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Abstract

Link prediction is a fundamental task in such areas as social
network analysis, information retrieval, and bioinformatics.
Usually link prediction methods use the link structures or
node attributes as the sources of information. Recently, the
relational topic model (RTM) and its variants have been pro-
posed as hybrid methods that jointly model both sources of
information and achieve very promising accuracy. However,
the representations (features) learned by them are still not ef-
fective enough to represent the nodes (items). To address this
problem, we generalize recent advances in deep learning from
solely modeling i.i.d. sequences of attributes to jointly model-
ing graphs and non-i.i.d. sequences of attributes. Specifically,
we follow the Bayesian deep learning framework and devise a
hierarchical Bayesian model, called relational deep learning
(RDL), to jointly model high-dimensional node attributes and
link structures with layers of latent variables. Due to the mul-
tiple nonlinear transformations in RDL, standard variational
inference is not applicable. We propose to utilize the product
of Gaussians (PoG) structure in RDL to relate the inferences
on different variables and derive a generalized variational
inference algorithm for learning the variables and predicting
the links. Experiments on three real-world datasets show that
RDL works surprisingly well and significantly outperforms
the state of the art.

Introduction

With the rapid growth of social network services (SNS)
and other Internet applications, network data have become
very pervasive (Wang et al. 2016). For example, there ex-
ist hyperlinks among web pages, social relationships among
friends in online social networks like Facebook, and cita-
tions among scientific articles. Link prediction, as a funda-
mental task for such network data, can help to recommend
relevant pages for newly created websites, new friends in
online social networks, or citations for newly written arti-
cles. Roughly speaking, existing link prediction methods can
be categorized into three classes (Goldenberg et al. 2010):
link-based methods, attribute-based methods, and hybrid
methods. Link-based methods seek to model the link struc-
tures of networks in a principled way (Taskar et al. 2003;
Airoldi et al. 2008), e.g., using latent variable models or linear
algebraic formulations. Attribute-based methods (Doppa et al.
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2009) view the link prediction problem as a supervised clas-
sification task where each instance corresponds to a pair of
nodes in the network. Hybrid methods (Chang and Blei 2010;
Chen et al. 2014) try to jointly model the link structures and
node attributes in an attempt to get the best of both worlds.

Link-based methods, though powerful, account only for the
link structures of networks. They ignore the node attributes
which are in fact also useful for link prediction (Al Hasan et
al. 2006; Doppa et al. 2009; Hunter et al. 2011). For exam-
ple, the text and abstracts (text-based attributes) of scientific
articles play a crucial role in determining the links of cita-
tion networks, the similarity and relevance of content in web
pages often affect whether they link each other, and the pro-
file descriptions in online social networks may be the sole
source of information deciding how friends are recommended
to new users. On the other hand, attribute-based methods first
extract attribute-based features for pairs of nodes and pose
link prediction as a classification problem. Although attribute-
based methods can take node attributes into account and are
easy to implement, they often involve tedious feature crafting
which is very labor intensive. There are models that directly
use the node attributes for link prediction (Hoff, Raftery, and
Handcock 2002), but they fail to make meaningful prediction
with high-dimensional attributes like text data, as mentioned
in (Chang and Blei 2010).

On the other hand, by jointly modeling the node attributes
and link structures, hybrid methods can get the best of both
worlds and deliver state-of-the-art performance. They can
fully integrate the node attributes into a principled model
without the need for feature crafting. What’s more, they can
even infer the node attributes according to the link structures.
This is impossible for both link-based and attribute-based
methods. Among the hybrid methods, the relational topic
model (RTM) (Chang and Blei 2010) integrates both node
attributes and link structures into a principled probabilistic
model and gives very promising accuracy. Subsequently, dis-
criminative RTM (Chen et al. 2014) extends RTM by model-
ing topic interaction and using regularized Bayesian inference
(RegBayes), leading to significant performance boost. How-
ever, the representations (features) that the current hybrid
methods learn from the link structures and node attributes are
still not effective enough.

As a separate research direction, recent advances in deep
learning show that models like stacked denoising autoen-



coders (SDAE) (Vincent et al. 2010) and convolutional neural

networks (CNN) (Krizhevsky, Sutskever, and Hinton 2012)

have great potential to learn effective and compact representa-

tions in such fields as computer vision (Karpathy, Joulin, and

Li 2014) and natural language processing (Salakhutdinov and

Hinton 2009; Irsoy and Cardie 2014). However, conventional

deep learning models often assume i.i.d. input and hence

are incapable of modeling relational data (network data) and
performing link prediction. Besides, the non-probabilistic
formulations of deep learning models do not allow them to
integrate relational data in a principled manner and perform

Bayesian inference like RTM variants.

To address the problems, we follow the Bayesian deep
learning framework (Wang and Yeung 2016) and devise a
hierarchical Bayesian model, called relational deep learning
(RDL), to jointly and deeply model high-dimensional node
attributes and link structures with layers of latent variables.
Unfortunately, due to the extreme nonlinearity of RDL, stan-
dard variational inference is not applicable. We therefore
propose to utilize the product of Gaussians (PoG) structure in
RDL to relate the inferences on different variables and derive
a generalized variational inference (GVI) algorithm for learn-
ing the variables and predicting the links. Note that the value
of GVI goes beyond RDL since it can be adapted to seam-
lessly unify arbitrary types of neural networks and Bayesian
networks (with Bayesian treatment). The main contributions
of this paper are summarized as follows:

e We devise a hierarchical Bayesian model, RDL, to seam-
lessly integrate the node attributes and link structures of
network data and perform relational deep learning.

e Besides the learning algorithm for maximum a posteriori
(MAP) estimation, a generalized variational inference algo-
rithm is derived to handle the multiple nonlinear transfor-
mations, model the uncertainty, and perform joint learning
in RDL.

e Experiments on three real-world datasets show that our
model works surprisingly well and significantly outper-
forms the state of the art.

Related Work

As mentioned in the previous section, deep learning models
have been used for various applications showing great poten-
tial. However, very few attempts have been made for the link
prediction problem, especially for the joint modeling of node
attributes and link structures on network data, which is cru-
cial for link prediction. To the best of our knowledge, RDL
is the first deep learning model that incorporates the node
attributes and link structures into a hierarchical Bayesian
model for link prediction. For completeness, we review some
recent work relevant to RDL.

In (Zeng et al. 2014), a deep model is built to solve the
relation classification problem in which the relationships
between words in a given sentence are classified. The ap-
proach adopted is essentially a combination of feature en-
gineering and CNN, which cannot be directly used to han-
dle the link prediction problem in relational (network) data.
(Li et al. 2014; Wang, Cui, and Zhu 2016) deal with the
link prediction problem in dynamic/static networks. How-
ever, they only take account of the link structure infor-
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Figure 1: Graphical model of a 2-layer RDL (L = 4).
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mation of the networks to predict the future relationship
while ignoring the node attributes. Doing so inevitably
harms the predictive performance (Chang and Blei 2010;
Hunter et al. 2011). DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) is another model that deals with relational data us-
ing deep learning models. It uses local information obtained
from truncated random walks and uses hierarchical softmax
to learn the latent representation for each node by treating
the walks as the equivalent of sentences. (Wang, Shi, and
Yeung 2015) uses relational information to construct priors
for generating representations. Although DeepWalk (Perozzi,
Al-Rfou, and Skiena 2014) and (Wang, Shi, and Yeung 2015)
are relevant to both relational data and deep learning, they are
used for learning the low-dimensional representation for each
node in the network instead of performing link prediction.

Notation and Problem Formulation

The attributes of I nodes are denoted by an 7-by-B matrix X,
where B is the number of attributes (size of vocabulary) for
each node. Each row X ;. is the bag-of-words representation
for node i if each node is a document (article). W; and by
are the weight matrix and bias vector, respectively, in layer
l. K is the number of hidden units in the /-th layer. K =
K L is the dimensionality of item representations. W .,
denotes column n of W; and L is the number of layers.
For convenience, W is used to denote the collection of
all layers of weight matrices and biases. Note that an L/2-
layer SDAE corresponds to an L-layer network. I; ;- indicates
the existence of links, where [; » = 1 means there is a link
between node ¢ and node 7. Similar to (Chang and Blei
2010), for both methodological and computational reasons,
only observed links will be modeled in RDL (i.e., [; ;7 is
either 1 or unobserved). The task is to predict a new node’s
(for example, a document which is not in the training set)
links to other nodes given the current link structures and
node attributes. Note that the links from new nodes are not
available in the training set. Hence link-based methods are
not applicable in our problem setting.

Model Formulation

In this section, we start with the introduction of RDL and
then discuss two learning algorithms, MAP estimation and
Bayesian treatment for this model.

Relational Deep Learning

Using the probabilistic SDAE (pSDAE) in (Wang, Shi, and
Yeung 2015; Wang, Wang, and Yeung 2015) as a building



block (Step 1 and 2 below), the generative process of RDL is
defined as follows:
1. For each layer [ of the probabilistic SDAE network,

(a) For each column n of the weight matrix W, draw

Win ~ N(0,2, g, ).
(b) Draw the bias vector b; ~ N'(0, A\, '1Ik,).
(c) For each row i of X;, draw
Xpie ~ N(0(Xi21,:: Wi+ by), A k).
2. For each item ¢, draw a clean input
Xeix ~ N (XL is, A R).

3. For each item 4, generate features
¢; ~h(e IXT in Ap)-

4. Draw the parameter n ~ N (0, \J'1x).
5. For each pair of items (,¢") with an observed link, draw
a binary link indicator

Liit| @iy bir ~ (| bis iy ).
Here My, Ay Ap, Ag, and A, are hyperparameters. X ;.
and ¢, are latent variables while 1 and W™ are parameters.
For computatlonal efficiency, we can also take A to infinity.
h(¢,|X% L o Ap) is a feature generator distribution. For ex-

1
KEX AP IK)

). The link probability

ample, 1t can be a Gaussian distribution A/ (XT
or a Dirichlet distribution Dir(\, X% i

5
function is defined as

T/J(Ij,j’ =1|¢;, p;,m) = J(nT(qbZ- o)) (D

The graphical model of RDL is shown in Figure 1, where,

for notational 51mp1101ty, we omit A4z and use ¢, qb’, x;, and
X. in place of @;, ¢/, Xl o and XT respectively.

(NEN

Learning Algorithms

We first derive an algorithm for the MAP estimation of
the variables and then provide the GVI algorithm for the
Bayesian treatment of RDL. Note that (Wang, Shi, and Ye-
ung 2015; Wang, Wang, and Yeung 2015) provide only MAP
estimation for pPSDAE. Hence efficient Bayesian treatment
and integration with network data are both nontrivial here.

MAP Estimation We derive below an EM-style algorithm
for obtaining the MAP estimates when the feature generator
distribution h(¢, |XT ) = N(g; |XT A g).

RESREYY

Maximizing the posterlor probability is equlvalent to max-
imizing the joint log-likelihood of {X;}, X, {Wl} {bi},
{¢;}, m, and {l; i+ } given Ap, A, A, As, and Ayt
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Update rules can be derived based on gradients with respect
to different variables.
Another choice of the distribution h(

Dirichlet distribution Dir(¢;|\,X7 .
5
joint log-likelihood more complex.

¢i|XT%’Z,*, Ap) is the
), which makes the

Bayesian Treatment The MAP estimation approach only
computes a point estimate of the prediction result without
modeling the variance (uncertainty), which is often impor-
tant not only for robust prediction but also for applications
like ensemble learning, reinforcement learning (bandits in-
cluded), and active learning. To also take the variance into
consideration we need a full Bayesian treatment of our model.
Unfortunately, due to multiple nonlinear transformations in
RDL, standard variational inference (Bishop 2006) cannot
be used for the Bayesian inference of RDL. To solve the
problem, we propose to utilize the product of Gaussians
(PoG) structure in RDL to relate the inferences on W+, n,
and {¢,}. A generalized variational inference algorithm for
learning the variables (i.e., latent variables and parameters)
and predicting the links is designed. Note that GVI goes
beyond RDL and is general enough to unify other neural net-
works and Bayesian networks. Again, we assume the feature
generator h(¢|X% . ,\,) = N(XT ., A, k) here, and
the derivation is similar for other choices.

GVI Framework: We follow the procedure of variational
inference to update the logarithm of variational distributions
as the expectation of the joint log-likelihood in Equation (2).
Specifically, we have the following general update rule:

log ¢} (Z;) = Ei;[log p(Xo, Xc, Z)] + const,

where Z denotes the collection of all latent variables and
parameters to learn, i.e., W+, {¢,}, n, and &;;» (note that
&y 1s the variational parameter to approximate the sigmoid
function o (-) in Equation (1)). The j-th part of Z (e.g., i) is
denoted by Z; with ¢;(Z;) as its corresponding variational
distribution.

Learning {¢,}: To learn {¢,}, we write down terms in
Z relevant to {¢,} as (for simplicity A, is taken to infinity):

A
g{(ﬁl} = ?p Z ||¢z - fe(X0,¢*7W)TH§

+ Z logo(n® (¢; 0 ¢;/)) + const,  (3)

where fe(Xo,x, W) = X%,i* in pSDAE. Since the first two
terms can both be approximated by Gaussians, ¢, can be
approximated using the product of Gaussians (still a Gaussian
distribution). We take one term at a time.

(a) First Gaussian: If we omit the second term and use the

vectorization w = vec(WT) = (w,, wq)? (W, and wy are
the weights of the encoder and decoder), the features

d)i ~ N(fe(XO,i*a W)Tu )\;11[{)7

we can further approximate the distribution of ¢,:

Q1(¢§j)|xo,i*) = /p(¢z(-j)|Xo,i*7ng))Q(ng))de)7



where ¢l(-j ) is the j-th element of ¢; and ng ) is a sub-vector

of w, which corresponds to the computation of gbl(-j ),
Thus we have the first Gaussian qi1(¢;|Xo.ix)
N(¢;|m;, S;) where

m,; = fe(XO,i*7 W)7

and S; is a diagonal matrix where
Sijj =N +eh(AY) gy,

where g;; and AY) are the first-order and second-order in-
formation of the pSDAE.

Remark: The mean of g1 (¢,;|Xo «) is the encoding of the
input, and the covariance matrix depends on the second-order
information of the pSDAE network.

(b) Second Gaussian: For the second term of .X{ ¢, Ve
can use the variational lower bound a(al) > o(€) exp{(a —

€)/2 = X€)(a® — €2)}, where A(€) = 5 (0(€) — 3).
By replacing o(-) in Equation (3) and completing the
square for the second term, we can get the second Gaussian

2(9;1Xo,ix) = N (;|m;, S;)
! ]' /
m; = 587: Z E(no¢;)

=1

i,

ST =2 3" M&n)E((mody)(mod)T),
Iy =1

where the expectations are taken over the current ¢(7) and
q(d)z’ ‘XO,Z"*)~

Remark: The covariance matrix of g2(¢;|Xo ;) depends
on a weighted sum of the covariance of 17 0 ¢,,, and the mean
depends on the features of linked nodes transformed by S..

(¢) Product of Gaussians: Finally we can get the up-
date rules for g(¢,|Xo ;) according to q;(¢,;|Xo,:x) and
2(;1Xo0,ix):

q(9;1Xo,ix) = N (@, |1, 2i)
pi = 2i(S7 ' m; + ) 'm))
»l=s1+8""

Remark: The first Gaussian absorbs content information
and the second absorbs link information. The final update
rule as the product of these two Gaussians then summarizes
both information sources and yields more powerful features.

Learning W and n: Note that besides the use of PoG
structure in our model, another difference from conventional
variational inference, where log ¢ (Z; ) is reformulated as the
closed form of the logarithm of the variational distribution,
is that (W) is updated based on Laplace approximation.
The motivation behind is that variational inference tends to
underestimate uncertainty (variance) while Laplace approxi-
mation tends to overestimate it. Hence incorporating Laplace
approximation inside the variational inference would not
only successfully handle the multiple nonlinear transforma-
tions but also to some degree counteract these two effects
(underestimate/overestimate of uncertainty) and yield better
uncertainty estimation. That is why we call the algorithm
generalized variational inference.
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Prediction: The link probabilities can be computed as
by = 1¢;,¢y.m) = o(k(02)ps), where r(03)
(1 + no2/8)~1/2, o2 is the variance involving the distri-
bution of 7 and {¢; }, and yu is the mean nT (¢, o ;) of the
prediction. Note that since the final prediction takes both the
mean and variance into account, the estimation is expected

to be more robust.

Experiments

Here we present both quantitative and qualitative experiment
results on three datasets from different domains to demon-
strate the effectiveness of RDL for link prediction.

Datasets and Evaluation Metrics

We use three datasets, two from CiteULike! and one from
arXiv2, in our experiments. The first two datasets are from
(Wang, Chen, and Li 2013). They were collected in different
ways, specifically, with different scales and different degrees
of sparsity to mimic different practical situations. The first
dataset, citeulike-a, is mostly from (Wang and Blei 2011) and
the second dataset, citeulike-t, was collected independently
of the first one (Wang, Chen, and Li 2013). They manually
selected 273 seed tags and collected all the articles with
at least one of those tags. For citeulike-a, there are 16,980
nodes (documents) and 44,709 links (citations) among them.
For citeulike-t the numbers are 25,975 and 32,565. The last
dataset, arXiv, is from the SNAP datasets (Leskovec and
Krevl 2014). The number of nodes is 27,770 and the number
of observed links is 352,807. We use the bags of words from
the documents as node attributes. The vocabulary size, which
is denoted as B, for the three datasets is 8,000, 20,000, and
8,000 respectively.

As in (Chang and Blei 2010; Hunter et al. 2011; Chen et al.
2014) we use link rank and AUC (area under the ROC curve)
as evaluation metrics. Link rank is defined as the average rank
of the test nodes (documents) to the training nodes (Chen
et al. 2014). AUC is computed for every test node and the
average values are reported. Therefore lower link rank and
higher AUC indicate better predictive performance.

Baselines and Experiment Setup

Note that as mentioned in (Al Hasan et al. 2006; Doppa et
al. 2009; Hunter et al. 2011), hybrid methods clearly out-
perform link-based and attribute-based methods. Besides, as
mentioned before, links from the new nodes are not available
in the training set, making link-based methods inapplicable
in this experiment setting. Due to space constraints, we focus
only on comparison among hybrid methods in most exper-
iments. The hybrid models used for comparison are listed
below:
e CMEF: Collective Matrix Factorization (Singh and Gordon
2008) simultaneously factorizes multiple matrices (i.e., the
adjacency matrix consisting of /; ;; and X in this paper).

!CiteULike allows users to create their own collections of ar-
ticles. More details about the CiteULike data can be found at
http://www.citeulike.org.

“http://www.arxiv.org



Table 1: Performance of RDL with different number of layers (MAP)

Link Rank AUC
RDL-1 RDL-2 | RDL-3 | RDL-1 | RDL-2 | RDL-3
citeulike-a 825.74 495.97 488.41 0.939 0.964 0.963
citeulike-t | 2060.17 951.31 912.43 0.894 0.954 0.955
arXiv 5241.97 | 2080.72 | 2730.08 0.755 0.905 0.855

Link Rank

Figure 2: Link rank and AUC of compared models for
citeulike-a. A 2-layer RDL is used.

e RTM: Relational Topic Model (Chang and Blei 2010)
jointly models the node attributes (text of documents) and
link structures.

o gRTM: generalized Relational Topic Model (also called
discriminative RTM) (Chen et al. 2014) extends RTM by
modeling topic interaction and using regularized Bayesian
inference (RegBayes), which leads to significant perfor-
mance boost.

e RDL: Relational Deep Learning is our proposed model.
It deeply and jointly models the node attributes and link
structures using a hierarchical Bayesian model with layers
of latent variables. It can provide different levels of model
complexity by varying the depth L.

In the experiments, we first use a validation set to find
the optimal hyperparameters for CMF, RTM, gRTM, and
RDL. For CMF, we set the regularization hyperparameters
for the latent factors of different contexts to 10. After the grid
search, we find that CMF performs best when the weights
for the adjacency matrix and content matrix (BOW) are 8
and 2 for all three datasets. We find that RTM and gRTM
achieve the best performance when ¢ = 12, « = 1, and
the sampling ratio for unobserved links is set to 0.1%. For
RDL we use the Gaussian feature generator distribution and
network structures of B-K, B-100-K, and B-100-100-K.
For all models we vary the representation dimensionality K
from 5 to 50. We randomly select 80% of the nodes as the
training set and use the rest as the test set. The experiments
are repeated 5 times and the average performance is reported.

Performance Evaluation

The left of Figure 2, 3, and 4 shows the link rank when K is
set to 5, 10, 20, 40, and 50 for the three datasets citeulike-a,
citeulike-t, and arXiv. As we can see, RTM is able to achieve
a lower link rank and outperform gRTM when K is small,
but gRTM can outperform RTM by a large margin when
K is large enough. CMF achieves the poorest performance
in citeulike-a and arXiv. In citeulike-t it is able to achieve
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Figure 3: Link rank and AUC of compared models for
citeulike-t. A 2-layer RDL is used.

Link Rank

Figure 4: Link rank and AUC of compared models for arXiv.
A 2-layer RDL is used.

similar performance as RTM. As for RDL, it outperforms all
the other models significantly. For example, when K = 50,
the link rank for gRTM and RDL is 744 and 495 respectively
in citeulike-a. For citeulike-t and arXiv, the margins are even
larger (2724 versus 951 and 2724 versus 2080).

Similar phenomena can be observed for AUC on the right
of Figure 2, 3, and 4. For the RTM variants, when K is small
RTM is better, and when K is large gRTM prevails. The
difference is that in arXiv, gRTM is not able to outperform
RTM even when K = 50. We can also see that in terms of
AUC, RDL can still significantly outperform the baselines.
In the case of K = 50, the AUC for gRTM and RDL is
94.53% and 96.37% respectively for citeulike-a. Similarly,
the margins are even larger for citeulike-t and arXiv (86.85%
versus 96.37% and 86.78% versus 90.52%).

Table 1 shows the link rank and AUC of RDL when K =
50 and L is set to 2, 4, and 6 (corresponding to 1-layer, 2-
layer, and 3-layer RDL) when MAP estimation is used. As
we can see, for citeulike-a, 3-layer RDL is able to achieve
the lowest link rank while 2-layer RDL performs the best in
terms of AUC. For citeulike-t, 3-layer RDL is able to achieve
both the lowest link rank and the highest AUC. For arXiv,
2-layer RDL has the best predictive performance in terms of
both link rank and AUC. The performance slightly degrades



Table 2: Performance of RDL with different number of layers (Bayesian treatment)

Link Rank AUC
RDL-1 RDL-2 RDL-3 RDL-1 RDL-2 | RDL-3
citeulike-a 789.85 473.59 471.47 0.946 0.971 0.970
citeulike-t | 1904.83 911.31 867.78 0.906 0.956 0.960
arXiv 4965.01 | 1982.84 | 2612.12 0.801 0.914 0.866

Table 3: Link rank of baselines (the first 3 columns) and RDL variants (the last 4 columns) on three datasets (L = 4)

Method VAE+BLR  VFAE+BLR  SDAE+BLR | MAPRDL  BSDAEI+BLR  BSDAE2+BLR  BayesRDL
citeulike-a | 980.81 960.15 992.48 495.97 849.02 761.57 473.59
citeulike-t 1599.62 1531.16 1356.85 951.31 1341.15 1310.12 911.31
arXiv 3367.25 3316.29 2916.18 2028.72 2947.79 2708.17 1982.84

when L further increases to 6 possibly due to overfitting.

Similarly, Table 2 shows the link rank and AUC of RDL
when K = 50 and L is set to 2, 4, and 6 when Bayesian
treatment (GVI) is used. The results are consistent with those
of MAP estimation. With the Bayesian treatment, prediction
is more robust when both the mean and variance are taken
into account, yielding a relative boost of about 5% over RDL
with MAP estimation.

Table 3 shows the link rank for different AE variants (with
the same network structures) and RDL variants when L = 4
and K = 50. As we can see, the variational autoencoder
(Kingma and Welling 2013) combined with Bayesian logis-
tic regression (VAE+BLR), the variational fair autoencoder
(Louizos et al. 2016) combined with Bayesian logistic regres-
sion (VFAE+BLR), and the stacked denoising autoencoder
combined with Bayesian logistic regression (SDAE+BLR)
achieve similar link rank. The Bayesian SDAE (pSDAE with
our proposed Bayesian treatment) with Bayesian logistic re-
gression (BSDAE+BLR) can outperform them three (these
AE variants are not hybrid models since node attributes and
link structures are not jointly modeled). Here BSDAE1+BLR
uses only the mean produced by Bayesian SDAE as fea-
tures in BLR, and BSDAE2+BLR uses both the mean and
variance. The performance gap between BSDAE1+BLR and
BSDAE2+BLR verifies the effectiveness of BSDAE’s esti-
mated variance. As the strongest models, RDL with MAP
(MAPRDL) significantly outperforms the variants above and
RDL with Bayesian treatment (BayesRDL) is able to fur-
ther boost the performance. Note that the performance gap
between BSDAE2+BLR and BayesRDL verifies the impor-
tance of BayesRDL’s joint training. In this experiment, we
use a variant of VFAE without nuisance variables (Louizos
et al. 2016) in the semi-supervised setting (with the number
of links connected to training nodes as targets) to learn the
representations.

Case Study

To gain a better insight into the difference between RDL and
RTM, we select a test node (article) ¢ with the title ‘From
DNA sequence to transcriptional behaviour: a quantitative
approach’ as an example to visualize the latent factors (fea-
tures ¢,) learned by RDL and RTM using t-SNE (Van der
Maaten and Hinton 2008). As shown in Figure 5, the red
stars are the latent factors of articles with links to the test
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Figure 5: t-SNE visualization of latent factors learned by
RDL (left) and RTM (right).

node t. The blue circles correspond to the latent factors of
randomly sampled nodes without links to node ¢. As we can
see, the nodes with links to node ¢ are scattered all over the
plot for RTM. However, they are well separated from the
ones without links to node ¢ in RDL. Moreover, interestingly
in the RDL plot, the blue circles roughly form two clusters.
Looking into the data, we find that the small cluster on the
left consists of articles written in German, which are rare in
the datasets. The large one in the middle corresponds to some
bestselling books like ‘The 4-Hour Work Week: Escape 9-5,
Live Anywhere, and Join the New Rich’ and ‘Mary Bell’s
Complete Dehydrator Cookbook’.

Conclusion

In this paper we propose a hierarchical Bayesian model, RDL,
to jointly and deeply model the node attributes and link struc-
tures of network data. Besides learning the model using MAP
estimation, to cope with the multiple nonlinear transforma-
tions in RDL, we propose to utilize the PoG structure in RDL
to relate the inferences on different variables and derive the
GVI algorithm (that can be adapted for arbitrary neural net-
works and Bayesian networks) for learning the variables and
prediction. Experiments on three real-world datasets show
that RDL can significantly advance the state of the art.

The nature of Bayesian formulation makes it convenient
to extend RDL to incorporate other auxiliary information
for link prediction. Besides, RDL can also be extended natu-
rally to handle multi-relational data (multiple networks). A
multi-relational extension of RDL can not only jointly model
multiple networks and boost the predictive performance, but
it can also discover the relationships between different net-



works. Another interesting direction would be to adapt GVI to
unify other neural networks (e.g., CNN) and other Bayesian
networks (e.g., probabilistic topic models and probabilistic
matrix factorization) for other tasks (e.g., text modeling and
recommendation). We can also replace pSDAE with the re-
cently proposed natural-parameter networks (Wang, Shi, and
Yeung 2016) to improve efficiency and accuracy. Addition-
ally, with the uncertainty modeled, Bayesian RDL is expected
to perform much better for link prediction in settings like ac-
tive learning and bandits. The possible extensions above will
be pursued in our future work.
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