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Abstract

Recently the auto-encoder and its variants have demonstrated
their promising results in extracting effective features. Specif-
ically, its basic idea of encouraging the output to be as similar
as input, ensures the learned representation could faithfully
reconstruct the input data. However, one problem arises that
not all hidden units are useful to compress the discrimina-
tive information while lots of units mainly contribute to rep-
resent the task-irrelevant patterns. In this paper, we propose
a novel algorithm, Feature Selection Guided Auto-Encoder,
which is a unified generative model that integrates feature
selection and auto-encoder together. To this end, our pro-
posed algorithm can distinguish the task-relevant units from
the task-irrelevant ones to obtain most effective features for
future classification tasks. Our model not only performs fea-
ture selection on learned high-level features, but also dynam-
ically endows the auto-encoder to produce more discrimina-
tive units. Experiments on several benchmarks demonstrate
our method’s superiority over state-of-the-art approaches.

Introduction

When dealing with high-dimensional data, the curse of
dimensionality is a fundamental difficulty in many prac-
tical machine learning problems (Duda, Hart, and Stork
2001). For many real-world data (e.g., video analysis, bio-
informatics), their dimensions are usually very high, which
results in the significant increase of the computational time
and space. In practice, not all features are equally impor-
tant and discriminative, since most of them are often highly
correlated or even redundant to each other (Guyon and Elis-
seeff 2003). The redundant features generally would make
learning methods over-fitting and less interpretable. Conse-
quently, it is necessary to reduce the data dimensionality and
select the most important features.

Recently, the auto-encoder and its variants have drawn
increasing attention as nonlinear dimensionality reduction
methods (Hinton and Salakhutdinov 2006; Wang, Ding, and
Fu 2016). The conventional auto-encoder tries to learn an
approximation to the identity by encouraging the output to
be as similar to the input as possible. The architecture forces
the network to seek a compressed representation of the data
while preserving the most important information. However,
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Figure 1: The feature selection is adopted in hidden layer
to distinguish discerning units from task-irrelevant units,
which in turn constrains the encoder to focus on compress-
ing important patterns to selected units. All of the units
are contributed to reconstruct the input, while only selected
units are used for future tasks.

this scheme leads to one problem that the majority of the
learned high-level features may be blindly used to repre-
sent the irrelevant patterns in the training data. Although
the effort to incorporate supervision (Socher et al. 2011) has
been deployed, it is still challenging to learn task-relevant
hidden-layer representation since there must be some hid-
den units mainly used to faithfully reconstruct the irrelevant
or noisy part of the input. It is unreasonable to endow the dis-
criminablity to this kind of task-irrelevant units. Take object
recognition for example, lots of hidden units are mainly used
to reconstruct the background clutters, then its performance
could be improved significantly if we can distinguish im-
portant hidden units (e.g., those encoding foreground) from
large amounts of distracting hidden units (e.g., those encod-
ing background).

To address this issue, a unified framework is proposed to
integrate feature selection and auto-encoder (Fig.1). Intu-
itively, the feature selection is applied on learned hidden-
layer to extract the discriminative features from the irrel-
evant ones. Simultaneously, the task-relevant hidden units
can feed back to optimize the encoding layer to achieve
more discriminability only on selected hidden units. There-
fore, our model not only performs dynamic feature selection
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on high-level features, but also separates important and ir-
relevant information into different groups of hidden units
separately through a joint learning mechanism with auto-
encoder. We highlight our main contributions as follows:
• We propose the Feature Selection Guided Auto-Encoder

(FSAE) that jointly performs feature selection and auto-
encoder in a unified framework. The framework selects
the discerning high-level features and simultaneously en-
hances the discriminability on the selected units.

• Our proposed method can be extended to different sce-
narios (e.g., classification, clustering), by shifting feature
selection criterion (e.g., Fisher score, Laplacian score) on
the hidden layer.

• The proposed FSAE can be adopted as a building block
to form a stacked deep network. We deploy several exper-
iments to demonstrate the effectiveness of our algorithm
by comparing with state-of-the-art approaches.

Related work

Two lines of related works, feature selection and auto-
encoder, are introduced in this section.

Feature selection The past decade has witnessed a num-
ber of proposed feature selection criterions, such as Fisher
score (Gu, Li, and Han 2012), Relief (Liu and Motoda
2007), Laplacian score (He, Cai, and Niyogi 2005), and
Trace Ratio criterion (Nie et al. 2008). In detail, suppose
the original set of features denoted as S, the goal is to find a
subset T to maximize the above performance criterion C,

T = argmax
T⊆S

C(T), s.t. |T| = m,m � d,

where m and d are the feature dimension of selected and
original, respectively. It often requires prohibitively expen-
sive computational cost in this combinatorial optimization
problem. Therefore, instead of subset-level selection, one
common traditional method first calculates the score of each
feature independently and then select the top-m ranked fea-
tures (feature-level selection). However, such features se-
lected one by one are suboptimal, which neglects the subset-
level score and results in discarding good combination of
features or preserving redundant features. To address this
problem, (Nie et al. 2008) and (Gu, Li, and Han 2012) pro-
posed globally optimal solution based on Trace Ratio crite-
rion and Fisher score respectively.

Auto-encoder is usually adopted as a basic building
block to construct a deep structure (Hinton and Salakhut-
dinov 2006; Ding, Shao, and Fu 2016). To encourage struc-
tural feature learning, further constraints have been imposed
on parameters during model training. Sparse Auto-Encoder
(SAE) was proposed to constrain the average response of
each hidden unit to a small value (Coates, Ng, and Lee
2011). Yu et al. proposed a graph regularized auto-encoder,
aiming to adopt graph to guide the encoding and decoding
(Yu et al. 2013). However, it is still challenging to learn
with lots of irrelevant patterns in the data, and current auto-
encoder variants have not yet considered the hidden units
into two parts, one is task-relevant and the other is task-
irrelevant. In our paper, we adopt feature selection on the

hidden layer of auto-encoder, which aims at guiding the en-
coder to compress task-relevant and irrelevant information
into two groups of hidden units.

The Proposed Algorithm

In this section, we first provide the preliminary and mo-
tivation of our proposed algorithm, followed by our de-
tailed model by jointly selecting features and training auto-
encoder. Then, we discuss two most relevant algorithms to
our approach. Moreover, the deep architecture is described.

Preliminary and Motivations

The general idea of auto-encoder is to represent the data
through a nonlinear encoder to a hidden layer and use the
hidden units as the new feature representations:

hi = σ(W1xi + b1); x̂i = σ(W2hi + b2) (1)

where hi ∈ R
z is the hidden representation, and x̂i ∈

R
d is interpreted as a reconstruction of normalized input

xi ∈ R
d. The parameter set includes weight matrices W1 ∈

R
z×d,W2 ∈ R

d×z , and offset vectors b1 ∈ R
z, b2 ∈ R

d

with dimensionality z and d. σ is a non-linear activation
function (e.g., sigmoid).

The auto-encoder with single hidden layer is generally a
neural network with identical input and target, namely,

min
W1,W2,b1,b2

1

2n

n∑
i=1

‖xi − x̂i‖22, (2)

where n is sample size of the data, x̂i is the reconstructed
output and xi is the target. A good representation thus can
be obtained with the ability to well reconstruct the data.

As we mentioned before, all the high-level hidden units
contribute to capture the intrinsic information of input data
during data reconstruction, however, these units are not
equally important in terms of our classification task. For
example, some units play an essential role to reconstruct
the background in an object image, but they have nothing
to do with our final object classification task. We consider
these units as task-irrelevant units, which are undesirable in
our learned new features. On the other hand, since the tra-
ditional unsupervised model has limited capacity to model
the marginal input distribution for the goal supervised task,
some existing works exploited the label information on hid-
den units using a softmax layer (Socher et al. 2011). Consid-
ering the previous assumption about task-irrelevant units, it
is inappropriate or even counterproductive to endow all the
hidden units with discriminability.

Therefore, we have two conclusions: 1) feature selec-
tion is essential to distinguish discerning units out of task-
irrelevant units, and 2) the discriminative information should
be only applied on the selected task-relevant units. Based on
above discussion, we propose our joint feature selection and
auto-encoder model in a unified framework.

Feature Selection Guided Auto-Encoder

In this section, we propose our joint learning framework
by integrating feature selection and auto-encoder together.
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Specifically, we incorporate feature selection on the hidden
layer units. Assume X ∈ R

d×n is the training data, with d
as the dimensionality of the visual descriptor and n as the
number of data samples.

min
W1,W2,b1,b2,P

1

2
‖X − g(f(X))‖2F +

λ

2
C(P, f(X)) (3)

where f(X) = σ(W1X + B1), g(f(X)) = σ(W2f(X) +
B2), B1, B2 are the n-repeated column copy of b1, b2, re-
spectively. C(P, f(X)) is the feature selecting regularized
term, with a learned feature selection matrix P performing
on hidden units f(X). Specifically, i-th column vector in P
denoted by pi ∈ R

z has the form,

pi = [0, ..., 0︸ ︷︷ ︸
j−1

, 1, 0, ..., 0︸ ︷︷ ︸
z−j

]�. (4)

where z is the number of hidden units and j means this col-
umn vector selects the j-th units into the subset of new fea-
tures y ∈ R

m. Then the feature selection procedure can be
expressed as given original feature f(X), finding a matrix P
to select a new feature set Y = P�f(X) which optimizes
an appropriate criterion C(P, f(X)).

Generally, feature selection can be mainly split into three
fashions: unsupervised, supervised and semi-supervised.
That is, supervised models could preserve more discrim-
inative information during feature selection, e.g., Fisher
score (Gu, Li, and Han 2012), while unsupervised models
aim to preserve more intrinsic data structures, e.g., Lapla-
cian score (He, Cai, and Niyogi 2005). Aiming to deal with
different cases in real world, we design the C(P, f(X)) in
a more general way. Specifically, we propose the following
general feature selection regularizer as:

C(P, f(X)) =
tr(P�f(X)Lwf

�(X)P )

tr(P�f(X)Lbf�(X)P )
, (5)

which provides a general model to fit in different scenarios
by adapting Lw and Lb in different ways. In this paper, we
adopt Fisher score (Gu, Li, and Han 2012; Nie et al. 2008)
as our supervised feature selection method for classification.
For Fisher score, two weighted undirected graphs Gw and
Gb are constructed on given data (here, we use original in-
put data X to preserve the geometric structure during select-
ing features), which respectively reflect the within-class and
between-class affinity relationship (Yan et al. 2007). Corre-
spondingly, two weighted matrices Sw and Sb are produced
to characterize two graphs respectively. Therefore, we obtain
the Laplacian matrices defined as Lw = Dw − Sw, where
Dw is the diagonal matrix of Sw, similar for Lb and Sb.

By solving the following optimization problem, we can
obtain the feature selection matrix P which produces the
feature subset with the minimum criterion score:

P = argmin
P

tr(P�f(X)Lwf
�(X)P )

tr(P�f(X)Lbf�(X)P )
, (6)

Unfortunately, there has never been a straightforward is-
sue to solve the above trace-ratio problem, due to the un-
available of closed-form solution. Thus, instead of directly

dealing with trace-ratio problem, many works tend to trans-
form it to an equivalent trace-difference problem to achieve
a globally optimal solution (Nie et al. 2008).

Suppose the subset-level criterion score C(P, f(X)) in
Eq.(5) reaches the global minimum γ∗ satisfying,

γ∗ = argmin
tr(P�f(X)Lwf

�(X)P )

tr(P�f(X)Lbf�(X)P )
, (7)

that is to say,

tr(P�f(X)Lwf
�(X)P )

tr(P�f(X)Lbf�(X)P )
≥ γ∗, ∀P

⇒ tr(P�f(X)(Lw − γ∗Lb)f
�(X)P ) ≥ 0, ∀P

⇒ min
P

tr(P�f(X)(Lw − γ∗Lb)f
�(X)P ) = 0.

To this end, we can define the function of γ when treating
others as constant as:

r(γ) = argmin
P

tr(P�f(X)(Lw − γLb)f
�(X)P ). (8)

Therefore, finding the global optimal γ can be converted
to finding the root of equation r(γ) = 0, which is a trace-
difference problem. Note that r(γ) is a monotonically in-
creasing function (Nie et al. 2008). By introducing the above
trace-difference optimization problem Eq.(8) into the hidden
layer of auto-encoder updating, we reformulate our final ob-
jective function as:

min
W1,W2,b1,b2,P,γ

L =
1

2
‖X − g(f(X))‖2F+

λ

2
tr(P�f(X)(Lw − γLb)f

�(X)P ),
(9)

where λ is the balance parameter between auto-encoder and
feature selection term. γ is the optimized trace ratio score
obtained with P in previous trace ratio optimization prob-
lem.

Optimization

Eq.(9) is hard to solve due to the complex non-linearity of
the encoder and decoder, so the alternating optimization ap-
proach is employed to iteratively update the auto-encoder
parameters W1,W2, b1, b2 and feature selection variable P
as well as γ. Specifically, we solve the optimization with two
sub-problems, one is feature selection score learning and the
other is the regularized auto-encoder optimization.

Feature Selection Score Learning When the parameters
of auto-encoder are fixed, we could optimize the feature se-
lection score γ and feature selection matrix P in a traditional
trace-ratio strategy. Specifically, we follow trace-difference
equation

P = argmin
P

tr(P�f(X)(Lw − γLb)f
�(X)P ), (10)

Suppose Pt is the optimal result in t-th optimization iter-
ation, thus γt is calculated by

γt =
tr(P�

t f(X)Lwf
�(X)Pt)

tr(P�
t f(X)Lbf�(X)Pt)

, (11)
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Algorithm 1: Optimization for trace-ratio problem
Input: Learned hidden layer feature f(X), selected feature

number m, matrices Lw and Lb

1 Initialize: P = I , I ∈ R
z×m is the identity matrix, γ with

Eq.(11), ε = 10−9, iter = 0, maxiter = 103

2 while not converge and iter ≤ maxiter do
3 Calculate the score of each j-th feature with Eq.(11) by

setting P = [0, ..., 0
︸ ︷︷ ︸

j−1

, 1, 0, ..., 0
︸ ︷︷ ︸

z−j

]�.

4 Rank the features with the scores in ascending order
5 Select the leading m features to update P ∈ R

z×m

6 Calculate γ with Eq.(11)
7 Check the convergence conditions: ‖γold − γ‖ < ε
8 end

Output: feature selection matrix P , global optimal score γ

Therefore, we can obtain r(γt) as

r(γt) = tr(P�
t+1f(X)(Lw − γtLb)f

�(X)Pt+1), (12)

where Pt+1 can be efficiently calculated according to each
single feature’s score rank. The root of equation r(γ) = 0
and the optimal solution for Eq.(6) can be obtained through
this iterative procedure. Note that γ is updated as the global
optimal score for the feature selection criterion, and works
as a parameter in next auto-encoder updating procedure. Al-
gorithm 1 summarizes the optimization solution. More de-
tails on globally optimal solution and its proof could be re-
ferred to (Nie et al. 2008).

Regularized Auto-encoder Learning When P and γ are
fixed, we can employ the stochastic sub-gradient descent
method to obtain the parameters W1, b1,W2 and b2. The gra-
dients of the objective function L in Eq.(9) with respect to
the decoding parameters are computed as follows:

∂L
∂W2

= (X − g(f(X)))� ∂g(f(X))

∂W2
f�(X),

∂L
∂B2

= (X − g(f(X)))� ∂g(f(X))

∂W2
= L2,

∂L
∂W1

= (W�
2 L2+λPP�f(X)(Lw−γLb))� ∂f(X)

∂W2
X�,

∂L
∂B1

= (W�
2 L2 + λPP�f(X)(Lw − γLb))� ∂f(X)

∂W2
.

Then, W1,W2 and b1, b2 can be updated with the gradient
descent algorithm as follows:

W1 = W1 − η
∂L
∂W1

, b1 = b1 − η
∂L
∂b1

,

W2 = W2 − η
∂L
∂W1

, b2 = b2 − η
∂L
∂b2

,
(13)

where η is the learning rate. ∂L
∂b1

and ∂L
∂b2

are the column
mean of ∂L

∂B1
and ∂L

∂B2
, respectively. To sum up, the above

two sub-problems could be updated iteratively. Algorithm 2
summarizes the details of the optimization.

Algorithm 2: Solving Problem Eq.(9)
Input: Training data X , Parameters λ,

layersize, select feature number m < z
1 Initialize: W1,W2, b1 and b2 are initialized with original

auto-encoder, maxiter = 50, iter=0, ε = 10−7

2 while not converged and iter ≤ maxiter do
3 Fix others and update P and γ using Eq. (10);
4 Fix P and update W1,W2, b1 and b2 with Eq. (13);
5 Check the convergence conditions:

‖Lnew − Lold‖∞ < ε
6 end

Output: W1,W2, b1, b2, P
(Y = P�σ(W1X +B1) could be used as input

of next FSAE, to form stack architecture)
7 Testing: new feature represented with:

Ytest = P�σ(W1Xtest +B1)

Relations to Existing Methods

Here we highlight our model’s advantage by elaborating
some connections with related methods.

Sparse AE: Ranzato et al. developed a Sparse Auto-
Encoders (SAE) whose idea behind is to enforce activa-
tions of hidden units to be close to the zero during train-
ing (Coates, Ng, and Lee 2011). That is, SAE aims to seek
a small set of hidden units to reconstruct the input, as one
sample may only link to a small number of hidden units.
However, SAE still adopts to minimize the reconstruction
loss to seek a new representation. Differently, our proposed
algorithm desires to select a small set of hidden units most
useful for classification, while other hidden units would be
still used for reconstruction. That is, we need to endow the
discriminative ability only on the important discerning units.

Graph regularized AE: Yu et al. proposed a graph regu-
larized AE, which utilized graph structure to guide the fea-
ture learning during the AE training (Yu et al. 2013). The
idea behind is straightforward, that is to preserve more ge-
ometric structure of the data during non-linear dimension-
ality reduction. Our proposed algorithm also adopts graph
regularizer, however, the idea of our work is to preserve the
geometric structure only on the selected hidden units.

Deep Architecture of FSAE

The proposed FSAE can be easily used as a building block
to form a hierarchy. For example, we can first train a single-
layer FSAE on the input images. Then the selected hidden
units are worked as the input to feed in the next FSAE to
obtain the stacked representation. Since the FSAE selects the
task-relevant features with supervision, more discriminative
information can be utilized in the higher-layer networks.

Experiments

We evaluate the proposed FSAE method through data
classification on three benchmark datasets, includ-
ing COIL100 (Nayar, Nene, and Murase 1996), Cal-
tech101 (Fei-Fei, Fergus, and Perona 2007) and CMU-
PIE (Sim, Baker, and Bsat 2002). LDA (Belhumeur,
Hespanha, and Kriegman 1997), linear regression classifi-
cation (LRC) (Naseem, Togneri, and Bennamoun 2010) and
sparse auto-encoder (SAE) (Coates, Ng, and Lee 2011) are
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Table 1: Average recognition rate(%) with standard deviations on COIL with different number of classes. Compared methods:
subspace learning: NPE (He et al. 2005), LSDA (Cai et al. 2007), SRRS (Li and Fu 2015); dictionary learning: FDDL (Yang et
al. 2011), DLRD (Ma et al. 2012), D2L2R2 (Li, Li, and Fu 2014), DPL (Gu et al. 2014), LCLRD (Wang and Fu 2015).

Methods 20 objects 40 objects 60 objects 80 objects 100 objects Average
LDA 81.94 ± 1.21 76.73 ± 0.30 66.16 ± 0.97 59.19 ± 0.73 52.48 ± 0.53 67.30
LRC 90.74 ± 0.71 89.00 ± 0.46 86.57 ± 0.37 85.09 ± 0.34 83.16 ± 0.64 86.91
SAE 91.28 ± 0.68 89.65 ± 0.77 87.26 ± 0.85 85.90 ± 0.61 84.46 ± 0.61 87.71
NPE 82.24 ± 2.25 76.01 ± 1.04 63.22 ± 1.36 52.18 ± 1.44 30.73 ± 1.31 60.88

LSDA 82.79 ± 1.70 75.01 ± 1.14 62.85 ± 1.41 51.69 ± 2.05 26.77 ± 1.05 59.82
FDDL 85.74 ± 0.77 82.05 ± 0.40 77.22 ± 0.74 74.81 ± 0.55 73.55 ± 0.63 78.67
DLRD 88.61 ± 0.95 86.39 ± 0.54 83.46 ± 0.15 81.50 ± 0.47 79.91 ± 0.59 83.97

D2L2R2 90.98 ± 0.38 88.27 ± 0.38 86.36 ± 0.53 84.69 ± 0.45 83.06 ± 0.37 86.67
DPL 87.55 ± 1.32 85.05 ± 0.21 81.22 ± 0.21 78.78 ± 0.85 76.28 ± 0.94 81.77

LCLRD 92.15 ± 0.34 89.86 ± 0.49 87.23 ± 0.29 85.40 ± 0.61 84.15 ± 0.39 87.75
SRRS 92.03 ± 1.21 92.51 ± 0.65 90.82 ± 0.43 88.75 ± 0.71 85.12 ± 0.33 89.85

AE+FS [ours] 91.73 ± 0.75 90.24 ± 0.89 87.98 ± 0.81 86.42 ± 0.57 85.05 ± 0.60 88.28
FSAE [ours] 94.12 ± 0.45 93.82 ± 0.60 91.97 ± 0.94 89.68 ± 0.81 86.75 ± 0.79 91.27

(a) (b)

λ ×

(c)

Figure 2: (a) Recognition rates with different number of classes on COIL dataset in terms of feature selection ratio (m/z). The
highest results appear mostly at 0.3∼0.5. (b) Recognition rates with different layersize setting on COIL dataset. (c) Effects of
parameter selection of λ and selection ratio (m/z) on the classification accuracy on the CMU PIE database.

used as baseline algorithms on all datasets. What’s more,
for verifying the superiority of joint learning, we propose
a simple combination framework as comparison, named
as AE+FS, which first uses a traditional auto-encoder
to learn a new representation, then the feature selection
procedure is only applied on the obtained hidden layer
to produce a subset of features. Besides above baseline
methods, different state-of-the-art algorithms are compared
in each dataset. Note that the layersize setting for those AE
based methods are all the same and they only differ in the
regularizer.

Parameter selection. In addition to the parameter of
auto-encoder (layersize setting), there are two more param-
eters in our proposed objective function (Eq.(9)), which are
balance parameter λ and feature selection ratio (m/z). Note
that the parameter γ is automatically learned as global op-
timal score in feature selection step. The parameter λ bal-
ances the feature selection regularization and the loss func-
tion of AE, we empirically set it in our experiments and will
give analysis in following sections. Specifically, λ is set as
2× 10−3 for COIL100, 5× 10−3 for Caltech101, 3× 10−3

for CMU PIE. For selected feature size, we set it as 50% of
the original hidden layer size for all the experiments, and we
will analyze the impact of selection ratio.

COIL100 contains 7,200 color images of 100 objects (72
images per object) with different lighting conditions. The
converted gray scale images with size 32 × 32 are used. 10
images per object are randomly selected to form the train-
ing set, the rest images for test. The random split is repeated
20 times, and the average results are reported with standard
deviations. The experiments with different numbers of used
objects (20, 40, 60, 80 and 100) are conducted to evaluate
the scalability of our method. Each compared method is ei-
ther tuned with parameters to achieve their best performance
or directly copied from the original papers under same ex-
perimental setting. For all three AE based methods, we use
three layers set as [300, 200, 100], and report the results on
the feature with three layer stack together.

Table.1 shows a large improvement on the recognition
rates by our algorithm. Fig.2(a) and (b) show the analysis
of FSAE with different values of selected feature ratio and
layersize setting, respectively. We can observe from Fig.2(a)
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Table 2: Average recognition rate(%) on Caltech101 with
different number of training samples per class.

Methods 10Train 15Train 25Train 30Train
LDA 49.41 62.85 67.50 70.59
LRC 56.88 61.57 68.58 70.96
SAE 62.92 68.64 74.13 74.99

K-SVD 59.8 65.2 71.0 73.2
D-KSVD 59.5 65.1 71.1 73.0

SRC 60.1 64.9 69.2 70.7
LLC 59.77 65.43 70.16 73.44

LC-KSVD 63.1 67.8 72.3 73.6
SLRRC - 66.1 - 73.6
LSAE - - - 72.7
DPL 61.28 67.52 71.93 73.90

NILDFL - - - 75.20
AE+FS [ours] 61.83 67.54 73.11 75.02
FSAE [ours] 64.90 69.79 75.38 77.14

that the highest recognition rate appears mostly when the se-
lected feature number is 30%∼50% of original feature size.
Therefore, we set the ratio to 0.5 for all experiments for sim-
plicity. From Fig.2(b), we test the recognition rate using dif-
ferent layer of a stacked four layers FSAE with layersize
[300, 200, 100, 50]. The figure indicates that using layer 2
or stacked together provide better and more robust results.
Since the higher layer only uses the select important feature
as input, the encoder could further focus on the task-relevant
information, which results in better performance. The drops
at layer 3 and 4 are probably due to the too few units to cap-
ture sufficient information. We also perform the convergence
test of our proposed algorithm with 60 objects and show in
Fig.3, which indicates the proposed method converges well.
Caltech101 is a widely used database for object recogni-
tion which contains a total of 9,144 images from 101 com-
mon object classes (animals, vehicles, trees, etc.) plus one
background class (total 102 categories). Following the com-
mon experimental settings, we train on 10, 15, 25, and 30
random selected samples per category and test on the rest.
We repeat the random spits 20 times to obtain reliable re-
sults. The final average recognition rates are reported. The
spatial pyramid features are extracted following (Zhang,
Jiang, and Davis 2013) and (Jiang, Lin, and Davis 2013)
(three-level SIFT features with a codebook of size 1024 +
PCA) with the final feature dimension of 1500. We com-
pare with K-SVD (Aharon, Elad, and Bruckstein 2006), D-
KSVD (Zhang and Li 2010), SRC (Wright et al. 2009),
LLC (Wang et al. 2010), LC-KSVD (Jiang, Lin, and Davis
2013), SLRRC (Zhang, Jiang, and Davis 2013), LSAE (Luo
et al. 2015), DPL (Gu et al. 2014) and NILDFL (Zhou, Lin,
and Zhang 2016). The layersize setting for all AE based
methods is [500, 100].

The comparative results are shown in Table.2 and our ap-
proach consistently outperforms all the competitors. One ob-
servation is that, sometimes AE+FS performs worse than
SAE. The basic reason is that, the Caltech dataset contains
lots of background in each image, and simple feature selec-
tion on the final hidden units results in the lost of relevant
information, while our joint learning framework could bet-
ter distinguish the units and get improved results.

Figure 3: The optimization process of FSAE method on the
COIL100 dataset with 60 objects.

CMU PIE dataset consists total of 41,368 face images
from 68 identities, each with 13 different poses, 4 different
expressions, and 43 different illumination conditions. We se-
lect five near frontal poses (C05, C07, C09, C27, C29) as a
subset of PIE, and use all the images under different illu-
minations and expressions (totally 11,554 samples). Thus,
there are about 170 images for each person and each image
is normalized to the size of 32 × 32 pixels. We select dif-
ferent numbers of training samples per person to test these
methods, and summarize the recognition rates in Table. 3.
The experiments are repeated 20 times, and we use singly-
layer with size 1500. Our method achieves good results and
outperforms the compared methods. Also, the analysis of pa-
rameter λ and feature selection ration on 10 train CMU PIE
are reported in Fig.2(c). The highest result is given when
λ = 3× 10−3 and selection ratio= 0.5.

Conclusion

In this work, we proposed a novel auto-encoder based frame-
work, to joint training non-linear transformation and select-
ing informative features in a unified framework. Through
these unified framework, the discerning hidden units were
distinguished from the task-irrelevant units at hidden layer,
and the regularizer on the selected features in turn enforces
the encoder to focus on compress important patterns into se-
lected units. As a general framework, different feature se-
lection criterions could be fitted into our FSAE model de-
pending on different tasks. What’s more, a stacked architec-
ture is also introduced using FSAE as building block. The
supervised recognition results on three benchmark datasets
indicated the effectiveness of our FSAE framework.
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