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Abstract

As a new way of training generative models, Generative Ad-
versarial Net (GAN) that uses a discriminative model to guide
the training of the generative model has enjoyed considerable
success in generating real-valued data. However, it has limi-
tations when the goal is for generating sequences of discrete
tokens. A major reason lies in that the discrete outputs from the
generative model make it difficult to pass the gradient update
from the discriminative model to the generative model. Also,
the discriminative model can only assess a complete sequence,
while for a partially generated sequence, it is non-trivial to
balance its current score and the future one once the entire
sequence has been generated. In this paper, we propose a se-
quence generation framework, called SeqGAN, to solve the
problems. Modeling the data generator as a stochastic policy in
reinforcement learning (RL), SeqGAN bypasses the generator
differentiation problem by directly performing gradient policy
update. The RL reward signal comes from the GAN discrimi-
nator judged on a complete sequence, and is passed back to
the intermediate state-action steps using Monte Carlo search.
Extensive experiments on synthetic data and real-world tasks
demonstrate significant improvements over strong baselines.

Introduction

Generating sequential synthetic data that mimics the real one
is an important problem in unsupervised learning. Recently,
recurrent neural networks (RNNs) with long short-term
memory (LSTM) cells (Hochreiter and Schmidhuber 1997)
have shown excellent performance ranging from natural lan-
guage generation to handwriting generation (Wen et al. 2015;
Graves 2013). The most common approach to training an
RNN is to maximize the log predictive likelihood of each
true token in the training sequence given the previous ob-
served tokens (Salakhutdinov 2009). However, as argued in
(Bengio et al. 2015), the maximum likelihood approaches
suffer from so-called exposure bias in the inference stage:
the model generates a sequence iteratively and predicts next
token conditioned on its previously predicted ones that may
be never observed in the training data. Such a discrepancy be-
tween training and inference can incur accumulatively along
with the sequence and will become prominent as the length
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of sequence increases. To address this problem, (Bengio et al.
2015) proposed a training strategy called scheduled sampling
(SS), where the generative model is partially fed with its own
synthetic data as prefix (observed tokens) rather than the true
data when deciding the next token in the training stage. Nev-
ertheless, (Huszár 2015) showed that SS is an inconsistent
training strategy and fails to address the problem fundamen-
tally. Another possible solution of the training/inference dis-
crepancy problem is to build the loss function on the entire
generated sequence instead of each transition. For instance,
in the application of machine translation, a task specific se-
quence score/loss, bilingual evaluation understudy (BLEU)
(Papineni et al. 2002), can be adopted to guide the sequence
generation. However, in many other practical applications,
such as poem generation (Zhang and Lapata 2014) and chat-
bot (Hingston 2009), a task specific loss may not be directly
available to score a generated sequence accurately.

General adversarial net (GAN) proposed by (Goodfellow
and others 2014) is a promising framework for alleviating the
above problem. Specifically, in GAN a discriminative net D
learns to distinguish whether a given data instance is real or
not, and a generative net G learns to confuse D by generating
high quality data. This approach has been successful and
been mostly applied in computer vision tasks of generating
samples of natural images (Denton et al. 2015).

Unfortunately, applying GAN to generating sequences has
two problems. Firstly, GAN is designed for generating real-
valued, continuous data but has difficulties in directly generat-
ing sequences of discrete tokens, such as texts (Huszár 2015).
The reason is that in GANs, the generator starts with random
sampling first and then a determistic transform, govermented
by the model parameters. As such, the gradient of the loss
from D w.r.t. the outputs by G is used to guide the genera-
tive model G (paramters) to slightly change the generated
value to make it more realistic. If the generated data is based
on discrete tokens, the “slight change” guidance from the
discriminative net makes little sense because there is prob-
ably no corresponding token for such slight change in the
limited dictionary space (Goodfellow 2016). Secondly, GAN
can only give the score/loss for an entire sequence when it
has been generated; for a partially generated sequence, it is
non-trivial to balance how good as it is now and the future
score as the entire sequence.

In this paper, to address the above two issues, we fol-
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low (Bachman and Precup 2015; Bahdanau et al. 2016) and
consider the sequence generation procedure as a sequential
decision making process. The generative model is treated
as an agent of reinforcement learning (RL); the state is the
generated tokens so far and the action is the next token to
be generated. Unlike the work in (Bahdanau et al. 2016) that
requires a task-specific sequence score, such as BLEU in
machine translation, to give the reward, we employ a discrim-
inator to evaluate the sequence and feedback the evaluation
to guide the learning of the generative model. To solve the
problem that the gradient cannot pass back to the generative
model when the output is discrete, we regard the generative
model as a stochastic parametrized policy. In our policy gra-
dient, we employ Monte Carlo (MC) search to approximate
the state-action value. We directly train the policy (genera-
tive model) via policy gradient (Sutton et al. 1999), which
naturally avoids the differentiation difficulty for discrete data
in a conventional GAN.

Extensive experiments based on synthetic and real data
are conducted to investigate the efficacy and properties of
the proposed SeqGAN. In our synthetic data environment,
SeqGAN significantly outperforms the maximum likelihood
methods, scheduled sampling and PG-BLEU. In three real-
world tasks, i.e. poem generation, speech language generation
and music generation, SeqGAN significantly outperforms
the compared baselines in various metrics including human
expert judgement.

Related Work

Deep generative models have recently drawn significant at-
tention, and the ability of learning over large (unlabeled) data
endows them with more potential and vitality (Salakhutdinov
2009; Bengio et al. 2013). (Hinton, Osindero, and Teh 2006)
first proposed to use the contrastive divergence algorithm
to efficiently training deep belief nets (DBN). (Bengio et al.
2013) proposed denoising autoencoder (DAE) that learns the
data distribution in a supervised learning fashion. Both DBN
and DAE learn a low dimensional representation (encoding)
for each data instance and generate it from a decoding net-
work. Recently, variational autoencoder (VAE) that combines
deep learning with statistical inference intended to represent
a data instance in a latent hidden space (Kingma and Welling
2014), while still utilizing (deep) neural networks for non-
linear mapping. The inference is done via variational methods.
All these generative models are trained by maximizing (the
lower bound of) training data likelihood, which, as mentioned
by (Goodfellow and others 2014), suffers from the difficulty
of approximating intractable probabilistic computations.

(Goodfellow and others 2014) proposed an alternative
training methodology to generative models, i.e. GANs, where
the training procedure is a minimax game between a gener-
ative model and a discriminative model. This framework
bypasses the difficulty of maximum likelihood learning and
has gained striking successes in natural image generation
(Denton et al. 2015). However, little progress has been made
in applying GANs to sequence discrete data generation prob-
lems, e.g. natural language generation (Huszár 2015). This is
due to the generator network in GAN is designed to be able

to adjust the output continuously, which does not work on
discrete data generation (Goodfellow 2016).

On the other hand, a lot of efforts have been made to gen-
erate structured sequences. Recurrent neural networks can be
trained to produce sequences of tokens in many applications
such as machine translation (Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2014). The most popular way of
training RNNs is to maximize the likelihood of each token
in the training data whereas (Bengio et al. 2015) pointed
out that the discrepancy between training and generating
makes the maximum likelihood estimation suboptimal and
proposed scheduled sampling strategy (SS). Later (Huszár
2015) theorized that the objective function underneath SS is
improper and explained the reason why GANs tend to gen-
erate natural-looking samples in theory. Consequently, the
GANs have great potential but are not practically feasible to
discrete probabilistic models currently.

As pointed out by (Bachman and Precup 2015), the se-
quence data generation can be formulated as a sequential
decision making process, which can be potentially be solved
by reinforcement learning techniques. Modeling the sequence
generator as a policy of picking the next token, policy gradi-
ent methods (Sutton et al. 1999) can be adopted to optimize
the generator once there is an (implicit) reward function to
guide the policy. For most practical sequence generation
tasks, e.g. machine translation (Sutskever, Vinyals, and Le
2014), the reward signal is meaningful only for the entire
sequence, for instance in the game of Go (Silver et al. 2016),
the reward signal is only set at the end of the game. In those
cases, state-action evaluation methods such as Monte Carlo
(tree) search have been adopted (Browne et al. 2012). By
contract, our proposed SeqGAN extends GANs with the RL-
based generator to solve the sequence generation problem,
where a reward signal is provided by the discriminator at the
end of each episode via Monte Carlo approach, and the gen-
erator picks the action and learns the policy using estimated
overall rewards.

Sequence Generative Adversarial Nets

The sequence generation problem is denoted as follows.
Given a dataset of real-world structured sequences, train a
θ-parameterized generative model Gθ to produce a sequence
Y1:T = (y1, . . . , yt, . . . , yT ), yt ∈ Y , where Y is the vocabu-
lary of candidate tokens. We interpret this problem based on
reinforcement learning. In timestep t, the state s is the current
produced tokens (y1, . . . , yt−1) and the action a is the next
token yt to select. Thus the policy model Gθ(yt|Y1:t−1) is
stochastic, whereas the state transition is deterministic af-
ter an action has been chosen, i.e. δas,s′ = 1 for the next
state s′ = Y1:t if the current state s = Y1:t−1 and the action
a = yt; for other next states s′′, δas,s′′ = 0.

Additionally, we also train a φ-parameterized discrimina-
tive model Dφ (Goodfellow and others 2014) to provide a
guidance for improving generator Gθ. Dφ(Y1:T ) is a prob-
ability indicating how likely a sequence Y1:T is from real
sequence data or not. As illustrated in Figure 1, the discrimi-
native model Dφ is trained by providing positive examples
from the real sequence data and negative examples from the
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Figure 1: The illustration of SeqGAN. Left: D is trained over
the real data and the generated data by G. Right: G is trained
by policy gradient where the final reward signal is provided
by D and is passed back to the intermediate action value via
Monte Carlo search.

synthetic sequences generated from the generative model Gθ.
At the same time, the generative model Gθ is updated by em-
ploying a policy gradient and MC search on the basis of the
expected end reward received from the discriminative model
Dφ. The reward is estimated by the likelihood that it would
fool the discriminative model Dφ. The specific formulation
is given in the next subsection.

SeqGAN via Policy Gradient

Following (Sutton et al. 1999), when there is no interme-
diate reward, the objective of the generator model (policy)
Gθ(yt|Y1:t−1) is to generate a sequence from the start state
s0 to maximize its expected end reward:

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθ
Dφ

(s0, y1), (1)

where RT is the reward for a complete sequence. Note that
the reward is from the discriminator Dφ, which we will dis-
cuss later. QGθ

Dφ
(s, a) is the action-value function of a se-

quence, i.e. the expected accumulative reward starting from
state s, taking action a, and then following policy Gθ. The
rational of the objective function for a sequence is that start-
ing from a given initial state, the goal of the generator is to
generate a sequence which would make the discriminator
consider it is real.

The next question is how to estimate the action-value
function. In this paper, we use the REINFORCE algorithm
(Williams 1992) and consider the estimated probability of
being real by the discriminator Dφ(Y

n
1:T ) as the reward. For-

mally, we have:

Q
Gθ
Dφ

(a = yT , s = Y1:T−1) = Dφ(Y1:T ). (2)

However, the discriminator only provides a reward value for
a finished sequence. Since we actually care about the long-
term reward, at every timestep, we should not only consider
the fitness of previous tokens (prefix) but also the resulted
future outcome. This is similar to playing the games such
as Go or Chess where players sometimes would give up the
immediate interests for the long-term victory (Silver et al.
2016). Thus, to evaluate the action-value for an intermediate
state, we apply Monte Carlo search with a roll-out policy Gβ
to sample the unknown last T − t tokens. We represent an
N -time Monte Carlo search as{

Y 1
1:T , . . . , Y

N
1:T

}
= MCGβ (Y1:t;N), (3)

where Y n
1:t = (y1, . . . , yt) and Y n

t+1:T is sampled based on
the roll-out policy Gβ and the current state. In our experi-
ment, Gβ is set the same as the generator, but one can use
a simplified version if the speed is the priority (Silver et al.
2016). To reduce the variance and get more accurate assess-
ment of the action value, we run the roll-out policy starting
from current state till the end of the sequence for N times to
get a batch of output samples. Thus, we have:

Q
Gθ
Dφ

(s = Y1:t−1, a = yt) = (4){
1
N

∑N
n=1 Dφ(Y

n
1:T ), Y n

1:T ∈ MCGβ (Y1:t;N) for t < T
Dφ(Y1:t) for t = T ,

where, we see that when no intermediate reward, the function
is iteratively defined as the next-state value starting from state
s′ = Y1:t and rolling out to the end.

A benefit of using the discriminator Dφ as a reward func-
tion is that it can be dynamically updated to further improve
the generative model iteratively. Once we have a set of more
realistic generated sequences, we shall re-train the discrimi-
nator model as follows:

min
φ

−EY ∼pdata [logDφ(Y )]− EY ∼Gθ [log(1−Dφ(Y ))]. (5)

Each time when a new discriminator model has been ob-
tained, we are ready to update the generator. The proposed
policy based method relies upon optimizing a parametrized
policy to directly maximize the long-term reward. Following
(Sutton et al. 1999), the gradient of the objective function
J(θ) w.r.t. the generator’s parameters θ can be derived as

∇θJ(θ) = EY1:t−1∼Gθ

[ ∑

yt∈Y
∇θGθ(yt|Y1:t−1) ·QGθ

Dφ
(Y1:t−1, yt)

]
.

(6)

The above form is due to the deterministic state transition
and zero intermediate rewards. The detailed derivation is
provided in the supplementary material1. Using likelihood
ratios (Glynn 1990; Sutton et al. 1999), we build an unbiased
estimation for Eq. (6) (on one episode):

∇θJ(θ) � 1

T

T∑

t=1

∑

yt∈Y
∇θGθ(yt|Y1:t−1) · QGθ

Dφ
(Y1:t−1, yt) (7)

=
1

T

T∑

t=1

∑

yt∈Y
Gθ(yt|Y1:t−1)∇θ logGθ(yt|Y1:t−1) · QGθ

Dφ
(Y1:t−1, yt)

=
1

T

T∑

t=1

Eyt∼Gθ(yt|Y1:t−1)[∇θ logGθ(yt|Y1:t−1) · QGθ
Dφ

(Y1:t−1, yt)],

where Y1:t−1 is the observed intermediate state sampled
from Gθ. Since the expectation E[·] can be approximated by
sampling methods, we then update the generator’s parameters
as:

θ ← θ + αh∇θJ(θ), (8)

where αh ∈ R
+ denotes the corresponding learning rate

at h-th step. Also the advanced gradient algorithms such as
Adam and RMSprop can be adopted here.

1https://arxiv.org/abs/1609.05473
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Algorithm 1 Sequence Generative Adversarial Nets
Require: generator policy Gθ; roll-out policy Gβ ; discriminator

Dφ; a sequence dataset S = {X1:T }
1: Initialize Gθ , Dφ with random weights θ, φ.
2: Pre-train Gθ using MLE on S
3: β ← θ
4: Generate negative samples using Gθ for training Dφ

5: Pre-train Dφ via minimizing the cross entropy
6: repeat
7: for g-steps do
8: Generate a sequence Y1:T = (y1, . . . , yT ) ∼ Gθ

9: for t in 1 : T do
10: Compute Q(a = yt; s = Y1:t−1) by Eq. (4)
11: end for
12: Update generator parameters via policy gradient Eq. (8)
13: end for
14: for d-steps do
15: Use current Gθ to generate negative examples and com-

bine with given positive examples S
16: Train discriminator Dφ for k epochs by Eq. (5)
17: end for
18: β ← θ
19: until SeqGAN converges

In summary, Algorithm 1 shows full details of the pro-
posed SeqGAN. At the beginning of the training, we use
the maximum likelihood estimation (MLE) to pre-train Gθ

on training set S. We found the supervised signal from the
pre-trained discriminator is informative to help adjust the
generator efficiently.

After the pre-training, the generator and discriminator are
trained alternatively. As the generator gets progressed via
training on g-steps updates, the discriminator needs to be re-
trained periodically to keeps a good pace with the generator.
When training the discriminator, positive examples are from
the given dataset S , whereas negative examples are generated
from our generator. In order to keep the balance, the number
of negative examples we generate for each d-step is the same
as the positive examples. And to reduce the variability of the
estimation, we use different sets of negative samples com-
bined with positive ones, which is similar to bootstrapping
(Quinlan 1996).

The Generative Model for Sequences

We use recurrent neural networks (RNNs) (Hochreiter and
Schmidhuber 1997) as the generative model. An RNN
maps the input embedding representations x1, . . . ,xT of
the sequence x1, . . . , xT into a sequence of hidden states
h1, . . . ,hT by using the update function g recursively.

ht = g(ht−1,xt) (9)

Moreover, a softmax output layer z maps the hidden states
into the output token distribution

p(yt|x1, . . . , xt) = z(ht) = softmax(c+ V ht), (10)

where the parameters are a bias vector c and a weight ma-
trix V . To deal with the common vanishing and exploding
gradient problem (Goodfellow, Bengio, and Courville 2016)
of the backpropagation through time, we leverage the Long

Short-Term Memory (LSTM) cells (Hochreiter and Schmid-
huber 1997) to implement the update function g in Eq. (9). It
is worth noticing that most of the RNN variants, such as the
gated recurrent unit (GRU) (Cho et al. 2014) and soft atten-
tion mechanism (Bahdanau, Cho, and Bengio 2014), can be
used as a generator in SeqGAN.

The Discriminative Model for Sequences

Deep discriminative models such as deep neural network
(DNN) (Veselỳ et al. 2013), convolutional neural network
(CNN) (Kim 2014) and recurrent convolutional neural net-
work (RCNN) (Lai et al. 2015) have shown a high perfor-
mance in complicated sequence classification tasks. In this
paper, we choose the CNN as our discriminator as CNN
has recently been shown of great effectiveness in text (to-
ken sequence) classification (Zhang and LeCun 2015). Most
discriminative models can only perform classification well
for an entire sequence rather than the unfinished one. In this
paper, we also focus on the situation where the discriminator
predicts the probability that a finished sequence is real.2

We first represent an input sequence x1, . . . , xT as:

E1:T = x1 ⊕ x2 ⊕ . . .⊕ xT , (11)

where xt ∈ R
k is the k-dimensional token embedding and

⊕ is the concatenation operator to build the matrix E1:T ∈
R

T×k. Then a kernel w ∈ R
l×k applies a convolutional

operation to a window size of l words to produce a new
feature map:

ci = ρ(w ⊗ Ei:i+l−1 + b), (12)

where ⊗ operator is the summation of elementwise pro-
duction, b is a bias term and ρ is a non-linear function.
We can use various numbers of kernels with different win-
dow sizes to extract different features. Finally we apply
a max-over-time pooling operation over the feature maps
c̃ = max {c1, . . . , cT−l+1}.

To enhance the performance, we also add the highway ar-
chitecture (Srivastava, Greff, and Schmidhuber 2015) based
on the pooled feature maps. Finally, a fully connected layer
with sigmoid activation is used to output the probability that
the input sequence is real. The optimization target is to min-
imize the cross entropy between the ground truth label and
the predicted probability as formulated in Eq. (5).

Detailed implementations of the generative and discrimi-
native models are provided in the supplementary material.

Synthetic Data Experiments

To test the efficacy and add our understanding of SeqGAN,
we conduct a simulated test with synthetic data3. To simulate
the real-world structured sequences, we consider a language
model to capture the dependency of the tokens. We use a
randomly initialized LSTM as the true model, aka, the oracle,
to generate the real data distribution p(xt|x1, . . . , xt−1) for
the following experiments.

2In our work, the generated sequence has a fixed length T , but
note that CNN is also capable of the variable-length sequence dis-
crimination with the max-over-time pooling technique (Kim 2014).

3Experiment code: https://github.com/LantaoYu/SeqGAN
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Evaluation Metric

The benefit of having such oracle is that firstly, it provides
the training dataset and secondly evaluates the exact perfor-
mance of the generative models, which will not be possible
with real data. We know that MLE is trying to minimize the
cross-entropy between the true data distribution p and our
approximation q, i.e. −Ex∼p log q(x). However, the most ac-
curate way of evaluating generative models is that we draw
some samples from it and let human observers review them
based on their prior knowledge. We assume that the human
observer has learned an accurate model of the natural distribu-
tion phuman(x). Then in order to increase the chance of pass-
ing Turing Test, we actually need to minimize the exact op-
posite average negative log-likelihood −Ex∼q log phuman(x)
(Huszár 2015), with the role of p and q exchanged. In our
synthetic data experiments, we can consider the oracle to be
the human observer for real-world problems, thus a perfect
evaluation metric should be

NLLoracle = −EY1:T∼Gθ

[ T∑
t=1

logGoracle(yt|Y1:t−1)
]
, (13)

where Gθ and Goracle denote our generative model and the
oracle respectively.

At the test stage, we use Gθ to generate 100,000 sequence
samples and calculate NLLoracle for each sample by Goracle
and their average score. Also significance tests are performed
to compare the statistical properties of the generation perfor-
mance between the baselines and SeqGAN.

Training Setting

To set up the synthetic data experiments, we first initialize
the parameters of an LSTM network following the normal
distribution N (0, 1) as the oracle describing the real data dis-
tribution Goracle(xt|x1, . . . , xt−1). Then we use it to generate
10,000 sequences of length 20 as the training set S for the
generative models.

In SeqGAN algorithm, the training set for the discriminator
is comprised by the generated examples with the label 0 and
the instances from S with the label 1. For different tasks, one
should design specific structure for the convolutional layer
and in our synthetic data experiments, the kernel size is from
1 to T and the number of each kernel size is between 100 to
2004. Dropout (Srivastava et al. 2014) and L2 regularization
are used to avoid over-fitting.

Four generative models are compared with SeqGAN. The
first model is a random token generation. The second one
is the MLE trained LSTM Gθ. The third one is scheduled
sampling (Bengio et al. 2015). The fourth one is the Policy
Gradient with BLEU (PG-BLEU). In the scheduled sampling,
the training process gradually changes from a fully guided
scheme feeding the true previous tokens into LSTM, towards
a less guided scheme which mostly feeds the LSTM with its
generated tokens. A curriculum rate ω is used to control the
probability of replacing the true tokens with the generated
ones. To get a good and stable performance, we decrease ω by
0.002 for every training epoch. In the PG-BLEU algorithm,
we use BLEU, a metric measuring the similarity between a
generated sequence and references (training data), to score
the finished samples from Monte Carlo search.

4Implementation details are in the supplementary material.

Table 1: Sequence generation performance comparison. The
p-value is between SeqGAN and the baseline from T-test.

Algorithm Random MLE SS PG-BLEU SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736

p-value < 10−6 < 10−6 < 10−6 < 10−6

Figure 2: Negative log-likelihood convergence w.r.t. the train-
ing epochs. The vertical dashed line represents the end of
pre-training for SeqGAN, SS and PG-BLEU.

Results

The NLLoracle performance of generating sequences from the
compared policies is provided in Table 1. Since the evaluation
metric is fundamentally instructive, we can see the impact
of SeqGAN, which outperforms other baselines significantly.
A significance T-test on the NLLoracle score distribution of
the generated sequences from the compared models is also
performed, which demonstrates the significant improvement
of SeqGAN over all compared models.

The learning curves shown in Figure 2 illustrate the superi-
ority of SeqGAN explicitly. After about 150 training epochs,
both the maximum likelihood estimation and the schedule
sampling methods converge to a relatively high NLLoracle
score, whereas SeqGAN can improve the limit of the genera-
tor with the same structure as the baselines significantly. This
indicates the prospect of applying adversarial training strate-
gies to discrete sequence generative models to breakthrough
the limitations of MLE. Additionally, SeqGAN outperforms
PG-BLEU, which means the discriminative signal in GAN
is more general and effective than a predefined score (e.g.
BLEU) to guide the generative policy to capture the underly-
ing distribution of the sequence data.

Discussion

In our synthetic data experiments, we find that the stability
of SeqGAN depends on the training strategy. More specifi-
cally, the g-steps, d-steps and k parameters in Algorithm 1
have a large effect on the convergence and performance of
SeqGAN. Figure 3 shows the effect of these parameters. In
Figure 3(a), the g-steps is much larger than the d-steps and
epoch number k, which means we train the generator for
many times until we update the discriminator. This strategy
leads to a fast convergence but as the generator improves
quickly, the discriminator cannot get fully trained and thus
will provide a misleading signal gradually. In Figure 3(b),
with more discriminator training epochs, the unstable training
process is alleviated. In Figure 3(c), we train the generator
for only one epoch and then before the discriminator gets
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(a) g-steps=100, d-steps=1,
k=10

(b) g-steps=30, d-steps=1,
k=30

(c) g-steps=1, d-steps=1, k=10 (d) g-steps=1, d-steps=5, k=3

Figure 3: Negative log-likelihood convergence performance
of SeqGAN with different training strategies. The vertical
dashed line represents the beginning of adversarial training.

fooled, we update it immediately based on the more realistic
negative examples. In such a case, SeqGAN learns stably.

The d-steps in all three training strategies described above
is set to 1, which means we only generate one set of neg-
ative examples with the same number as the given dataset,
and then train the discriminator on it for various k epochs.
But actually we can utilize the potentially unlimited num-
ber of negative examples to improve the discriminator. This
trick can be considered as a type of bootstrapping, where
we combine the fixed positive examples with different neg-
ative examples to obtain multiple training sets. Figure 3(d)
shows this technique can improve the overall performance
with good stability, since the discriminator is shown more
negative examples and each time the positive examples are
emphasized, which will lead to a more comprehensive guid-
ance for training generator. This is in line with the theorem in
(Goodfellow and others 2014). When analyzing the conver-
gence of generative adversarial nets, an important assumption
is that the discriminator is allowed to reach its optimum given
G. Only if the discriminator is capable of differentiating real
data from unnatural data consistently, the supervised signal
from it can be meaningful and the whole adversarial training
process can be stable and effective.

Real-world Scenarios

To complement the previous experiments, we also test Se-
qGAN on several real-world tasks, i.e. poem composition,
speech language generation and music generation.

Text Generation

For text generation scenarios, we apply the proposed Seq-
GAN to generate Chinese poems and Barack Obama political
speeches. In the poem composition task, we use a corpus5

of 16,394 Chinese quatrains, each containing four lines of

5http://homepages.inf.ed.ac.uk/mlap/Data/EMNLP14/

Table 2: Chinese poem generation performance comparison.
Algorithm Human score p-value BLEU-2 p-value

MLE 0.4165 0.0034 0.6670
< 10−6

SeqGAN 0.5356 0.7389

Real data 0.6011 0.746

Table 3: Obama political speech generation performance.
Algorithm BLEU-3 p-value BLEU-4 p-value

MLE 0.519
< 10−6 0.416 0.00014SeqGAN 0.556 0.427

Table 4: Music generation performance comparison.
Algorithm BLEU-4 p-value MSE p-value

MLE 0.9210
< 10−6 22.38 0.00034SeqGAN 0.9406 20.62

twenty characters in total. To focus on a fully automatic so-
lution and stay general, we did not use any prior knowledge
of special structure rules in Chinese poems such as specific
phonological rules. In the Obama political speech genera-
tion task, we use a corpus6, which is a collection of 11,092
paragraphs from Obama’s political speeches.

We use BLEU score as an evaluation metric to measure
the similarity degree between the generated texts and the
human-created texts. BLEU is originally designed to auto-
matically judge the machine translation quality (Papineni et
al. 2002). The key point is to compare the similarity between
the results created by machine and the references provided
by human. Specifically, for poem evaluation, we set n-gram
to be 2 (BLEU-2) since most words (dependency) in classical
Chinese poems consist of one or two characters (Yi, Li, and
Sun 2016) and for the similar reason, we use BLEU-3 and
BLEU-4 to evaluate Obama speech generation performance.
In our work, we use the whole test set as the references in-
stead of trying to find some references for the following line
given the previous line (He, Zhou, and Jiang 2012). The rea-
son is in generation tasks we only provide some positive
examples and then let the model catch the patterns of them
and generate new ones. In addition to BLEU, we also choose
poem generation as a case for human judgement since a poem
is a creative text construction and human evaluation is ideal.
Specifically, we mix the 20 real poems and 20 each gener-
ated from SeqGAN and MLE. Then 70 experts on Chinese
poems are invited to judge whether each of the 60 poem is
created by human or machines. Once regarded to be real, it
gets +1 score, otherwise 0. Finally, the average score for each
algorithm is calculated.

The experiment results are shown in Tables 2 and 3, from
which we can see the significant advantage of SeqGAN over
the MLE in text generation. Particularly, for poem composi-
tion, SeqGAN performs comparably to real human data.

Music Generation

For music composition, we use Nottingham7 dataset as our
training data, which is a collection of 695 music of folk tunes

6https://github.com/samim23/obama-rnn
7http://www.iro.umontreal.ca/∼lisa/deep/data
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in midi file format. We study the solo track of each music.
In our work, we use 88 numbers to represent 88 pitches,
which correspond to the 88 keys on the piano. With the pitch
sampling for every 0.4s8, we transform the midi files into
sequences of numbers from 1 to 88 with the length 32.

To model the fitness of the discrete piano key patterns,
BLEU is used as the evaluation metric. To model the fitness
of the continuous pitch data patterns, the mean squared error
(MSE) (Manaris et al. 2007) is used for evaluation.

From Table 4, we see that SeqGAN outperforms the MLE
significantly in both metrics in the music generation task.

Conclusion

In this paper, we proposed a sequence generation method,
SeqGAN, to effectively train generative adversarial nets for
structured sequences generation via policy gradient. To our
best knowledge, this is the first work extending GANs to
generate sequences of discrete tokens. In our synthetic data
experiments, we used an oracle evaluation mechanism to
explicitly illustrate the superiority of SeqGAN over strong
baselines. For three real-world scenarios, i.e., poems, speech
language and music generation, SeqGAN showed excellent
performance on generating the creative sequences. We also
performed a set of experiments to investigate the robustness
and stability of training SeqGAN. For future work, we plan
to build Monte Carlo tree search and value network (Silver et
al. 2016) to improve action decision making for large scale
data and in the case of longer-term planning.
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