictions
and no penalty is incurred if at least one of k predictions is
correct. In hierarchical classification, classes form a struc-
tured hierarchy, and misclassification costs depend on the re-
lation between the correct class and the incorrect class in the
hierarchy. Despite that the fact that both top-k classification
and hierarchical classification have gained increasing inter-
ests, the two problems have always been studied separately.
In this paper, we define a top-k hierarchical loss function us-
ing a real world application. We provide the Bayes-optimal
solution that minimizes the expected top-k hierarchical mis-
classification cost. Via numerical experiments, we show that
our solution outperforms two baseline methods that address
only one of the two issues.

Introduction

In top-k classification, one is allowed to make k predictions
and no penalty is incurred if at least one of k predictions is
correct. Top-k classifcation problems have gained increas-
ing interests thanks to the ImageNet Challenge. When the
number of classes is large and their distinctions are ambigu-
ous, allowing multiple guesses is a natural remedy (Gupta,
Bengio, and Weston 2014; Lapin, Hein, and Schiele 2015).
Precision@k also frequently arises in other application ar-
eas including information retrieval and search advertising
(Broder et al. 2007; Usunier, Buffoni, and Gallinari 2009).
The users of such application systems often consider only
the first few results shown in the user interface, and thus the
performance of the system depends on its predication accu-
racy at the top.

Hierarchical classification, in which classes form a struc-
tured hierarchy, is another common form of classifica-
tion problems. For example, in news article categorization,
‘basketball’, ‘soccer’, and ‘baseball’ are the sub-classes of
‘sports’ category. In this case, misclassification costs de-
pend on the relation between the correct class and the in-
correct class in the hierarchy. For example, the cost of clas-
sifying ‘basketball’ news to ’soccer’ may be less costly
than classifying it to ‘international politics’. Hierarchical
classification takes such hierarchical misclassification cost
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into account (Cesa-bianchi et al. 2005). Other examples of
hierarchical classification problems include music, video,
image recognition (Deng et al. 2012), patent categoriza-
tion (Cai and Hofmann 2004; Eisinger et al. 2013), web
content categorization (Dumais and Chen 2000), and gene
function prediction problems (Vens et al. 2008). This lit-
erature has proposed several versions of hierarchical loss
functions, and various classification algorithms (Ramı́rez-
Corona, Sucar, and Morales 2014; Bi and Kwok 2015;
Ramı́rez-Corona, Sucar, and Morales 2016).

Top-k classification and hierarchical classification are not
mutually exclusive problems, which implies the existence
of many application areas in their intersection. Despite this
fact, in the literature the two problems have always been
studied separately. This paper connects these two distinctly
studied areas. We first introduce a top-k hierarchical loss
function, which extends the hierarchical loss function pro-
posed by (Cesa-bianchi et al. 2005) to the top-k setting.
Next, we provide a Bayes-optimal solution that minimizes
the expected top-k hierarchical misclassification cost. Via
numerical experiments, we show that simple extensions of
existing hierarchical classification algorithms yield poor per-
formances in the top-k setting.

This research is motivated by a real world application sys-
tem in a large service enterprise. When engaging on a new
service contract, service firms first develop a project pro-
posal, which includes detailed information about job tasks,
schedules, dependencies, and job positions to deliver the ser-
vice (Oh, Rhodes, and Strong 2016). After signing, firms as-
sign the right experts to the project based on the information
written in the project proposal. In large service enterprises,
labor resource planning is a very complex process, and in-
volves a central planning system (Naveh et al. 2007). One
critical requirement for such a system is the use of a stan-
dard expertise taxonomy that defines employees’ job roles
and specialties. Such expertise taxonomies are hierarchical
(Wei, Varshney, and Wagman 2015).

Staffing professionals are in charge of submitting a re-
source request for a project based on the project proposal.
An interface system can help automate this task. The inter-
face system receives a raw project proposal and creates a
draft resource request. The key part of this conversion would
be tagging the appropriate job role and specialty for each
job position. For example, if the plan includes a position de-
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scribed as “Data Science” in “Big Data” service area, the
system may recommend “Research Scientist: Computer Sci-
ence” as the job role and specialty. The system may show up
to k options in the user interface. Staffing professionals will
then review the recommended options, and submit a con-
firmed request after making necessary changes.

If staffing professionals find a correct job role and spe-
cialty among the recommended options, they can simply
click an accept button. If one of the recommended option has
the correct job role, but an incorrect specialty, then they need
to manually adjust the specialty using a drop-down button.
If all recommendations have incorrect job roles, then they
need to manually select a proper job role, and then choose
a specialty that is dependent on the chosen job role. Here,
the time that the staffing professionals spend during this re-
view process defines the misclassification cost of the rec-
ommender system. If the k recommended options include
the correct correct job role and specialty, no extra cost is in-
curred. If one of the recommended options has the correct
job role, but a wrong specialty, there is some cost (time) to
be incurred. If none of the recommended option has the cor-
rect job role, about twice as much cost (time) is incurred.
Here, the loss function is hierarchical and depends on the
top-k performance.

To the best of our knowledge, our work is the first to
connect the literature on top-k classification (Usunier, Buf-
foni, and Gallinari 2009; Boyd et al. 2012; Swersky et
al. 2012) and the literature on hierarchical classification.
(Cesa-bianchi et al. 2005; Cesa-Bianchi, Gentile, and Zani-
boni 2006; Silla Jr and Freitas 2011; Bi and Kwok 2015;
Ramı́rez-Corona, Sucar, and Morales 2016). Our contribu-
tion is two-folds. First, we define a new loss function, which
extends the hierarchical loss function defined by (Cesa-
bianchi et al. 2005) to the top-k setting. Second, we pro-
vide the Bayes-optimal solution that minimizes the expected
top-k hierarchical misclassification cost. Our solution can be
used as a useful first benchmark method for future research.

Top-k Hierarchical Loss Function
Consider the following classification problem. For a given
input x, one needs to identify the right class y =
(y1, y2, . . . , yD), which is a vector of dimension D, from
a set of classes Y . Each element of the class vector y corre-
sponds to a node in a tree that represents a taxonomy. Thus,
a class y indicates a unique path from the root of the three
to a leaf node, and every leaf node of the tree has the equal
depth of D (with root at depth 0). If this condition is not met,
one can create single child at each sub-level of the original
leaf node so that all final leaf nodes are located at depth D.
The number of classes is the same as the number of leaf
nodes in the tree. Figure 1 is an example class set of size 5
and depth 2. We denote the set of the d-th element of each
class, i.e., nodes at depth d, by Yd, and denote the set of chil-
dren of a node yd by chi(yd) ⊆ Yd+1. Because each node
of the tree has a unique path from the root, if two classes y
and ŷ satisfy yd = ŷd, then ym = ŷm also holds for every
m < d. We denote the set of classes whose d-th element
is yd by path(yd) ⊆ Y . Every input x has a unique correct
class, which we denote by Y (x).
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Figure 1: Example class taxonomy

For a given input x, the classifier selects K classes as the
candidates for Y (x). Suppose that y1, y2, . . ., yK are se-
lected. Then, we define the misclassification loss as

err(y1, . . . , yK , Y (x)) = (1)

min
k

[
D∑

d=1

cd�{ykd �= Yd(x) ∧ ykm = Ym(x),m < d}
]

where cd is a decreasing sequence of non-negative numbers.
The function �{ykd �= Yd(x) ∧ ykm = Ym(x),m < d} indi-
cates the event that yk and Y (x) coincide up to depth d− 1
and deviate at depth d. In other words, the first deviation at
level d incurs a loss of cd, and no additional loss is incurred
at deeper levels. The decreasing property of cd implies that
the penalty is the greatest if the chosen class deviates the
correct class at depth 1, and the cost decreases down to zero
as the number of the matched elements increases. When k
classes are chosen, the misclassification loss is simply the
minimum of the individual misclassification losses.

Recall the motivating example of the expertise classifica-
tion problem. In that example, misclassified job role and spe-
cialty leads staffing professionals spend extra time for man-
ual selection, and the extra time can be seen as the misclassi-
fication cost. No loss is incurred if one of the chosen job role
and specialty is fully correct. Partial loss is incurred if one
of the selection has the correct job role, but an incorrect spe-
cialty. The top-k hierarchical loss function (2) well captures
this cost structure. This loss function extends the hierarchi-
cal loss function of (Cesa-bianchi et al. 2005) to the top-k
setting. The loss function is fairly general, and reduces to a
more conventional loss function if the hierarchical costs cd
meet a certain condition. For example, if cd = 1 for every d,
our error function is the standard top-k 0/1 loss function of
(Lapin, Hein, and Schiele 2015).

Bayes-Optimal Classifier

Suppose that we are given a probability mass function
p(y|x) = Prob(Y (x) = y), which measures the probabil-
ity that y ∈ Y is the correct class for the given input x.
Recall from the tree structure that if two classes y and ŷ sat-
isfy yd = ŷd, then ym = ŷm also holds for every m < d.
Thus, we have Prob(Yd(x) = yd) = Prob(Ym(x) =
ym for every m ≤ d). Now recursively we define

pD(yD|x) = Prob(YD(x) = yD) = p(y|x),
pd(yd|x) = Prob(Yd(x) = yd)
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Table 1: Example class hierarchy and matching probability
y1 y2 p(y|x)

Research Scientist Computer Science 0.25
Research Scientist Electrical Engineering 0.15
Research Scientist Math Science 0.25

Project Manager Analytics Service 0.3
Project Manager Server Service 0.05

=
∑

j∈chi(yd)

pd+1(j|x) for d < D, (2)

which indicates the probability that the d-th element Y (x) is
yd.

Given the probability mass function, the optimal classifier
selects K classes that minimizes the following expected loss
function:

min
y1,...,yK∈Y

EY (x)[err(y1, . . . , yK , Y (x))]. (3)

We denote the optimal set of classes by Y∗(x).
Single Selection Case (K = 1)

Before discussing the general case, we first consider the sin-
gle selection case, i.e., K = 1.
Theorem 1. When K = 1, selecting the y with the maxi-
mum reward

r(y|x) =
D−1∑
d=1

(cd − cd+1)pd(yd|x) + cDPD(yD|x)

is optimal.
If cd = 1 for every d, i.e., when the loss function is

the conventional top-k 0/1 loss function, the Bayes-optimal
classifier simply chooses the K classes with the highest
matching probability p(y|x). The loss cannot be avoided un-
less a chosen class fully coincide with the right class at ev-
ery depth. In contrast, when the loss is reduced if parts of the
class, i.e., some elements of the class, coincide with those of
the right class, the Bayes-optimal classifier may not simply
select the k classes with the highest matching probability.

To elaborate the intuition behind the reward function in
Theorem 1, we provide an example. Table 1 shows an ex-
ample class tree and a probability mass function for a given
input x. In this example, ‘Project Manager: Analytics Ser-
vice’ has the highest matching probability of 0.3. All three
classes whose depth 1 element is ‘Research Scientist’ have
smaller matching probabilities than this class. However, the
probability that ‘Research Scientist’ is the correct job role is
0.65, which is much larger than the probability that ‘Project
Manager’ is the correct job role. Hence, when c2 is much
small compared to c1, i.e., when there is significant time
saving for a partially matched class, the Bayes-optimal clas-
sifier will choose ‘Research Scientist: Computer Science’ or
‘Research Scientist: Math Science’.

The reward function r(y|x) in Theorem 1 reflects such
partial matching rewards. When a certain class y is chosen,

not only its own matching probability, but also the matching
probabilities of other classes that share common elements
with y contribute to the total cost. More specifically, if the
d-th element of the chosen class is yd, the expected error is
reduced by the multiplication of cd − cd+1 and the sum of
the matching probabilities of all classes that has the same
d-th element, i.e., (cd − cd+1)pd(yd|x).
Multiple Selection Case (K > 1)

Next, we consider the multiple selection case, i.e., K > 1.
Note that in the objective function (3) the order between
minimization and expectation cannot be reversed. Thus,
choosing the K labels with the highest rewards r(y|x) as
define in Theorem 1 may not provide the optimal set of
classes. Recall the example in Table 1. Suppose that c2 is
much smaller than c1, and thus ‘Research Scientist: Com-
puter Science’ and ‘Research Scientist: Mathematical Sci-
ence’ have the same maximum rewards r(y|x). If one selects
both of these two classes, the probability of having the cor-
rect job role is only 0.65, which is the same as in the case of
choosing only one. The probability of full matching is 0.5.
In contrast, if one selects only one of the two, and selects
‘Project Manager: Analytics Service’ as the second choice,
the probability of having the correct job role is now 1, and
the probability of full matching also increased to 0.55. The
observation highlights the importance of ensuring the diver-
sity of selected classes.

In this subsection, we derive a dynamic programming al-
gorithm that constructs the correct reward function for the
multiple selection case. To do so, we first transform the loss
function (2) such that minimization can be omitted. Note
that in the original definition, err(y1, y2, . . . , yK , Y ) = cd
implies that ykd−1 = Yd−1 for some k, i.e., at least one class
has the correct depth d− 1 element and that ykd �= Yd−1 for
all k, i.e., no class has the correct depth d element. Thus, the
following holds:

err(y1, y2, . . . , yK , Y )

=
D∑

d=1

cd�{∃k. ykd �= Yd ∧ ∀k. ykd−1 = Yd−1}

=
D∑

d=1

cd
(
�{∃k. ykd−1 = Yd−1} − �{∃k. ykd = Yd}

)
.

This transformation enables us to simplify the expected
loss function as:

EY (x)[err(y1, y2, . . . , yK , Y (x))]

= c1 −
D−1∑
d=1

(cd − cd+1)Prob(∃k. ykd = Yd(x))

−cDProb(∃k. ykD = YD(x)). (4)

In this loss function, a reward of (cd+ cd+1)Prob(∃k. ykd =
Yd(x)) is attained (a cost of that amount is reduced) for
each depth d. This reward is the same as the reward
defined in Theorem 1 except that pd(yd|x) is replaced
with Prob(∃k. ykd = Yd(x)). It is important to note that
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Prob(∃k. ykd = Yd(x)) �= ∑K
k=1 pd(y

k
d |x) unless ykd �= yld

for every k �= l. An inclusion of a class whose depth d
element yd to the choice set reduces the expected loss by
(cd−cd+1)pd(yd|x), but the inclusion of another class which
shares the same d-th element does not provide any further
benefit. Hence, unlike in the single selection case, the re-
ward of selecting a certain class depends on other classes
that are included in the choice set.

In order to obtain the Bayes-optimal classifier, we first
prove a simple theorem that shows the selection priority be-
tween two classes that deviate only at the last depth.

Theorem 2. Suppose that y ∈ Y∗(x). Then, ŷ ∈ Y∗(x)
holds for every ŷ such that yd = ŷd for every d < D and
p(ŷ|x) > p(y|x).

The theorem implies that if two classes deviate only at
the leaf node, the class with a higher matching probability
should always be chosen earlier than the other. Thus, when
assigning the reward of a node yD−1 to its children, one can
safely assign the full reward (cD−1 − cD)pD−1(yD−1|x)
to the single child yD that has the largest probability
pD(yD|x), and assign no rewards to other children.

The following algorithm extends this result, and assigns
the matching rewards at each depth via backward recursion.
Initially, every class gets its depth D matching reward of

Algorithm K-H

1: Input: x, Y , cd, pd(yd|x)
2: Output: r1(y|x) for y ∈ Y
3: Initialize: rD(y|x) ← cDp(y|x) for each y ∈ Y
4: for d = D − 1 to 1 do
5: for each yd ∈ Yd do
6: δd(yd) ← (cd − cd+1)pd(yd|x)
7: y∗(yd) ← argmaxy∈path(yd)

rd+1(y|x)
8: for each y ∈ path(yd) do
9: rd(y|x) ← rd+1(y|x) + δd(yd) if y = y∗(yd)

10: rd(y|x) ← rd+1(y|x) otherwise
11: end for
12: end for
13: end for

cDp(y|x). Then, recursively at each depth d < D, for each
node yd ∈ Yd the matching reward of (cd − cd+1)pd(yd|x)
is fully assigned to a single child that has the highest reward-
to-go rD(y|x), and other children get no additional rewards.

Theorem 3. Selecting K classes with the largest reward
r1(y|x) computed by Algorithm K-H is optimal, and the cor-
responding optimal expected loss is c1 −

∑
y∈Y∗ r1(y|x).

Numerical Experiments

In this section, we perform numerical experiments with
real-world data sets. First, we use the twelve functional
genomics data sets by (Clare and King 2003; Vens et al.
2008) (https://dtai.cs.kuleuven.be/clus/hmcdatasets/). These
data sets contain features of yeast genes and their functional
classes, which form a tree-structured hierarchy. Second, we
use the data collected from the real-world application system
that we discussed in the introduction.

In all experiments, we first estimate the conditional proba-
bility p(y|x) using the hierarchical structure of classes. More
specifically, we first construct p1(y1|x) as a multinomial
logit model with lasso penalty using all training and vali-
dation data sets. For d > 1, we construct pd(yd|x, yd−1)
for each yd−1 in the same way as we construct p1(y1|x) ex-
cept that we now use only the data samples whose depth
d − 1 element is yd−1. Then, the probability pd(yd|x) is
given as p1(y1|x)

∏d
l=2 pl(yl|x, yl−1). Finally, we consctuct

the Bayes-optimal classifier via Algorithm K-H.
We compare the misclassification cost of our Bayes-

optimal classifier (Algorithm K-H) with those of two bench-
mark methods. Each benchmark method addresses either
top-k classification or hierarchical classification, but not
both. The first benchmark method computes the single
choice reward function defined in Theorem 1, and simply
selects the k classes with the highest rewards. This method
takes the hierarchical loss function into account, but ignores
its impact on top-k performance. We call this method H-only
method. The second benchmark method simply chooses
the k classes with the highest matching probability p(y|x).
When cd is the same for all d, i.e., when the loss function
is not hierarchical, this method is Bayes-optimal for top-k
selection. Hence, we call this method K-only method.

Table 2 reports the results from the gene func-
tion data. While setting the cost parameters at c =
[40, 30, 20, 10/(D− 3), . . . , 10/(D− 3)], we computed the
misclassification costs on the testing data set for several val-
ues of K, i.e., number of classes to choose.

When K = 1, the Bayes-optimal method and the H-only
method always select the same single class. Hence, the per-
formances of the two methods are the same in this case. In
contrast, the K-only method, which selects classes accord-
ing to their simple matching probabilities, performs worse
than the Bayes-optimal method even when only one class
can be selected. The only exception appears for the ‘hom’
data set, in which K-only method slightly outperforms the
Bayes-optimal method. Note that when K = 1, our loss
function reduces to the standard hieararchical loss function
of (Cesa-bianchi et al. 2005). Under this loss function, the
H-only method, which takes the hieararchical loss function
into account, peforms the same as our algorithm. In contrast,
the K-only method underforms our algorithm. Hierarchical
classification is an instance of cost sensitive learning. In cost
sensitive learning, misclassification loss defers depending
on the correct class and the wrong class. As the closeness
of the two classes within the tree increases (as they shore
more ancestors), the cost of misclassification decreases. The
Bayes-optimal classifier incorporates this cost structure into
account, whereas the K-only method does not.

When multiple selection is allowed, the Bayes-optimal
method significantly outperforms the two benchmark meth-
ods. The performance gap is apparent even when ten classes
are allowed to be chosen. An interesting observation is
that H-only method substantially under-performs the K-only
method except for the single selection case. The H-only
method takes into account the benefit of having a partially
matched class in the selection, but ignores the joint impacts
when multiple classes are chosen. Hence, if there is a non-
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Table 2: Misclassification costs on gene function data
data set K K-H H-only K-only

cellcyle 1 90.01 90.01 90.97
cellcyle 5 52.47 79.11 61.64
cellcyle 10 39.43 71.99 48.19

church 1 89.46 89.46 90.75
church 5 52.66 81.56 63.39
church 10 38.02 74.90 44.58

derisi 1 89.27 89.29 92.78
derisi 5 54.46 82.34 60.99
derisi 10 38.89 73.82 45.12

eisen 1 89.21 89.21 90.06
eisen 5 49.55 81.74 59.99
eisen 10 38.79 76.09 42.02

expr 1 88.53 88.53 93.28
expr 5 51.18 80.35 65.88
expr 10 36.44 71.51 47.02

gasch1 1 89.30 89.30 92.26
gasch1 5 51.32 84.52 63.46
gasch1 10 37.24 76.66 49.59

gasch2 1 89.65 89.65 90.94
gasch2 5 52.25 80.84 63.85
gasch2 10 38.84 74.25 51.89

hom 1 89.13 89.13 89.01
hom 5 52.46 78.38 63.36
hom 10 38.84 72.70 47.72

pheno 1 89.39 89.39 90.93
pheno 5 53.42 83.47 66.66
pheno 10 37.54 74.32 49.64

seq 1 88.93 88.93 91.63
seq 5 52.64 71.62 63.39
seq 10 37.13 63.84 45.62

spo 1 89.38 89.38 89.46
spo 5 53.71 85.08 65.38
spo 10 40.28 78.45 47.35

struc 1 89.76 89.76 92.73
struc 5 51.69 85.78 64.41
struc 10 37.63 77.95 48.79

leaf node that has a very high matching probability, the H-
only method is likely to choose multiple classes whose paths
include this node. In this case, the chances of partial match-
ing decreases. We investigate this issue further in the next
experiment.

We remark that there are several hiearachical classifica-
tion algorithms proposed in the literature. See for example
(Cesa-bianchi et al. 2005; Bi and Kwok 2015; Ramı́rez-
Corona, Sucar, and Morales 2016). Similar to our H-only
method, one can use other hieararchical classification algo-
rithms and choose the k classes that have the highest match-
ing probability as the solution set. Athough such methods
can slightly outperform the H-only benchmark method, they
are unlikely to perform well in the top-k setting because they
ignore the joint impact of classes on the misclassification

loss.
The second experiment is on the data set collected from

the expertise matching application. For each position, one is
given a free form text description of the role and a formal
service area name. The system needs to identify the correct
job role and specialty for each position. The expertise taxon-
omy is a tree of depth 2. The interface system first computes
the similarity score between the job position description
and the title and description of each job role and specialty
combination. The similarity score takes values from 0 to 1.
The interface system also computes demand based score of
each job role and specialty combination. More specifically,
the system computes the relative frequency that a certain
job role and specialty combination has been used by other
projects that fall in the same service area, and use the rela-
tive frequency as the second score. The interface system uses
these two scores for each class to identify the correct one.

We collected a data set of 539 job positions. For each posi-
tion, we are given the two scores described above for all job
role and specialty combinations, and the correct answer con-
firmed by staffing professionals via the system. As above,
we use the multinomial logistic model to estimate the con-
ditional matching probabilities pd(yd|x), and construct the
Bayse-optimal classifier using Algorithm K-H. While fixing
c1 = 100, we computed the misclassification costs of the
three algorithms on the test data set while changing the val-
ues of K, i.e., the number of classes to select, and c2, i.e.,
the cost of partially matched class. The results are reported
in Table 3.

Table 3: Misclassification costs on expertise matching data
K c2 K-H H-only K - only

3 100 27.06 27.06 27.06
3 80 23.66 24.62 24.91
3 60 22.04 23.45 23.20
3 40 19.52 24.92 21.77
3 20 17.18 26.21 19.73
3 0 14.61 26.40 17.87

5 100 19.10 19.10 19.10
5 80 17.26 21.13 17.72
5 60 15.29 20.25 16.26
5 40 14.49 22.08 14.71
5 20 12.46 21.20 12.95
5 0 9.67 20.54 11.44

7 100 15.30 15.30 15.30
7 80 13.78 17.76 14.29
7 60 12.35 16.76 12.84
7 40 10.61 18.98 11.56
7 20 8.78 18.38 9.77
7 0 7.53 17.73 8.65

Note that when c2 = 100, the cost of a partially matched
answer is the same as the cost of a fully incorrect answer. In
this case, the top-k hierarchical loss function reduces to the
standard top-k loss function, and all the three algorithms se-
lect classes according to their simply matching probabilities.
Hence, their performances are the same when c2 = 100.

As c2 decreases, i.e., as the benefit of having a partially
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matched class increases, the performance gap between the
Bayse-optimal classifier and the two benchmark methods
increases. As in the previous experiment, K-only method,
which selects the classes according to the simple matching
probability outperforms the H-only method, which ignores
the joint impact of the classes that share common ances-
tors. When c2 = 0, identifying the correct job role com-
pletely removes the misclassification cost, and thus the di-
versity of the job roles in the chosen set becomes critically
important. When c2 = 0, the reward of all classes that share
the same job role will become identical under the H-only
method. Hence, this method will select all classes whose job
role has the highest matching probability up to the extent
possible. Thus, this method substantially under-performs the
other two methods when c2 = 0.

To further the insights on the class selection logic behind
the three methods, in Table 4 we also report the percentage
of cases in which each classifier recommends the fully cor-
rect class or a partially correct class (i.e., correct job role and
incorrect specialty).

Table 4: Partial and full matching percentages on expertise
matching data

Job role match only Full match

K c2 K-H H-only K-only K-H H-only K-only

3 100 8.69 8.69 8.69 72.94 72.94 72.94
3 80 8.56 7.28 8.69 74.63 73.93 72.94
3 60 8.85 7.49 8.69 74.42 73.56 72.94
3 40 10.35 6.56 8.69 72.98 71.14 72.94
3 20 12.30 6.58 8.69 72.98 68.52 72.94
3 0 14.23 5.64 8.69 71.16 67.90 72.94

5 100 7.71 7.71 7.71 80.90 80.90 80.90
5 80 7.74 6.52 7.71 81.19 77.56 80.90
5 60 9.01 6.79 7.71 81.11 77.04 80.90
5 40 9.74 5.35 7.71 79.67 74.71 80.90
5 20 9.86 4.98 7.71 79.65 74.81 80.90
5 0 13.50 5.12 7.71 76.83 74.36 80.90

7 100 6.42 6.42 6.42 84.70 84.70 84.70
7 80 8.41 5.09 6.42 84.54 81.22 84.70
7 60 8.19 4.81 6.42 84.38 81.31 84.70
7 40 8.67 4.31 6.42 84.19 78.44 84.70
7 20 8.55 3.75 6.42 84.38 78.62 84.70
7 0 14.03 4.10 6.42 78.44 78.52 84.70

Under the Bayes-optimal classifier, the full matching per-
centage generally decreases as c2 decrease at a mild rate.
In contrast, the percentage of cases in which the classifier
selects a correct job role, but no correct specialty increases
rapidly as c2 decreases. In other words, the Bayes-optimal
classifier sacrifices the full matching probability for the par-
tial matching probability. When c2 is small, making sure that
there is at least one answer whose job role is correct is very
important. Thus, the Bayse-optimal solution is likely to in-
clude the classes that have different job roles to increase this
chance.

Under the H-only classifier both the full matching per-
centage and the partial matching percentage decrease as c2

decreases. As discussed above, this benchmark method ig-
nores the fact that adding a new class whose job role is al-
ready included in the solution set does not increase the prob-
ability of having a correct job role. If a certain job role has
a high matching probability, its reward is problematically
added to all classes that has this job role, and they may all
appear in the selection set of the H-only classifier. The result
highlights the importance of assigning a matching reward of
a certain node only to a single child as addressed in Algo-
rithm K-H.

Note that the full matching percentage indicates the per-
formance of the three methods under the standard top-k
loss function (no hierarchical loss strcuture). The result
shows that under the standard top-k loss function the Bayes-
optimal solution underperforms the K-only method. The K-
only method selects classes based only on the full matching
probability, and thus regardless of the misclassification cost
c2, the matching percentages remain the same.

Conclusion

In this paper, we have studied the top-k hierarchical clas-
sification problem. We have introduced a new loss func-
tion, which extends the hierarchical loss function of (Cesa-
bianchi et al. 2005) to the top-k setting. We have shown
that under this top-k hierarchical loss function, selecting the
class with the highest matching probability is not necessar-
ily optimal even when only one class can be chosen. The
algorithm takes into account the fact that the expected re-
duction in the misclassification cost due to the addition of a
particular element should only be computed once. We have
provided an algorithm that computes the rewards of adding
each class to the choice set via a backward induction. The
outcome of this algorithm is the Bayes-optimal classifier
that minimizes the expected top-k hierarchical loss function.
Via numerical experiments, we show that the Bayse-optimal
classifier significantly reduce the misclassification loss com-
pared to the benchmark classifiers that addresses only either
top-k classification or hierarchical classification. The rela-
tive performance gap is significant when the cost of partial
matched class is substantially smaller than the full mismatch
cost, and when the number of classes to select is large.

Our research leaves several open issues. In the paper, we
have focused on the Bayse-optimal classifier, and the prob-
ability estimation is based on standard learning methods.
Both the top-k classification literature and the hierarchical
classification have proposed non-Bayesian learning methods
for each problem. As our numerical experiments show, the
simple extension of the method developed for each problem
does not address the two issues simultaneously. Because of
the complexity of the top-k hierarchical loss function, devel-
oping a specialized learning algorithm for this loss function
can be a challenging problem. Yet, a specialized learning
method may further reduce the misclassification loss. The
proposed loss function and the classification algorithm is
also limited to trees. Directed acyclic graph is another com-
mon form of hierarchical taxonomies. Extension of the pro-
posed solution to directed acyclic graphs will be important
future research.
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