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Abstract

Self-paced learning (SPL) mimics the cognitive mechanism
of humans and animals that gradually learns from easy to hard
samples. One key issue in SPL is to obtain better weighting
strategy that is determined by the minimizer function. Exist-
ing methods usually pursue this by artificially designing the
explicit form of SPL regularizer. In this paper, we study a
group of new regularizer (named self-paced implicit regu-
larizer) that is deduced from robust loss function. Based on
the convex conjugacy theory, the minimizer function for self-
paced implicit regularizer can be directly learned from the
latent loss function, while the analytic form of the regularizer
can be even unknown. A general framework (named SPL-IR)
for SPL is developed accordingly. We demonstrate that the
learning procedure of SPL-IR is associated with latent robust
loss functions, thus can provide some theoretical insights for
its working mechanism. We further analyze the relation be-
tween SPL-IR and half-quadratic optimization and provide a
group of self-paced implicit regularizer. Finally, we imple-
ment SPL-IR to both supervised and unsupervised tasks, and
experimental results corroborate our ideas and demonstrate
the correctness and effectiveness of implicit regularizers.

Introduction

Inspired by the learning process and cognitive mechanism
of humans and animals, Bengio et al. (2009) propose a new
learning strategy called curriculum learning (CL), which
gradually includes more and more hard samples into training
process. A curriculum can be seen as a sequence of train-
ing criteria. For example, in the training of a shape recog-
nition system, images that exhibit less variability such as
squares and circles are considered first, followed by hard
shapes like ellipses. The curriculum in CL is usually de-
termined by some certain priors and thus is problem spe-
cific and lacks generalizations. To alleviate this, Kumar,
Packer, and Koller (2010) propose a new learning strategy
named self-paced learning (SPL) that incorporates curricu-
lum updating in the process of model optimization. Gen-
eral SPL model consists of a problem specific weighted
loss term on all samples and a SPL regularizer on sam-
ple weights. Alternative search strategy (ASS) is generally
used for optimization. By gradually increasing the penalty
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of the SPL regularizer during the optimization, more sam-
ples are included into training from easy to hard by a self-
paced manner. Due to its ability of avoiding bad local min-
ima and improving the generalization performance, many
works have been developed based on SPL (Li et al. 2016;
Liang et al. 2016; Jiang et al. 2015; Zhang et al. 2015;
Supancic and Ramanan 2013; Lee and Grauman 2011).

One key issue in SPL is to obtain better weighting strat-
egy that is determined by the minimizer functions, and ex-
isting methods usually pursue this by artificially designing
the explicit form of SPL regularizers (Zhang et al. 2016;
Xu, Tao, and Xu 2015; Zhao et al. 2015; Jiang et al. 2014a;
2014b). Some examples can be found in the supplementary
material. Though shown to be effective in many applications
experimentally, the underlying working mechanism of SPL
is still unclear and is heavily desired for its future develop-
ment. One attempt in this aspect is (Meng and Zhao 2015),
they show that the ASS method used for SPL accords with
the majorization minimization (Vaida 2005) algorithm im-
plemented on a latent SPL objective, and deduce the latent
objective of hard, linear and mixture regularizers.

In this paper we study a group of new regularizer (named
self-paced implicit regularizer) for SPL based on the convex
conjugacy theory. Comparing with existing SPL regulariz-
ers, self-paced implicit regularizer is deduced from robust
loss function and its analytic form can be even unknown.
Its properties and corresponding minimizer function can be
learned from the latent loss function directly. Besides, the
proposed self-paced implicit regularizer is independent of
the learning objective and thus leads to a general frame-
work (named SPL-IR) for SPL. SPL-IR can be optimized
via ASS algorithm. More importantly, we demonstrate that
the learning procedure of SPL-IR is indeed associated with
latent robust loss functions, thus may provide some theoret-
ical insights for its working mechanism (e.g. its robustness
to outliers and heavy noise). We further analyze the rela-
tions between SPL-IR and half-quadratic (HQ) optimization
and provide a group of self-paced implicit regularizer ac-
cordingly. Such relations can be beneficial to both SPL and
HQ optimization. Finally, we implement SPL-IR to three
classical tasks (i.e. matrix factorization, clustering and clas-
sification). Experimental results corroborate our ideas and
demonstrate the correctness and effectiveness of SPL-IR.

Our work has three main contributions: (1) We pro-
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pose self-paced implicit regularizer for SPL, and develop a
general implicit regularization framework (named SPL-IR)
based on it. The self-paced implicit regularizers not only en-
rich the family of regularizers for SPL but also provide some
insights on the working mechanism of SPL. (2) We analyze
the connections between SPL-IR and HQ optimization, and
provide a group of robust loss function induced self-paced
implicit regularizer for SPL-IR accordingly. (3) Experimen-
tal results on both supervised and unsupervised tasks cor-
roborate our ideas and demonstrate the correctness and ef-
fectiveness of SPL-IR.

Preliminaries

Self-Paced Learning via Explicit Regularizers

Given training dataset D = {(xi, yi)}ni=1 with n samples,
where xi ∈ Rd is the i-th sample, yi is the optional in-
formation according to the learning objective (e.g. yi can
be the label of xi in a classification model). Let f(. ,w)
denote the learned model and w be the model parameter.
L(yi, f(xi,w)) is the loss function of i-th sample. The ob-
jective of SPL is to jointly optimize the model parameter w
and the latent sample weights v = [v1, v2, . . . , vn] via the
following minimization problem:

min
w,v

E(w,v;λ) =

n∑
i=1

viL(yi, f(xi,w)) + g(λ, vi), (1)

where g(λ, v) is called self-paced regularizer and λ is a
penalty parameter that controls the learning pace. ASS algo-
rithm is generally used for (1), which alternatively optimizes
w and v while keeping the other fixed. Specifically, given
sample weights v, the minimization over w is a weighted
loss minimization problem that is independent of regular-
izer g(λ, v); given model parameter w, the optimal weight
of i-th sample is determined by

min
vi

viL(yi, f(xi,w)) + g(λ, vi). (2)

Since �i = L(yi, f(xi,w) is constant once w is given, the
optimal value of vi is uniquely determined by the corre-
sponding minimizer function σ(λ, �i) that satisfies

σ(λ, �i)�i + g(λ, σ(λ, �i)) ≤ vi�i + g(λ, vi), ∀vi ∈ [0, 1].
(3)

For example, if g(λ, vi) = −λvi (Kumar, Packer, and Koller
2010), the optimal v∗i is calculated by

v∗i = σ(λ, �i) =

{
1, if �i ≤ λ
0, otherwise

(4)

By gradually increasing the value of λ, more and more hard
samples are included into the training process. There are
many efforts that have been put into the learning of ap-
propriate minimizer functions (Zhang et al. 2016; Xu, Tao,
and Xu 2015; Zhao et al. 2015; Jiang et al. 2014a; 2014b;
Supancic and Ramanan 2013), and we categorize them as
SPL with explicit regularizers as they usually require the
explicit form of regularizer g(λ, v). σ(λ, �) is then derived
from the form of g(λ, v).

Half-Quadratic Optimization

Half-quadratic optimization (Nikolova and Ng 2005; Geman
and Yang 1995; Geman and Reynolds 1992) is a commonly
used optimization method that based on the convex conju-
gacy theory. It tries to solve a nonlinear objective function
via optimizing a series of half-quadratic reformulation prob-
lems iteratively (He, Tan, and Wang 2014; He et al. 2014b;
Yuan and Hu 2009). Its multiplicative form is briefly intro-
duced as follows.

Given a differentiable function φ(t) : R → R, if φ(t)
further satisfies the conditions of the multiplicative form of
HQ optimization in (Nikolova and Chan 2007), the follow-
ing equation holds for any fixed t,

φ(t) = inf
p∈R+

{
1

2
pt2 + ψ(p)

}
, (5)

where ψ(p) is the dual potential function of φ(t) and R+ =
{t|t ≥ 0}. ψ(p) is convex and reads

ψ(p) = sup
t∈R+

{
−1

2
pt2 + φ(t)

}
, (6)

More analysis about φ(t) and ψ(p) refers to (Nikolova and
Ng 2005). The optimal p∗ that minimizes (5) is uniquely
determined by the corresponding minimizer function δ(t),
which is derived from the convex conjugacy theory and is
only relative to function φ(t). For each t, δ(t) is such that

1

2
δ(t)t2 + ψ(δ(t)) ≤ 1

2
pt2 + ψ(p), ∀p ∈ R+. (7)

The optimization of φ(t) can be done via iteratively mini-
mizing t and p in (5). One only needs to focus on φ(t) and its
corresponding minimizer function δ(t) in HQ optimization,
and the analytic form of the dual potential function ψ(p) can
be even unknown.

The Proposed Method

In this section, we first give the definition of the proposed
self-paced implicit regularizer and derive its minimizer func-
tion based on the convex conjugacy theory. Then we develop
a general self-paced learning framework (named SPL-IR)
based on implicit regularization. Finally, we analyze the re-
lations between SPL-IR and HQ optimization.

Self-Paced Implicit Regularizer

Based on our above analysis of SPL, we define the self-
paced implicit regularizer as follows,

Definition 1. Self-Paced Implicit Regularizer. A self-
paced implicit regularizer ψ(λ, v) is defined as the dual po-
tential function of a robust loss function φ(λ, t), and satisfies

1. φ(λ, t) = minv≥0 vt+ ψ(λ, v);
2. σ(λ, t) is the minimizer function of φ(λ, t) that satisfies

σ(λ, t)t+ ψ(λ, σ(λ, t)) ≤ vt+ ψ(λ, v), ∀ v ∈ R+;
3. σ(λ, t) is non-negative and up-bounded, ∀ t ∈ R+;
4. σ(λ, t) is monotonically decreasing w.r.t. t, ∀ t ∈ R+;
5. σ(λ, t) is monotonous w.r.t. λ ∈ R+;

where λ is a hyper-parameter and it is the same in φ(λ, t),
ψ(λ, v) and σ(λ, t). λ is considered to be fixed in the first
four conditions.
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Table 1: Loss function φ(λ, t) and its corresponding minimizer function σ(λ, t), λ is a hyper-parameter.
Huber Cauchy L1-L2 Welsch

Loss function φ(λ, t)

{
t2/2, |t| ≤ λ

λ|t| − λ2

2 , |t| > λ
λ2 log(1 + (t/λ)2)

√
λ+ t2 − 1 λ2(1− exp(− t2

λ2 ))

Minimizer function σ(λ, t)

{
1 |t| ≤ λ

λ/|t|, |t| > λ
2/(1 + (t/λ)2) 1/

√
λ+ t2 2 exp(− t2

λ2 )

Proposition 1 For any fixed λ, if φ(λ, t) further satis-
fies the conditions referred in (Nikolova and Chan 2007), its
minimizer function σ(λ, t) is uniquely determined by φ(λ, t)
and the analytic form of the dual potential function ψ(λ, v)
can be even unknown during the optimization.

The proof of Proposition 1 is given in the appendix.
According to Definition 1, the self-paced implicit regular-
izer is derived from robust loss function. Its properties can
be learned from both ψ(λ, v) and the latent loss function
φ(λ, t). The corresponding minimizer function σ(λ, t) can
be learned from φ(λ, t) directly. During the optimization, the
optimal v∗ is determined by σ(λ, t) and the analytic form of
ψ(λ, v) can be even unknown, hence ψ(λ, v) is named self-
paced implicit regularizer. Besides, the last three conditions
in Definition 1 are required for SPL regimes. Specifically,
let t denote the sample loss, condition 4 indicates that the
model is likely to select easy samples (with smaller losses)
in favor of hard samples (with larger losses) for a fixed λ,
and condition 5 makes sure that we can incorporate more
and more samples through turning parameter λ.

The self-paced implicit regularizer ψ(λ, v) defined here
is derived from robust loss function φ(λ, t). By establishing
the relations between φ(λ, t) and ψ(λ, v), we can analyze
its working mechanisms as well as develop new SPL regu-
larizers based on the development of robust loss functions.
Moreover, the properties of ψ(λ, v) and its corresponding
minimizer function σ(λ, t) can be learned from their latent
robust loss function φ(λ, t) directly.

Self-Paced Learning via Implicit Regularizers

We can develop an implicit regularization framework for
SPL based on the proposed self-paced implicit regularizer.
By substituting the regularization term g(λ, v) in (1) with a
self-paced implicit regularizer ψ(λ, v) given in Definition 1,
we obtain the following SPL-IR problem,

min
w,v

E(w,v;λ) =

n∑
i=1

viL(yi, f(xi,w)) + ψ(λ, vi). (8)

It can be solved via ASS algorithm, which alternatively op-
timizes w and v while keeping the other fixed. However,
different from existing SPL regularizers, the analytic form
of ψ(λ, v) in (8) can be unknown and the optimal v∗ is de-
termined by the corresponding minimizer function given in
Definition 1. The optimization procedure of (8) is described
in Algorithm 1. Model (8) is called an implicit regulariza-
tion framework since it does not require the explicit form of
ψ(λ, v). The concept of implicit regularization is also used
in (Mahoney 2012; Mahoney and Orecchia 2011) as a by-
product of approximation algorithms.

Figure 1: Example of latent loss function and its correspond-
ing minimizer function in Definition 1. The x-axis refers to
the original loss �. The solid lines are given for comparison,
it is y = x in the left figure, and y = 1 in the right one.

An insightful phenomenon is that the learning procedure
of SPL-IR is actually associated with certain latent loss func-
tions. For example, for a certain implicit regularizer and its
corresponding minimizer function v∗i = σ(λ, �i) = 1/(1 +
�i/λ

2) in Algorithm 1 (where �i = L(yi, f(xi,w
∗))),

one can be considered to minimize a latent robust function∑n
i=1 λ

2 log(1 + �i/λ
2) during each round. Figure 1 gives

a graphical illustration. The latent loss function φ(λ, �) can
be considered to carry out a meaningful transformation on
the original loss �. When � is larger than a certain thresh-
old, φ(λ, �) becomes a constant and its corresponding mini-
mizer function σ(λ, �) becomes zero, hence the related sam-
ple is not considered for optimization. Through this, it can
suppress the influence of hard samples (refer to larger �)
while retaining that of easy samples (refer to smaller �).
This may also provide some insights on the robustness of
SPL-IR to outliers and heavy noise as they can usually cause
larger losses. More specifically, starting with a small λ (e.g.
0.3), only a small part of samples with very small losses
are involved (they are considered to contain reliable infor-
mation). As λ increases, the suppressing effect of φ(λ, �)
on larger losses becomes weaker and their corresponding
weights increase, consequently more and more hard sam-
ples with larger losses (may also contain more knowledge)
are involved into the training process. While gradually in-
corporating these knowledge, the model becomes stronger
and stronger. The learning procedure of some existing regu-
larizers like hard and linear (Meng and Zhao 2015) can also
be explained under the framework of SPL-IR.

SPL-IR in (8) is considered as a general SPL framework
from two aspects: firstly, ψ(λ, v) represents a spectrum of
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(a) Toy Example (b) HQ and SPL-IR

Figure 2: In (a), training samples are roughly divided into
three types: easy samples �, hard samples � and outliers �.
λ is usually fixed in HQ methods (e.g. λ = 0.5), hence some
samples may be discarded incorrectly. In contrast, SPL-IR
can gradually incorporate more samples from easy to hard
(i.e. λ grows iteratively). (b) demonstrates the performances
of HQ and SPL-IR methods on a synthetic matrix factoriza-
tion dataset, Welsch minimizer function is adopted for both
methods. For HQ-welsch, standard HQ algorithm (Nikolova
and Ng 2005) is implemented with each λ independently.
More details refer to Section 3.3 and 4.1.

self-paced implicit regularizer that is developed based on
robust loss function and the convex conjugacy theory; sec-
ondly, ψ(λ, v) is independent of specific model objective
L(yi, f(xi,w)) and thus can be used in various applications.
Besides, standard ASS strategy is used for both SPL with
explicit regularizer (model (1)) and SPL-IR (model (8)). It
includes a weighted loss minimization step and a weight up-
dating step at each iteration. Hence for a specific loss func-
tion L(yi, f(xi,w)) and a fixed number of iteration, the
time complexities of SPL with explicit regularizer and SPL-
IR is in the same order of magnitude.

SPL-IR and Half-Quadratic Optimization

We can develop new self-paced implicit regularizers based
on the development of robust loss functions. Specifically, we
analyze the relations between SPL-IR and HQ optmization
and provide several self-paced implicit regularizers accord-
ingly. For better demonstration, we first give an equivalent
quadratic form definition of self-paced implicit regularizer,

Definition 2 (Quadratic Form). Self-Paced Implicit
Regularizer. A self-paced implicit regularizer ψ(λ, v) is de-
fined as the dual potential function of a robust loss function
φ(λ, t), and satisfies

1. φ(λ, t) = minv≥0
1
2 vt2 + ψ(λ, v);

2. σ(λ, t) is the minimizer function of φ(λ, t) and satisfies
1
2σ(λ, t)t

2 + ψ(λ, σ(λ, t)) ≤ 1
2vt

2 + ψ(λ, v), ∀ v ∈ R+.
3. σ(λ, t) is non-negative and up-bounded, ∀ t ∈ R+;
4. σ(λ, t) is monotonically decreasing w.r.t. t, ∀ t ∈ R+;
5. σ(λ, t) is monotonous w.r.t. λ ∈ R+;

where λ is a hyper-parameter and it is the same in φ(λ, t),
ψ(λ, v) and σ(λ, t). λ is considered to be fixed in the first
four conditions.

The equivalency of Definition 1 and Definition 2 is shown
in the supplementary material. Seen from Definition 2, there
is a close relationship between self-paced implicit regular-
izer and the dual potential function defined in HQ reformu-
lation (5). Apparently, the dual potential function in (5) and

Algorithm 1 : Self-Paced Learning via Implicit Regularizers
Input: Input dataset D = {xi, yi}ni=1, step size μ > 1.
Output: Model parameter w.

1: Initialize sample weights v∗ and parameter λ;
2: repeat
3: Update (w∗,v∗) = argminw,v E(w,v;λ) by us-

ing ASS algorithms, v is iteratively optimized by the
corresponding minimizer function σ;

4: Monotone increase (or decrease) λ by step-size μ;
5: until convergence.
6: return w∗

the minimizer function in (7) satisfy the first two conditions
in Definition 2, and self-paced implicit regularizer imposes
further constraints on the minimizer function σ(λ, t) for the
regimes of SPL. Many robust loss functions and their corre-
sponding minimizer functions in multiplicative form of HQ
have been developed (some of them are tabulated in Table
1). It is easy to verify that the functions in Table 1 satisfy all
the conditions in Definition 2, hence they can be adapted
for self-paced implicit regularizers. The loss functions in
Table 1 are well defined and have proven to be effective
in many areas (Chen et al. 2016a; 2016b; He et al. 2014a;
2014b). Meanwhile, though self-paced implicit regularizer
can be developed from HQ optimization, their optimization
procedures are quite different. In HQ, one mainly focuses
on the minimization of loss function φ(λ, t) and hyper-
parameter λ is predetermined and fixed during the optimiza-
tion. While aiming to gradually optimize from easy to hard
samples, SPL-IR uses the right-hand side vt2/2 + ψ(λ, v)
to model problems and one key concern is the weighting
strategy that determined by the minimizer function σ(λ, t).
Besides, in order to gradually increase samples, λ is updated
stage by stage in SPL-IR.

Figure 2 gives an intuitive interpretation. If we set
ti =

√
L(yi, f(xi,w∗)) and use the minimizer function of

Welsch given in Table 1 for weight updating in Algorithm 1,
model (8) can be considered to sequential optimize a group
of Welsch loss functions with monotonically increasing λ.
Hence SPL-IR is able to gradually optimize from easy to
hard samples while incorporating the good properties of ro-
bust Welsch functions. On the other hand, for HQ optimiza-
tion, λ is predefined and fixed during the whole optimiza-
tion. Hence its performance may be largely influenced by
the selection of λ. For example, when λ is somehow small
(e.g. λ < 1 in Figure 2(b)), some hard samples will be sim-
ply considered as outliers and discarded. From the compar-
isons in Figure 2(b), we can find that SPL-IR can always
outperform HQ for every λ.

Experiments

To illustrate the correctness and effectiveness of the devel-
oped SPL-IR model, we apply it to three classical tasks:
matrix factorization, clustering and classification. There are
two hyper-parameter (λ, μ) that need to be tuned in Algo-
rithm 1. We follow a standard setting in SPL (Kumar, Packer,
and Koller 2010). That is, λ is initialized to obtain about
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Table 2: Numerical results of L1-norm MF problem with L2-norm regularization. The best results are highlighted in bold.
Method PRMF SPL-hard SPL-mixture SPL-IR-huber SPL-IR-L1-L2 SPL-IR-cauchy SPL-IR-welsch
RMSE 0.1528 0.0949 0.0625 0.0627 0.0650 0.0620 0.0596

MAE 0.0994 0.0672 0.0475 0.0476 0.0493 0.0472 0.0455

Figure 3: Tendency curves of RMSE and MAE w.r.t. the it-
erations.

half samples, then it is iteratively updated to involve more
and more samples gradually. The practical updating direc-
tion depends on the specific minimizer function. For func-
tions given in Table 1, λT+1 = λT /μ for L1-L2 while
λT+1 = λT ∗ μ for Huber, Cauchy and Welsch, where
μ > 1 is a step factor and T is an iteration number. Simi-
lar settings are adjusted for the competing SPL regularizers,
including SPL-hard (Kumar, Packer, and Koller 2010) and
SPL-mixture (Zhao et al. 2015).

Matrix Factorization

Matrix factorization (MF) is one of the fundamental prob-
lems in machine learning and data mining. It aims to fac-
torize an m × n data matrix Y into two smaller factors
U ∈ Rm×r and V ∈ Rn×r, where r 	 min(m,n), such
that UVT is possibly close to Y. MF has been successfully
implemented in many applications, such as collaborative fil-
tering (Salakhutdinov and Mnih 2008).

Here we consider the MF problem on a synthetic dataset.
Specifically, the data is generated as follows: two matrices
U and V, both of which are of size 100 × 4, are first ran-
domly generated with each entry drawn from the Gaussian
distribution N (0, 1), leading to a ground truth rank-4 ma-
trix Y0 = UVT . Then we randomly choose 40% of the
entries and treat them as missing data. Another 20% of the
entries are randomly selected and added to uniform noise
on [−20, 20], and the rest are perturbed with Gaussian noise
drawn from N (0, 0.12). Similar to (Zhao et al. 2015), we
consider L1-norm MF problem with L2-norm regulariza-
tion. The baseline algorithm is PRMF (Wang et al. 2012),
and we modify it with different SPL regularizers for com-
parison. Two commonly used metrics are adopted here: (1)
root mean square error (RMSE): 1√

mn
||Y0− ÛV̂T ||F , and

(2) mean absolute error (MAE): 1
mn ||Y0 − ÛV̂T ||1, where

Û and V̂ denote the outputs of MF algorithms. All the algo-
rithms are implemented with 50 realizations and their mean
values are reported.

Table 2 tabulates their numerical results. All SPL-IR algo-
rithms obtain performance improvements over baseline al-

Table 3: Clustering performance on the Handwritten Digit
dataset. The best results are highlighted in bold.

Method ACC NMI AR
BSV 73.37(6.24) 73.04(3.03) 63.36(5.51)

Con-MC 77.48(7.81) 77.32(3.65) 69.00(6.56)
SPL-hard 82.06(5.90) 75.84(2.93) 70.94(4.97)

SPL-mixture 84.48(6.83) 81.19(2.99) 76.26(5.72)
MSPL 83.97(6.99) 80.64(3.51) 75.10(6.40)

SPL-IR-huber 84.25(7.03) 81.04(3.48) 75.64(6.37)
SPL-IR-L1-L2 83.50(6.77) 80.06(3.37) 74.30(6.08)
SPL-IR-cauchy 84.50(7.07) 81.43(3.45) 76.17(6.36)
SPL-IR-welsch 86.24(7.05) 83.26(3.49) 79.05(6.41)

gorithm PRMF, which shows the benefits of SPL regimes.
Comparing among different SPL regularizers, the results of
the proposed self-paced implicit regularizers are comparable
to or even better than that of mixture and hard schemes, es-
pecially for SPL-IR with welsch regularizer. These demon-
strate the correctness and effectiveness of the proposed self-
paced implicit regularizer. Figure 3 further plots the ten-
dency curves of RMSE and MAE with different self-paced
implicit regularizers and mixture regularizer for better un-
derstanding, the results of PRMF are also reported as a base-
line. The performances of all implicit regularizers improve
rapidly for the first few iterations as more and more easy
samples are likely to be involved in these phases. As the
number of iterations increases, the improvements become
steady as some hard instances or outliers are included.

Multi-view Clustering

Multi-view clustering aims to group data with multiple
views into their underlying classes (Xu, Tao, and Xu 2013).
Most existing multi-view clustering algorithms fit a non-
convex model and may be stuck in bad local minima. To alle-
viate this, Xu, Tao, and Xu (2015) propose a multi-view self-
paced learning algorithm (MSPL) that considers the learn-
ability of both samples and views and achieves promising
results. Here we simply modified their MSPL model with
different SPL regularizers for comparison. The UCI Hand-
written Digit dataset 1 is used in this experiment. It consists
of 2,000 handwritten digits classified into ten categories (0-
9). Each instance is represented in terms of six kinds of fea-
tures (or views). Here we make use of all the six views for
all the comparing algorithms. The baseline algorithms are
standard k-means on each single view’s representation (the
best single view result is reported as BSV), and Con-MC
(the features are concatenated on all views firstly, and then
standard k-means is applied).

Three commonly used metrics are adopted: clustering ac-

1https://archive.ics.uci.edu/ml/datasets

1881



Table 4: Statistical Information of Databases.
Dataset #.Category #.Instance #.Feature

Breast 2 569 30
Spambase 2 4601 57

Svmguide1 2 7089 4

Table 5: Classification accuracy (%). The best results are
highlighted in bold, respectively.

Without Label Noise
Method Breast Spambase Svmguide1

LR 97.36(2.22) 92.35(1.47) 95.39(0.95)
SPL-hard 97.54(2.22) 92.63(1.08) 95.39(0.95)

SPL-mixture 98.25(1.65) 92.83(1.44) 95.51(1.04)
SPL-IR-huber 98.77(1.19) 93.05(1.25) 95.57(0.95)
SPL-IR-L1-L2 97.90(1.79) 93.00(1.36) 95.57(1.10)
SPL-IR-cauchy 98.42(1.54) 93.09(1.41) 95.65(1.01)
SPL-IR-welsch 98.25(1.65) 93.13(1.34) 95.68(0.90)

With 20% Random Label Noise
Method Breast Spambase Svmguide1

LR 92.08(2.96) 89.28(1.66) 91.52(0.65)
SPL-hard 96.13(2.15) 89.81(1.61) 92.72(1.12)

SPL-mixture 96.66(2.12) 90.76(1.82) 93.81(0.79)
SPL-IR-huber 96.84(2.33) 90.92(1.65) 93.54(0.75)
SPL-IR-L1-L2 94.72(2.89) 90.09(1.65) 92.83(0.71)
SPL-IR-cauchy 97.54(1.90) 90.85(1.55) 93.88(1.05)
SPL-IR-welsch 97.89(1.63) 91.37(1.37) 94.37(0.90)

curacy (ACC), normalized mutual information (NMI) and
adjusted rand index (AR) (Hubert and Arabie 1985). Higher
value indicates better performance for all the metrics. All al-
gorithms are implemented 20 times and both mean values
and standard derivations are reported. Table 3 tabulates their
numerical results. It can be seen that all the multi-view al-
gorithms obtain significant improvements over single-view
ones, which demonstrates the benefits of integrating infor-
mation from different views. More importantly, comparing
to Con-MC, the SPL-IR algorithms can further improve the
performance by gradually optimizing from easy to hard sam-
ples and avoiding bad local minima. The proposed self-
paced implicit regularizers are comparable to or even better
than the compared SPL regularizers.

Classification

The proposed self-paced implicit regularizers can be flex-
ible implemented to supervised tasks. Here we conduct a
binary classification task. Specifically, we utilize the L2-
regularized Logistic Regression (LR) model as our base-
line, and incorporate it with different SPL regularizers for
comparison. Liblinear (Fan et al. 2008) is used as the solver
of LR. Three real-world databases are considered: Breast 2,
Spambase 2 and Svmguide1 (Chang and Lin 2011). Their
statistical information is summarized in Table 4. For each
dataset, we consider it without additional noise and with
20% random label noise, respectively. The 20% random
label noise means we randomly select 20% samples from
training data and reversal their labels (change positive to

2https://archive.ics.uci.edu/ml/datasets

negative, and vice-versa). We use 10-fold cross validation
for all the databases, and report both their mean values and
their standard derivations.

Classification accuracy is used for performance measure.
Table 5 reports their numerical results. For both situations,
SPL-IR algorithms can get performance improvements over
original LR method to some extent. Moreover, when adding
random label noise, the performance of original LR degener-
ates a lot, while the SPL algorithms can still obtain relatively
high performance, especially for SPL-IR with welsch regu-
larizer. This corroborates our analysis about the robustness
of SPL-IR to outliers and heavy noise.

Conclusions

In this paper, we study a group of new regularizer, named
self-paced implicit regularizer for SPL based on the convex
conjugate theory. The self-paced implicit regularizer is de-
rived from robust loss function and its analytic form can be
even unknown. Its properties and corresponding minimizer
function can be learned from the latent loss function directly.
We then develop a general SPL framework (SPL-IR) based
on it. We later analyze the relations between SPL-IR and HQ
optimization and develop a group of self-paced implicit reg-
ularizer accordingly. It is nontrivial to analyze and compare
different SPL models theoretically. The proposed SPL-IR
models can be seen as novel SPL models induced by robust
loss functions. This also can provide us with a perspective to
learn their properties based on theoretical and experimental
results of robust loss functions (e.g. robust Welsch loss func-
tion induced SPL regularizer may be appropriate for outliers
and heavy noises). Experimental results on both supervised
and unsupervised tasks demonstrate the correctness and ef-
fectiveness the proposed self-paced implicit regularizer.
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Appendix

Proof (of Proposition 1). The proof sketch is similar to that
in (Nikolova and Chan 2007). For ease of representation, we
omit λ and use φ(t), ψ(v) and σ(t) for short. Some funda-
mental assumptions about φ(t) are: H1: φ : R+ → R is
increasing with φ 
≡ 0 and φ(0) = 0; H2: φ(t) is C1 and
concave; H3: limt→∞ φ(t)/t = 0.

Put θ(t) = −φ(t), then θ is convex by H2. Its convex
conjugate is θ∗(v) = supt≥0 {vt − θ(t)}. By the Fenchel-
Moreau theorem (Rockafellar 2015), the convex conjugate
of θ∗ is θ, that is θ(t) = (θ∗)∗(t) = supv≤0 {vt− θ∗(v)} =
− infv≥0 {vt+ θ∗(−v)}. Thus we have

ψ(v) = θ∗(−v) = sup
t≥0

{−vt− θ(t)} = sup
t≥0

{−vt+ φ(t)}. (9)

φ(t) = −θ(t) = inf
v≥0

{vt+ θ∗(−v)} = inf
v≥0

{vt+ ψ(v)}. (10)
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Then the problem becomes how to achieve the supremum
in (9) jointly with the infimum in (10). For any v̂ > 0, de-
fine fv̂ : R+ → R by fv̂(t) = v̂t + θ(t), then we have
ψ(v̂) = − inft≥0 fv̂(t) from (9). According to H1-H3, fv̂
is convex with fv̂(0) = 0 and limt→+∞ fv̂(t) = +∞.
Thus fv̂ can reach its unique minimum at a t̂ ≥ 0, and
ψ(v̂) = −v̂t̂ + φ(t̂) from (9). Hence equivalently the in-
fimum in (10) is reached at v̂ as φ(t̂) = v̂t̂ + ψ(v̂). Then
we have v̂ = σ(t) = −θ′(t) = φ′(t). Thus the optimal v
is uniquely determined by the minimizer function σ(t) that
is derived from φ(t). The analytic form of the dual potential
function ψ(v) could be unknown during the optimization.
The proof is then completed.
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