
Efficient Online Model Adaptation
by Incremental Simplex Tableau

Zhixian Lei,1 Xuehan Ye,2 Yongcai Wang,2∗ Deying Li,2 Jia Xu3

1 Department of Computer Sciences, Harward University, USA;
2 Department of Computer Sciences, Renmin University of China, Beijing;
3 Department of Computer Sciences, City University of New York, USA

Abstract

Online multi-kernel learning is promising in the era of mobile
computing, in which a combined classifier with multiple ker-
nels are offline trained, and online adapts to personalized fea-
tures for serving the end user precisely and smartly. The on-
line adaptation is mainly carried out at the end-devices, which
requires the adaptation algorithms to be light, efficient and
accurate. Previous results focused mainly on efficiency. This
paper proposes an novel online model adaptation framework
for not only efficiency but also optimal online adaptation.
At first, an online optimal incremental simplex tableau (IST)
algorithm is proposed, which approaches the model adaption
by linear programming and produces the optimized model up-
date in each step when a personalized training data is col-
lected. But keeping online optimal in each step is expensive
and may cause over-fitting especially when the online data
is noisy. A Fast-IST approach is therefore proposed, which
measures the deviation between the training data and the cur-
rent model. It schedules updating only when enough devia-
tion is detected. The efficiency of each update is further en-
hanced by running IST only limited iterations, which bounds
the computation complexity. Theoretical analysis and exten-
sive evaluations show that Fast-IST saves computation cost
greatly, while achieving speedy and accurate model adapta-
tion. It provides better model adaptation speed and accuracy
while using even lower computing cost than the state-of-the-
art.

Introduction

Online adaptive learning is widely required in the era of mo-
bile and wearable computing(Song et al. 2014), in which a
classifier, generally trained offline, needs to adapt to the per-
sonalized features after being delivered to end users. The
goal is to serve the end users precisely and smartly (Gu,
Pung, and Zhang 2005).

Challenges are posed from three aspects: 1) the online
model adaptation is mainly carried out at the end devices,
requiring the adaptation algorithms to be efficient for en-
ergy efficiency etc. 2) The personalized online training data
is generally noisy, challenging the adaptation speed and the
risk of over-fitting. 3) The training data comes from multi-

∗corresponding author: Yongcai Wang, ycw@ruc.edu.cn
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ple sources or in different metric spaces, requiring adaptive
feature selection and weighting (Hong, Suh, and Kim 2009).

Model learning from multiple features of different metric
spaces, was traditionally, mainly studied in offline feature
selection (Baram 2005) (Huang and Chow 2005). Automatic
and adaptive feature weighting was proposed by multi-
kernel learning (MKL)(Sonnenburg et al. 2006) (Gönen and
Alpaydin 2011), which learns an optimal linear or non-linear
combination of a set of predefined kernels to reduce the bias
of manually weighting.

The flexibility of adaptively multiple feature weighting by
combining multiple kernels enables recent studies for online
multiple kernel learning (OMKL) (Martins et al. 2011)(Hoi
et al. 2012)(Wang et al. 2015). OMKL generally composes
two online learning sub-problems: 1) perception (Freund
and Schapire 1999) , to train a basic classifier (BC) for each
given kernel; and 2) combination, which is to weight and
combine the BCs to generate a combined, more accurate
classifier. Since the training of the BCs and the optimiza-
tion of the combining weights for BCs are generally cou-
pled, which involves quadratic programming(Lanckriet et al.
2004) or semi-infinite linear programming (Sonnenburg et
al. 2006)(Rakotomamonjy et al. 2007), OMKL is generally
computation extensive, even in offline training. Therefore,
seeking efficiency is the major focus of current OMKL al-
gorithms.

A major approach for efficiency is to decouple the percep-
tion and the classifier combination steps by training the BCs
offline. This reduces the online learning problem to only
adapt the combination weights based on the online training
data (Kembhavi et al. 2009) (Orabona et al. 2010) (Jin, Hoi,
and Yang 2010). The key idea is to increase the weights for
the BCs whose outputs coincide with the online collected
training data, and to decrease if inconsistent (Chaudhuri,
Freund, and Hsu 2009)(Kembhavi et al. 2009).

But a key challenge of focusing on efficiency is the lack
of guarantee on the responding speed. Like in hedge(Chaud-
huri, Freund, and Hsu 2009)(Freund and Schapire 1997), the
model coefficients are updated only one time when a training
data is applied. The accurate adaptation thus requires correc-
tions by many training instances, leading to slow adaptation.
This paper, instead, seeks efficient, speedy, and optimal on-
line adapation. It at first proposes an incremental simplex
tableau (IST) algorithm, which can produce the optimal lin-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2161



ear weights in each step based on the online collected train-
ing data. It is in practice carried out by simple row and col-
umn operations in the simplex tableau (Schrijver 1986). The
intuition is that the tableau saves the previous optimal state,
and the new optimal is generally not far from the old opti-
mal, which can be achieved quickly.

But keeping optimal in each step is expensive and not nec-
essary, especially when the training data is noisy. A Fast-IST
framework is therefore developed for efficiency and noise
tolerance. It uses a mini-batch, fixed-iteration online adap-
tation strategy (Bottou 1998). The online training data are
organized into batches. Only when the majority of samples
in a batch are far from the current model, will the algorithm
update the model by fixed-iteration IST, i.e., fixed steps of
simplex operations. In this way, the frequency of updating
is reduced; the possible wrong samples are filtered; and the
cost in each updating is bounded. Analysis and evaluations
by both simulations and experimental data showed that Fast-
IST provided better classification accuracy and speedy re-
sponding than the current OMKL approaches(Freund and
Schapire 1997)(Chaudhuri, Freund, and Hsu 2009), using
even less computation costs.

The rest of the paper is organized as following. Problem
model and preliminaries are introduced in Section 2. IST is
introduced in Section 3. Fast-IST is introduced in Section 4.
Property analysis and performance evaluations are summa-
rized in Section 5. The paper is concluded with remarks in
Section 6.

Problem model and Preliminaries

This paper considers a general application scenario of
OMKL, where a classifier composed by linear combination
of multiple basic classifiers (BC) have been offline trained.
We want the model, i.e., the linear weights, can online adapt
to personalized data when the classifier is used by a user. The
goal is to make the adaptation quick and use less computa-
tion cost. Since the multi-class classification problem can be
transformed to binary classification by constructing a binary
tree, for simplicity of exposition, we focus on binary classi-
fication in this paper.

Considering personalized data is arriving in a stream
(x1, y1), (x2, y2), . . ., where xi is the ith feature data and
yi is the corresponding class label: yi ∈ {−1, 1}. The set of
BCs is {Gj : Gj(x) ∈ {−1, 1}, j ∈ [m]} where Gj(xi) is
a prediction of yi. After receiving nth data, ideally we hope
to find suitable combining weights {aj : j ∈ [m]} such that
the combined classifier can produce better classification than
the offline trained one. The combined classifier is:

G(x) = sign

⎡
⎣ m∑
j=1

ajGj(x)

⎤
⎦ (1)

where [n] and [m] denote {1, 2, . . . n} and {1, 2 . . . ,m} re-
spectively. Since all Gjs are BCs offline trained, we assume
Gj can classify xi correctly with probability higher than
50%, which is more powerful than random prediction.

The model adaptation can be transformed into an op-
timization problem. We seek ∀j ∈ [m], aj ≥ 0 and

∑m
j=1 aj = 1, such that the following objective is mini-

mized:

minimize:
n∑

i=1

εi (2)

subject to: yi

m∑
j=1

ajGj(xi) ≥ −εi ∀i ∈ [n]

εi ≥ 0 ∀i ∈ [n]

where {εi : i ∈ [n]} is the possible error of the combined
new classifier G.

Note that, the optimal G from this linear programming
should have less training error than any Gj , i.e., providing
not worse prediction accuracy for xi, since we can always
achieve G = Gj by assigning aj = 1 and ai = 0 ∀i ∈
[m], i �= j.

Theorem 1. If basic classifiers predicts independently and
randomly, the prediction error of the optimal G decreases
exponentially with m.

Proof. Suppose ∀j ∈ [m], Gj randomly predicts with
correct probability pj > 1/2. Then the expectation
E[yiGj(xi)] = pj − (1− pj) = 2pj − 1 and

E

⎡
⎣yi

m∑
j=1

ajGj(xi)

⎤
⎦ =

m∑
j=1

aj(2pj − 1) (3)

If we take aj = 1/m ∀j ∈ [m] and let
∑m

j=1(2pj − 1)aj =
2p∗−1, by Hoeffding’s inequality, the probability for incor-
rect prediction on (xi, yi) is

Pr

⎡
⎣yi

m∑
j=1

ajGj(xi) < 0

⎤
⎦ ≤ e−Ω(m(2p∗−1)2) (4)

Thus, the theorem holds.

This theorem provides some worst case analyses for our
mechanism when all basic classifiers are independent and
random. The effectiveness of the algorithm in these settings
in general demonstrates a better performance in real life ap-
plication.

The key problem for online learning is to adapt the model
weights efficiently and correctly. This contains two folds: 1)
an efficient online model adapation algorithm; 2) efficient
online data preprocessing to schedule the model update to
avoid high computation cost and over-fitting. Solutions to
these two problems are presented as following:

Incremental Simplex Tableau (IST)

Because the linear optimization problem in (2) can be opti-
mally solved by linear programming. An incremental linear
programming approach is designed for both optimality and
efficiency.

2162



Simplex Tableau

For self-containing, the simplex tableau method and related
operations are introduced in this part. For more information
about simplex algorithm and related topics, please refer to
(Schrijver 1986)

Simplex algorithm is a method for solving general linear
programming problem, which finds a vertex x to minimize
objective utx from vertexes on a high dimensional convex
polytope defined by {x : Dx ≤ f ,x ≥ 0}. Since the opti-
mal solution can always be found in the convex linear pro-
gramming problem, the algorithm stops when no neighbor
vertex have smaller utx than the current vertex. The dual
simplex algorithm can be considered as running simplex al-
gorithm on the dual problem of the linear programming.

The simplex algorithm is often executed inside simplex
tableau, which converts the problem into a standard form:

minimize: utx (5)
subject to: Dx+ y = f

x ≥ 0

y ≥ 0

Then it is written into a tableau representation:[
0 −ut δ
I D f

]
(6)

which is the initial tableau for the problem, where I is the
identity matrix and 0 is the all-zero matrix.

The simplex and dual simplex algorithm iteratively ex-
change one variable in xB with one variable in xN until
obtaining the the optimal solution. The optimal solution is
achieved when u ≥ 0 and f ≥ 0. The exchange is achieved
by conducting pivot operations repeatedly.
Definition 1 (pivot operation). The pivot operation contains
following two steps:

1. Exchange the columns of two variables to make the col-
umn of the variable in xN inside the identity matrix.

2. Use Gaussian elimination to eliminate the off-diagonal
terms in the arriving column inside the identity matrix and
the first row to reconstruct the identity matrix.
When it is not optimal, the simplex tableau has following

two states and corresponding updating schemes:
• FnO State: If f ≥ 0 but u � 0, the solution is feasible but

not optimal. Suppose uk < 0 and the variable correspond-
ing to the column of uk is xk ∈ xN , Simplex exchanges
xk with one variable in xB to make uk = 0. Note that,
it chooses suitable variable to leave xB such that f ≥ 0
always holds. It repeats this process until u ≥ 0 to find
the optimal solution.

• OnF State: If u ≥ 0 but f � 0, the solution is optimal
but not feasible. Then dual simplex algorithm can be used
to adjust the simplex tableau to the optimal one. Suppose
fk < 0 and the variable in the identity matrix assigned by
fk is xk ∈ xB . Then xk is exchanged with one variable in
xN to make fk ≥ 0. It chooses suitable variable to enter
xB such that u ≥ 0 holds. The process is repeated until
f ≥ 0 to find the optimal solution.

In Simplex, when choosing the suitable variable to ex-
change, if there are multiple choices, the rule is to choose
the variable that can decrease δ to the largest extent. When
using dual-simplex algorithm, the rule is to choose variable
to increase δ to the largest extent. Since δ is the value of
ctx, in this way, the optimal solution can be achieved in the
fastest way.

Incremental Simplex Tableau

The linear programming problem stated in (2)-(6) can be
transformed into the standard linear programming form,
whose initial simplex tableau can be represented as:⎡

⎣ 0 −1 0 0
1 0 0 1
A I −I 0

⎤
⎦ (7)

where

A =

⎡
⎢⎣
y1G1(x1) · · · y1Gm(x1)

...
. . .

...
ynG1(xn) · · · ynGm(xn)

⎤
⎥⎦ (8)

After the offline training stage, suppose the optimal sim-
plex tableau corresponding to the optimal solution has been
obtained: [

0 −ut δ
I D f

]
(9)

where u ≥ 0 and f ≥ 0. Then the tableau preserves all the
offline learned knowledge. The optimal solution xB = f ,
xN = 0 and the minimal value δ can be found.

Then in the online phase, it only needs to consider how to
update the model by collecting online training data and how
to delete old training data, to keep a moderate size of train-
ing set when using the simplex and dual simplex algorithms.

1) Update by New Training Data When new training
data (xn+1, yn+1) is collected, new constraints are formed:

yn+1

m∑
j=1

ajGj(xn+1) + εn+1 − λn+1 = 0 (10)

εn+1 ≥ 0

λn+1 ≥ 0

Note that λi is the artificial variable to write the linear pro-
gramming model to standard form. By adding the new con-
straints into the simplex tableau, the new simplex tableau
becomes: ⎡

⎣ 0 0 −ut −1 δ
I 0 D 0 f
dt
1 1 dt

2 −1 0

⎤
⎦ (11)

where d1, d2 consists of −yn+1G1(xn+1), · · · ,
−yn+1Gm(xn+1) and zeros. Then Gaussian elimina-
tion is utilized to cancel d1 and obtain the standard form of
the simplex tableau.⎡

⎣0 0 −ut −1 δ
I 0 D′ 0 f
0 1 dt

2 − dt
1D −1 −dt

2f

⎤
⎦ (12)

2163



CASE 1: If −dt
2f ≥ 0, the optimal solution is obtained

immediately. The optimal weights remain the same. The
newly added variables λn+1 = −dt

2f , εn+1 = 0 and λn+1

are added into xB ; εn+1 is added into xN .
CASE 2: If −dt

2f < 0, it is the only negative entry in
the last column. Since in the new simplex tableau u′t =
(ut, 1) ≥ 0, the tableau is in OnF state, which can be up-
dated by iterating the pivot operation in dual simplex algo-
rithm until−d2f ≥ 0 and u ≥ 0 to achieve the new optimal
solution.

2) Update by Deleting Past Data Instead of always in-
creasing the training set, deleting scheme is also needed to
keep a moderate size of training set in the tableau represen-
tation, which not only keeps the data freshness, but also ben-
efits the computing efficiency.

Suppose (x1, y1) is to be deleted from the system, we
need to remove both the constraint and the column variable
data.

i. Remove a constraint: To remove the first constraint,
we only need to remove ε1 from the objective, because
if there is no ε1 in the objective, the first constraint
y1

∑m
j=1 ajGj(x1) + ε1 − λ1 = 0 can be always satisfied

by choosing ε1 − λ1 = −y1
∑m

j=1 ajGj(x1). Therefore the
entry corresponding to ε1 in the objective row should be in-
creased by 1 to maintain the relation ctx−utxN = δ in the
simplex tableau. When the constraint does not confine the
problem, it is identical as the constraint is removed.

i.1 CASE 1 : If ε1 is currently the non-basic solution
and u ≥ 0 is satisfied, the simplex tableau is still optimal
and the assignment of the optimal solution does not change.

i.2 CASE 2 : If the entry corresponding to ε1 becomes
negative, since f ≥ 0 still holds. The tableau is in an FnO
state, and this new optimal solution can be obtained by iter-
ating pivot operations in the simplex algorithm until u ≥ 0.

ii. Remove the variables: Not only the constraints but
also the corresponding variables need to be removed to keep
the size of the simplex tableau from always growing. It is
required to remove the column corresponding to ε1 and λ1.
Since the column corresponding to ε1 and the column corre-
sponding to λ1 are always summed to 0 in simplex tableau,
by elementary row operation, ε1 − λ1 can be eliminated si-
multaneously using y1

∑m
j=1 ajGj(x1). Also all zero rows

should appear in the standard simplex tableau after cancel-
ing ε1 and λ1. Since one constraint will be linear dependent
to other constraints, by conducting Gaussian elimination,
we can remove this row and make the size of the simplex
tableau always consistent to the size of the linear program-
ming problem.

IST keeps the online optimal classifier model for the cur-
rent training dataset. But a notable problem of IST is that it
updates the model to the optimal state when any new training
data is arrived, which is expensive and not necessary espe-
cially when the online training data is noisy. Another limita-
tion is that the worst-cast number of iterations for achieving
optimal is not determined. We therefore proposed a FAST-
IST framework for efficiency and robustness.

FAST-IST Framework

FAST-IST is composed by 1) a data processing scheme to to
schedule update; 2) model update by IST with a fixed num-
ber of iterations to bound computation cost, i.e., runs only a
fixed number of pilot operations in each update.

Data Processing to Control Update

Given data stream (x1, y1), (x2, y2), . . . , (xn, yn), we orga-
nize successive l data points {(xi, yi), i ∈ [l]} into a batch
S of length l. We want to use these l samples to measure
the derivation between the current model and the expected
model of the training data. The idea comes from majority
voting(Ao et al. 2016) (Penrose 1946)(Lam and Suen 1997).
If most of data points in S can be fitted well by the current
model, with high probability the minority unfitted samples
in S come from noise. So the model is not necessary to up-
date. But when the majority of data points violate the current
model, the current model should be updated.

To measure how well the current model fits the data point
(x, y), we can compare the error corresponding to the data
point with the average error of the model. More specifically,
suppose the current optimal model is at = (a1, a2, . . . , am)
and the average error is ε = 1

n

∑n
i=1 εi. If

−y
m∑
j=1

ajGj(x) ≥ ε (13)

it indicates that the sample data can not be well fitted by the
current model. Otherwise, the model is measured to fit the
data well. Using this measure of fitness, the data filtering
algorithm is as follows:

1. Divide stream into mini-batch {(xi, yi), i ∈ [l]} of size l

2. For all samples in {(xi, yi), i ∈ [l]}, if −yi
∑m

j=1

ajGj(xi)≥ ε, count (xi, yi) as unfitted data point

3. If number of unfitted data point is less than threshold T ,
remove {(xi, yi), i ∈ [l]} from the stream.

4. Otherwise, update the model by unfitted batch data.

Fixed-Iteration IST

Since the training data may be noisy, it is not necessary to
always pursue the optimal model to fit the data. Thus, fixed-
iteration IST is used in model update, in which the number
of iterations in Simplex is set to a constant C.

Deleting data: When deleting past data, since sim-
plex algorithm searches solution in the feasible region of the
problem, the non-optimal solution is still feasible which can
be used directly to form the combined classifier G.

Adding data: When adding new data, the dual simplex
algorithm is applied to find the optimal solution. As dual
simplex algorithm searches solution in the feasible region of
the dual problem, the non-optimal solution may not satisfy
all constraints of the problem. If there exists aj < 0 in the
non-optimal solution, we force aj = 0 and normalize a to
make the weights satisfy the constraints.

Theorem 2. The computation complexity of Fixed-Iteration
IST is O(n2), where n is the size of the online data set.

2164



Iterations
0 2 4 6 8

Fr
eq

ue
nc

y

0

0.2

0.4

0.6

0.8

1
IST cdf

(a) CDF graph of number of iterations of
IST

Threshold
0 2 4 6 8 10

Er
ro

r(%
)

10

20

30

40

50

60

Fast-IST
Hedge beta = 0.25
Hedge beta = 0.5
Hedge beta = 0.75
Hedge beta = 1

(b) Percent of error prediction by Fast-
IST as a function of threshold in window

Training data
0 20 40 60 80 100

Er
ro

r(%
)

0

10

20

30

40

50

60

Fast-IST
Hedge beta = 0.25
Hedge beta = 0.5
Hedge beta = 0.75
Hedge beta = 1

(c) Percentage of error prediction by
Fast-IST as a function of the number of
training data

Figure 1: Evaluation of parameters and response speed

Probability(%)
50 55 60 65 70 75 80

Er
ro

r(%
)

0

10

20

30

40

50

60
Fast-IST
Hedge beta = 0.25
Hedge beta = 0.5
Hedge beta = 0.75
Hedge beta = 1

(a) Percent of error prediction by Fast-IST
as a function of the correct prediction prob-
ability of the basic classifiers

Training data
0 200 400 600 800 1000

Lo
g 

tim
e

-5

-4

-3

-2

-1

0

1
Fast-IST
IST
Hedge

(b) Running time of Fast-IST as a func-
tion of the number of training data

walkup-walkdown laying-standing sitting-laying

Er
ro

r(%
)

0

10

20

30

40

50
Fast-IST
Hedge beta = 0.25
Hedge beta = 0.5
Hedge beta = 0.75
Hedge beta = 1

(c) Percent of error prediction by Fast-IST
in different class partitions

Figure 2: Evaluation of accuracy and efficiency

Proof. The process of adding new data and deleting past
data is symmetric and they have the same computational
complexity. When the system changes, a pivot operation
will visit every entry inside the columns corresponding to
xN . The size of the simplex tableau is n × (m + 2n) and
there are m + n columns corresponding to xN . So it takes
O(Cn(m+ n)) steps for one update in Fixed-Iteration IST.
Since C is a constant and m < n, the computational com-
plexity for once update is O(n2).

As the average complexity for simplex algorithm is
O(n3), The fixed iteration IST gives a Ω(n) speed up in
each iteration. If we further consider the saving from data
processing we will get an improvement of order Ω(l) for
a carefully selected batch size l. There is a potential prob-
lem when n is large since every time we use fixed iteration
IST to approximate optimal solution, the error is accumu-
lated when n is large. This can undermine the efficiency of
fixed iteration IST for later online training therefore we con-
trol the number of training data n by alternately adding and
deleting data to keep fast updating.

Performance evaluation

Performance evaluations of FAST-IST were conducted by
both simulations and actual experimental data. Efficiency
and accuracy are evaluated as the key performance for on-
line adaptation.

Settings of Simulation

In simulations, basic classifiers Gj are enumerated by ran-
dom binary predictors with prediction accuracy pj . Four as-
pects are mainly evaluated including 1) parameter impacts in
Fast-IST; 2)responding speed; 3) accuracy; and 4) running
efficiency. The parameters of Fast-IST include the number
of IST iterations, and the threshold for triggering update.
Response speed is assessed by the number of online data
needed for achieving stable aj .

The simulation uses m basic classifiers and n online train-
ing data. The correct probability of m basic classifiers are set
uniformly distributed from 55% to 80% to simulate BCs of
different accuracy. In online phase, the correct probability of
each BC pj varies to simulate the impacts of the personal-
ized features to the classifier model.

Fast-IST is compared with hedge algorithm(Chaudhuri,
Freund, and Hsu 2009), which is widely used in online

2165



learning especially in online multi-kernel learning model.
In hedge algorithm, if some classifier makes a wrong pre-
diction, when next sample of data comes, the weight of this
classifier will be penalized by a ratio 0 < β < 1. And the
hedge algorithm predicts by weighting and summarizing all
the basic classifiers’ results.

Parameter Impacts to Fast-IST

Impacts of number of iterations At first, we verified how
the number of iterations in Fast-IST will affect the perfor-
mance. We investigated the number of iterations for achiev-
ing the optimal in IST. The result, i.e., the distribution of iter-
ation number in IST for achieving the optimal update is plot-
ted in Fig.1(a), which is the cumulative distribution function
(CDF) of the iteration number. It can be seen that IST gen-
erally needs only a few iterations to update the model to the
new optimal state. This indicates the validity of bounding
the iteration times in Fast-IST, which will not much affect
the performance.

The threshold to trigger model update . In Fast-IST,
only when the numbers of wrong predictions in a batch ex-
ceeds a threshold T , will a new model update be triggered.
How dose T affect the prediction accuracy of the combined
classier after applied 100 instances of training data is shown
Fig.1(b). In simulations the batch size is set to 10. It can be
seen that, the optimal threshold is 2 or 3 when the batch size
is 10. Setting higher threshold, although can reduce the trig-
gering of update, but leads to much worse model accuracy.

Responding Speed

Responding speed is a key performance of online adaptation
algorithms. Fig.1(c) compares the response speed between
Fast-IST and hedge of different parameters. It can be seen
that Fast-IST adjusts aj more speedy than hedge. Hedge al-
gorithms with small β, e.g. 0.25 and 0.5, also adapt quickly,
because smaller β adjusts weights more severely than bigger
β. But hedge with smaller β generally provides worse accu-
racy than Fast-IST. Fast-IST converges quickly, and there
are two obvious turnings points. The reason is that the batch
length is 10. The turning points are where Fast-IST starts to
correct the model weights.

Accuracy

Fig.2(a) compares Fast-IST and hedge algorithm on the pre-
diction accuracy. In evaluation, the correct prediction proba-
bilities of all basic classifiers are varying from 50% to 80%.
It can be seen that Fast-IST have much less number of error
prediction than hedge algorithm for all the β.

Computation Efficiency

The running time of Fast-IST are compared with hedge al-
gorithm for 1000 online data. For clear comparison, we plot
log results of running time in Fig.2(b). It claims Fast-IST
works a little faster than hedge algorithm and IST works
highly more slowly than the other two algorithms. The rea-
son why Fast-IST is even faster than hedge is that after t,
i.e., the number of training data, is larger than 100, update

is rarely triggered in Fast-IST, since the model has fit the
training data well. But hedge still updates frequently.

Evaluation by Activity Recognition Dataset

Experiment Settings Human Activity Recognition Us-
ing Smartphones Data Set from open data set UCI (Lich-
man 2013) is used to evaluate Fast-IST in actual exper-
iment. The database is composed of 7352 samples from
30 users with 561 types of sensor data from smartphones
and 6 classes, <walking, walking-up, walking-down, sit-
ting, standing, laying>. We separately calculated error per-
cent <walking-up, walking-down>, <laying, standing>
and <sitting, standing>, which are hard to be classified. 187
basic KNN classifiers are chosen, each of which is trained on
3 types of sensor data.

The prediction accuracy of Fast-IST and hedge algorithm
for <walking-up, walking-down>, <laying, standing> and
<sitting, standing> are calculated and plotted in Fig.2(c).
The prediction accuracy distribution of 187 basic classifiers
for three class partitions, i.e. mean, max, min, are shown in
Table.1. It can be seen that Fast-IST and hedge algorithm
indeed give much more accurate predictions than the basic
classifiers. Especially, Fast-IST provides much better pre-
diction accuracy than hedge algorithms in all the three clas-
sification problems. In classifying some hard cases such as
walking up and walking down, Fast-IST provides significant
accuracy improvement.

mean max min
walkup-walkdown 68.3253 86.0806 47.6190

laying-standing 63.0685 100 48.8358
sitting-laying 59.2011 99.0560 48.3952

Table 2: Accuracy of basic classifiers (%)

Conclusion
This paper has investigated online learning problem for
adaptively personalizing learning model, where multiple
classifier combination is considered in particular. A simplex
based online optimizing algorithm is proposed for both ef-
ficient and performance-guaranteed online model updating.
We give the general IST algorithm and improved Fast-IST
algorithm by proper data filtering and iteration bounding.
Analysis shows that IST can guarantee the online optimal
and Fast-IST provides near-optimal update with higher effi-
ciency. The applications, specification, and further optimiza-
tion of IST and Fast-IST for particular problems, and the de-
velopment of IST for batch updates will be investigated in
future studies.

Acknowledgment
This work was supported in part by the National Natural Sci-
ence Foundation of China Grant No. 11671400, 61672524;
the Fundamental Research Funds for the Central University,
and the Research Funds of Renmin University of China,
2015030273; National Science Foundation of US awards
Computing and Communication Foundations No.1565264
and Computer and Network Systems No.1618026.

2166



References

Ao, B.; Wang, Y.; Yu, L.; Brooks, R. R.; and Iyengar, S. S.
2016. On precision bound of distributed fault-tolerant sensor
fusion algorithms. ACM Comput. Surv. 49(1):5:1–5:23.
Baram, Y. 2005. Learning by kernel polarization. Neural
Computation 17(6):1264–1275.
Bottou, L. 1998. Online learning and stochastic approxima-
tions. On-line learning in neural networks 17(9):142.
Chaudhuri, K.; Freund, Y.; and Hsu, D. J. 2009. A
parameter-free hedging algorithm. In Advances in neural
information processing systems, 297–305.
Freund, Y., and Schapire, R. E. 1997. A decision-
theoretic generalization of on-line learning and an applica-
tion to boosting. Journal of Computer and System Sciences
55(1):119 – 139.
Freund, Y., and Schapire, R. E. 1999. Large margin clas-
sification using the perceptron algorithm. Mach. Learn.
37(3):277–296.
Gönen, M., and Alpaydin, E. 2011. Multiple kernel learning
algorithms. J. Mach. Learn. Res. 12:2211–2268.
Gu, T.; Pung, H. K.; and Zhang, D. Q. 2005. A serviceori-
ented middleware for building contextaware services. Jour-
nal of Network and Computer Applications 28(1):1 – 18.
Hoi, S. C. H.; Jin, R.; Zhao, P.; and Yang, T. 2012. Online
multiple kernel classification. Machine Learning 90(2):289–
316.
Hong, J.-y.; Suh, E.-h.; and Kim, S.-J. 2009. Context-aware
systems: A literature review and classification. Expert Sys-
tems with Applications 36(4):8509–8522.
Huang, D., and Chow, T. W. 2005. Effective feature se-
lection scheme using mutual information. Neurocomputing
63:325 – 343. New Aspects in Neurocomputing: 11th Euro-
pean Symposium on Artificial Neural Networks.
Jin, R.; Hoi, S.; and Yang, T. 2010. Online multiple ker-
nel learning: Algorithms and mistake bounds. In Hutter, M.;
Stephan, F.; Vovk, V.; and Zeugmann, T., eds., Algorithmic
Learning Theory, volume 6331 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg. 390–404.
Kembhavi, A.; Siddiquie, B.; Miezianko, R.; McCloskey, S.;
and Davis, L. 2009. Incremental multiple kernel learning
for object recognition. In Computer Vision, 2009 IEEE 12th
International Conference on, 638–645.
Lam, L., and Suen, S. 1997. Application of majority vot-
ing to pattern recognition: an analysis of its behavior and
performance. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 27(5):553–568.
Lanckriet, G. R. G.; De Bie, T.; Cristianini, N.; Jordan, M. I.;
and Noble, W. S. 2004. A statistical framework for genomic
data fusion. Bioinformatics 20(16):2626–2635.
Lichman, M. 2013. UCI machine learning repository.
Martins, A. F. T.; Smith, N. A.; Xing, E. P.; Aguiar, P. M.;
and Figueiredo, M. A. 2011. Online learning of structured
predictors with multiple kernels. In AISTATS, 507–515.
Orabona, F.; Fornoni, M.; Caputo, B.; and Cesa-Bianchi, N.
2010. Om-2: An online multi-class multi-kernel learning

algorithm luo jie. In Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2010 IEEE Computer Society
Conference on, 43–50.
Penrose, L. S. 1946. The elementary statistics of majority
voting. Journal of the Royal Statistical Society 109(1):53–
57.
Rakotomamonjy, A.; Bach, F.; Canu, S.; and Grandvalet, Y.
2007. More efficiency in multiple kernel learning. In Pro-
ceedings of the 24th International Conference on Machine
Learning, ICML ’07, 775–782. New York, NY, USA: ACM.
Schrijver, A. 1986. Theory of Linear and Integer Program-
ming. New York, NY, USA: John Wiley & Sons, Inc.
Song, L.; Wang, Y.; Yang, J. J.; and Li, J. 2014. Health sens-
ing by wearable sensors and mobile phones: A survey. In e-
Health Networking, Applications and Services (Healthcom),
2014 IEEE 16th International Conference on, 453–459.
Sonnenburg, S.; Rätsch, G.; Schäfer, C.; and Schölkopf, B.
2006. Large scale multiple kernel learning. J. Mach. Learn.
Res. 7:1531–1565.
Wang, Z.; Fan, Q.; Ke, S.; and Gao, D. 2015. Structural
multiple empirical kernel learning. Information Sciences
301:124 – 140.

2167




