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Abstract

Minimax distance measures provide an effective way to cap-
ture the unknown underlying patterns and classes of the
data in a non-parametric way. We develop a general-purpose
framework to employ Minimax distances with any classifica-
tion method that performs on numerical data. For this pur-
pose, we establish a two-step strategy. First, we compute the
pairwise Minimax distances between the objects, using the
equivalence of Minimax distances over a graph and over a
minimum spanning tree constructed on that. Then, we per-
form an embedding of the pairwise Minimax distances into
a new vector space, such that their squared Euclidean dis-
tances in the new space are equal to their Minimax distances
in the original space. We also consider the cases where multi-
ple pairwise Minimax matrices are given, instead of a single
one. Thereby, we propose an embedding via first summing up
the centered matrices and then performing an eigenvalue de-
composition. We experimentally validate our framework on
different synthetic and real-world datasets.

Introduction

Data is usually described by a set of objects and a corre-
sponding representation. The representation can be for ex-
ample the vectors in a vector space or the pairwise dis-
tances between the objects. In real-world applications, the
data is often very complicated and a priori unknown. Thus,
the basic representation, e.g., Euclidean distance, Maha-
lanobis distance, cosine similarity and Pearson correlation,
might fail to correctly capture the underlying patterns or
classes. Thereby, the raw data needs to be processed fur-
ther in order to obtain a more sophisticated representa-
tion. Kernel methods are a common approach to enrich
the basic representation of the data and model the underly-
ing patterns (Shawe-Taylor and Cristianini 2004; Hofmann,
Schlkopf, and Smola 2006). However, the applicability of
this approach is confined by several limitations, such as,
i) finding the optimal parameter(s) of a kernel function is
often very critical and nontrivial (Nadler and Galun 2007;
Luxburg 2007), and ii) as we will see in Section 4.1, ker-
nels assume a global structure which does not distinguish
between different type of classes in the data.
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A category of distance measures, called link-based mea-
sure (Fouss et al. 2007; Chebotarev 2011), consider all the
paths between the objects represented in a graph. The path-
specific distance between nodes i and j is computed by
summing the edge weights on this path (Yen et al. 2008).
Their link-based distance is then obtained by summing up
the path-specific measures of all paths between them. Such
a distance measure is known to better capture the arbi-
trarily shaped patterns compared to the basic representa-
tions such as Euclidean or Mahalobis distances. Link-based
measures are often obtained by inverting the Laplacian of
the distance matrix, in the context of regularized Lapla-
cian kernel and Markov diffusion kernel (Yen et al. 2008;
Fouss et al. 2012). However, computing all-pairs link-based
distances requires O(N3) runtime, where N is the number
of objects; thus it is not applicable to large datasets.

A rather similar distance measure, called Minimax mea-
sure, selects the minimum largest gap among all possible
paths between the objects. This measure, known also as
Path-based distance measure (Fischer and Buhmann 2003),
has been first investigated on clustering applications. It was
later proposed as an axiom for evaluating clustering meth-
ods (Zadeh and Ben-David 2009), as well as for K-nearest
neighbor search (Kim and Choi 2007; 2013). A straightfor-
ward approach to compute all-pairs Minimax distances is
to use an adapted variant of the Floyd-Warshall algorithm.
The runtime of this algorithm is O(N3) (Aho and Hopcroft
1974; Cormen et al. 2001). This distance measure is also
integrated into an adapted variant of K-means providing
an agglomerative algorithm whose runtime is O(N2|E| +
N3 logN) (Fischer and Buhmann 2003) (|E| indicates the
number of edges in the corresponding graph).

In this paper, we consider classification with Minimax
distance measures. Minimax distances have been so far
applied only to a very limited type of classification, i.e.
to K-nearest neighbor search. The method in (Kim and
Choi 2007) presents a message passing algorithm with for-
ward and backward steps, similar to the sum-product algo-
rithm (Kschischang, Frey, and Loeliger 2006). The method
takes O(N) time, which is in theory equal to the standard
K-nearest neighbor search, but the algorithm needs sev-
eral visits of the training dataset. Moreover, this method re-
quires computing a minimum spanning tree (MST) in ad-
vance which might require O(N2) runtime. Later on, a
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greedy algorithm (Kim and Choi 2013), proposes to com-
pute the Minimax K nearest neighbors by space partition-
ing and using Fibonacci heaps whose runtime is O(logN +
K logK). However, this method is applicable only to Eu-
clidean spaces and assumes the graph is sparse. Very re-
cently, a linear time Minimax K-nearest neighbor search is
proposed (Chehreghani 2016) which is applicable to general
graphs and distances. This method, in addition to the search,
provides an outlier detection mechanism too.
Motivation Minimax distances enable to cope with arbi-
trarily shaped classes in the data. For example, it has been
shown that Minimax K-nearest neighbor classification is ef-
fective on non-spherical data, whereas the standard variant,
the metric learning approach (Weinberger and Saul 2009), or
the shortest path distance (Tenenbaum, de Silva, and Lang-
ford 2000) might give poor results, since they ignore the un-
derlying geometry (see for example Figure 1 in (Kim and
Choi 2013)). In particular, four properties of Minimax dis-
tances are attractive to us: i) They enable to compute the
classes in a non-parametric way, i.e. unlike many kernel
methods, they do not require fixing any critical parameter
in advance. ii) They extract the class-specific structures, i.e.
they adapt appropriately whenever the classes differ in shape
or type. iii) They take into account the transitive relations: if
object a is similar to b, b is similar to c, ..., to z, then the
Minimax distance between a and z will be small, although
their direct distance might be large. This property is par-
ticularly useful when dealing with elongated or arbitrarily
shaped classes. iv) Many classification methods perform on
a vector representation of the objects. However, such a rep-
resentation might not be available. We might be given only
the pairwise distances which do not necessarily induce a
metric. Minimax distances satisfy the metric conditions and
enable to compute an embedding, as we will investigate in
this paper. Our goal is to develop a general-purpose frame-
work wherein many different classification algorithms can
be applied to Minimax distances, beyond K-nearest neigh-
bor classification.
Contributions To achieve our goal, we follow a two-step
strategy: i) We exploit an efficient approach to compute pair-
wise Minimax distances, using the equivalence of pairwise
Minimax distances over a graph and over a minimum span-
ning tree constructed on the graph. This approach leads to re-
duces the runtime of computing pairwise Minimax distance
to O(N2) from O(N3). ii) We employ the ultrametric prop-
erty of Minimax distances to perform an embedding into a
vector space, such that the pairwise Minimax distances of
the objects in the original space are equal to their squared
Euclidean distances in the new vector space. Such an em-
bedding allows us to apply any numerical classification al-
gorithm on the resultant Minimax vectors. Then, we con-
sider the cases that the data is represented in a very high-
dimensional space, where the interesting Minimax pattern
might be hidden in subspaces instead of the original data
space. Hence, we propose an efficient method to compute
separately Minimax distances for each dimension and then
apply an embedding which corresponds to the whole col-
lection of the Minimax matrices at different dimensions. Fi-
nally, we experimentally study our framework on different

synthetic and real-world datasets and illustrate its effective-
ness and superior performance in different settings.

General Minimax Classification

A dataset can be modeled by a graph G(O,D), where O and
D respectively indicate the set of N objects (nodes) and the
corresponding edge weights such that Dij shows the pair-
wise distance between objects i and j.1 In general, D might
not yield a metric, i.e. the triangle inequality may not hold.
In our study, D needs to satisfy three basic conditions: i)
zero self distances, i.e. ∀i,Dii = 0, ii) non-negativity, i.e.
∀i, j,Dij ≥ 0, and iii) symmetry, i.e. ∀i, j,Dij = Dji. We
also assume that there are no duplicates, i.e. the pairwise dis-
tance between every two distinct objects is positive. For this
purpose, we may either remove the duplicate objects or per-
turb them slightly to make the zero non-diagonal elements
of D positive. The goal is then to classify the objects (the
test subset) according to a representation, which can be the
base representation (i.e. D) or the Minimax distances.

Formally, the Minimax (MM) distance between objects i
and j is defined as

DMM
i,j = min

r∈Rij(G)
{ max
1≤l≤|r|−1

Dr(l)r(l+1)}, (1)

where Rij(G) is the set of all paths between i and j. Each
path r is identified by a sequence of object indices, i.e. r(l)
shows the lth object on the path.

We aim to propose a unified framework for performing ar-
bitrary numerical classification methods with Minimax dis-
tances. To cover different classification algorithms, we pur-
sue the following strategy:
1. We compute the pairwise Minimax distances for all pairs
of objects i and j in the dataset.
2. We, then, compute an embedding of the objects into a new
vector space such that their pairwise (squared Euclidean)
distances in this space equal their Minimax distances in the
original space.

Notice that vectors are the most basic way for data rep-
resentation, since they render a bijective mapping between
the objects and the measurements. Hence, any classification
method which performs on numerical data can benefit from
our approach. Such classification methods perform either on
the objects in a vector space, e.g. logistic regression, or on a
kernel matrix computed from the pairwise relations between
the objects. In the later case, the pairwise Minimax distances
can be used for this purpose, for example through an expo-
nential transformation, or the kernel can be computed from
the final Minimax vectors.

Computing pairwise Minimax distances

Previous works for computing Minimax distances (e.g. ap-
plied to clustering) use a variant of Floyd-Warshall algo-
rithm whose runtime is O(N3) (Aho and Hopcroft 1974;
Cormen et al. 2001), or combine it with K-means in an

1For simplicity of explanation, we assume that the graph is full,
i.e. the missing edges are filled by a large value. However, our anal-
ysis can be easily extended to arbitrary graphs.
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agglomerative algorithm whose runtime is O(N2|E| +
N3 logN) (Fischer and Buhmann 2003). To reduce such a
computational demand, we follow a more efficient proce-
dure established in two steps: i) build a minimum spanning
tree (MST) over the graph, and then, ii) compute the Mini-
max distances over the MST.
I. Equivalence of Minimax distances over a graph and
over a minimum spanning tree on the graph. We ex-
ploit the equivalence of Minimax distances over an arbitrary
graph and those obtained from a minimum spanning tree on
the graph, as expressed in Theorem 1. The equivalence is
concluded in a similar way to the maximum capacity prob-
lem (Hu 1961), where one can show that picking an edge
which does not belong to a minimum spanning tree, yields a
larger Minimax distance (i.e., a contradiction occurs).

Theorem 1. Given graph G(O,D), for every pair of objects
i, j ∈ O their Minimax distance over G, i.e. DMM

ij , is iden-
tical to their Minimax distance over any minimum spanning
tree constructed on that.

Therefore, to compute the Minimax distances DMM , we
need to care only about the edges which are present in
an MST over the graph. Then, the Minimax distances are
written by DMM

ij = max1≤l≤|rij |−1 Drij(l)rij(l+1), where
rij indicates the (only) path between i and j. This re-
sult does not depend on the particular choice of the algo-
rithm used for constructing the minimum spanning tree. The
graph that we work on is a full graph, i.e. we compute
the pairwise distances between all pairs of objects. For full
graphs, the straightforward implementation of the Prim’s
algorithm (Prim 1957) using an auxiliary vector requires
O(N2) runtime which is an optimal choice.
II. All-pairs Minimax distances over a minimum span-
ning tree At the next step, after constructing a minimum
spanning tree, we compute the pairwise Minimax distances
over that. A naive and straightforward algorithm would per-
form a Depth First Search (DFS) from each node to compute
the Minimax distances by keeping the track of the largest
distance between the initial node and each of the traversed
nodes. A single run of DFS requires O(N) runtime and thus
the total time will be O(N2). However, such a method might
lead to visiting some edges multiple times which renders
an unnecessary extra computation. For instance, a maximal
edge weight might appear in many DFSs such that it is pro-
cessed several times. Hence, a more elegant approach would
first determine and collect all the objects whose pairwise dis-
tances are represented by an edge weight and then assigns
the weight as their Minimax distances. According to Theo-
rem 1, every edge in the MST represents some Minimax dis-
tances. Thus, we first find the edge(s) which represent only
few Minimax distances, namely only one pairwise distance,
such that the respective objects can be immediately identi-
fied. Lemma 2 suggest existence of this kind of edges.

Lemma 2. In a minimum spanning tree, for the minimal
edge weights we have DMM

ij = Dij , where i and j are the
two objects that occur exactly at the two sides of the edge.

Proof. Without loss of generality, we assume that the edge
weights are distinct. Let emin denote the edge with minimal

weight in the MST. We consider the pair of objects p and
q such that at least one of them is not directly connected to
emin and show that emin does not represent their Minimax
distance. In a MST, there is exactly one path between each
pair of objects. Thus, on the path between p and q there is
at least another edge whose weight is not smaller than the
weight of emin, which hence represents the Minimax dis-
tance between p and q, instead of emin.

Lemma 2 yields a dynamic programming approach to
compute the pairwise Minimax distances from a tree. We
first sort the edge weights of the MST via for example merge
sort or heap sort (Cormen et al. 2001) which in the worst
case require O(N logN) time. We then consider each ob-
ject as a separate component. We process the edge weights
one by one from the smallest to the largest, and at each step,
we set the Minimax distance of the two respective compo-
nents by this weight. Then, we remove the two components
and replace them by a new component constructed from the
combination (union) of the two. We repeat these two steps
for all edges of the minimum spanning tree. A main advan-
tage of this algorithm is that whenever an edge is processed,
all the nodes that it represents their Minimax distances are
ready in the components connected to each side of the edge.
Thus, we do not need to visit this edge later for another pair
of objects.

Embedding of pairwise Minimax distances

In the next step, given the matrix of pairwise Minimax dis-
tances DMM , we obtain an embedding of the objects into a
vector space such that their pairwise squared Euclidean dis-
tances in this new space are equal to their Minimax distances
in the original space. For this purpose, in Theorem 3, we in-
vestigate a useful property of Minimax distance measures,
called the ultrametric property (Leclerc 1981), and use this
property to prove the existence of such an embedding.
Theorem 3. Given the pairwise distances D, the matrix of
Minimax distances DMM induces an L2

2 embedding, i.e.
there exist a new vector space for the set of objects O
wherein the pairwise squared Euclidean distances are equal
to the pairwise Minimax distances in the original space.

Proof. First, we investigate that the pairwise Minimax dis-
tances DMM constitute an ultrametric. The conditions to be
satisfied are:

1. ∀i, j : DMM
ij = 0 if and only if i = j. We verify each of

the conditions separately. i) If i = j, then DMM
ij = 0: We

have DMM
ii = Dii = 0 because the smallest maximal

gap between every object and itself is zero. ii) If DMM
ij =

0, then Dij = 0 and i = j, because we have assumed
that all the distinct pairwise distances are positive, i.e.
zero base or Minimax pairwise distances can occur only
if i = j.

2. ∀i, j : DMM
ij ≥ 0. All the edge weights, i.e. the el-

ements of D, are non-negative. Thus the minimum of
them, i.e. min(D), is also non-negative. Moreover, by
definition we have DMM

ij ≥ min(D). Hence, we con-
clude DMM

ij ≥ min(D) ≥ 0.
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3. ∀i, j : DMM
ij = DMM

ji . By assumption D is symmetric,
therefore, any path from i to j will also be a path from j
to i, and vice versa. Thereby, their maximal weights and
the minimum among different paths are identical.

4. ∀i, j, k : DMM
ij ≤ max(DMM

ik ,DMM
kj ). We show that

otherwise a contradiction occurs. Suppose there is a
triplet i, j, k such that DMM

ij > max(DMM
ik ,DMM

kj ).
Then, according to the definition of Minimax distance,
the path from i to k and then to j must be used for
computing the Minimax distance DMM

ij which leads to
DMM

ij ≤ max(DMM
ik ,DMM

kj ), i.e. a contradiction oc-
curs.

On the other hand, it has been shown that every ultrametric
induces an L2

2 embedding (Deza and Laurent 1992). There-
fore, DMM represents the pairwise squared Euclidean dis-
tances in a hidden vector space.

Notice that we do not require D to induce a metric, i.e. the
triangle inequality is not necessarily fulfilled. After satisfy-
ing the feasibility condition, there exist several ways to com-
pute a squared Euclidean embedding. We exploit a method
motivated in (Young and Householder 1938) and further an-
alyzed in (Torgerson 1958). This method works based on
centering DMM to compute a Mercer kernel which is posi-
tive semidefinite, and then performing an eigenvalue decom-
position, as following:
I) Center DMM by

WMM ← −1

2
ADMMA. (2)

A is defined as A = IN − 1
N eNeTN , where eN is a vector

of length N with 1’s and IN is an identity matrix of size N .
II) Under this transformation, WMM is positive semidef-
inite. Thus, we decompose WMM into its eigenbasis, i.e.
WMM = VΛVT , where V = (v1, ..., vN ) contains the
eigenvectors vi and Λ = diag(λ1, ..., λN ) is a diagonal
matrix of eigenvalues λ1 ≥ ... ≥ λd ≥ λd+1 = 0 = ... =
λN . Note that the eigenvalues are nonnegative, since WMM

is positive semidefinite.
III) Calculate the N × d matrix YMM

d = Vd(Λd)
1/2, with

Vd = (v1, ..., vd) and Λd = diag(λ1, ..., λd).
Here, d shows the dimensionality of the Minimax vectors,

i.e. the number of Minimax features. The Minimax dimen-
sions are ordered according to the respective eigenvalues and
thereby we might choose only the first most representative
ones, instead of taking all.

Embedding of Collective Minimax Matrices

We extend our generic framework to the cases that multiple
pairwise Minimax matrices are available, instead of a sin-
gle matrix. Then, the goal would be to find an embedding of
the objects into a new space wherein their pairwise squared
Euclidean distances are related to the collective Minimax
distances over different Minimax matrices. Such a scenario
might be interesting in several situations:

1) There might exist different type of relations between
the objects, such that each relation renders a separate graph.

Then, we compute several pairwise Minimax distances, each
for a specific relation.

2) Minimax distances might fail whenever for example
few noise objects connect two compact classes. Then, the
inter-class Minimax distances become very small, even if
the objects from the two classes are connected via only few
outliers. To solve this issue, in a similar way to model aver-
aging, one could use the higher order, i.e. the second, third,
... Minimax distances, e.g. the second smallest maximal gap.
Then, there will be multiple pairwise Minimax matrices each
representing the kth Minimax distance.

3) In many real-world applications, we encounter high-
dimensional data. In this setting, the classes might be hidden
in some unknown subspace instead of the whole space, such
that they are disturbed in the high-dimensional space due to
the curse of dimensionality. Minimax distances rely on the
existence of well-connected paths, whereas such paths might
be very sparse or fluctuated in high dimensions. Thereby, in
a similar spirit to ensemble methods, it is natural to seek for
connectivity paths and thus for Minimax distances in some
subspaces of the original space. However, investigating all
the possible subspaces is computationally intractable as the
respective cardinality scales exponentially with the number
of dimensions. Hence, we propose an approximate approach
based on computing Minimax distances for each dimension,
which leads to having multiple Minimax matrices.

In all the aforementioned cases, we need to deal with dif-
ferent matrices of Minimax distances computed for the same
set of objects. Then, the next step is to compute an embed-
ding that represents the whole collection of pairwise Mini-
max matrices. For this purpose, after computing the different
Minimax distances, we center them via the transformation
in Eq. 2 and then sum them up to obtain a single matrix.
This matrix is positive semidefinite, thus it corresponds to
an L2

2 embedding. Hence, finally, we apply the previously
mentioned embedding to obtain a set of vectors representing
the collection of Minimax distances.
Efficient calculation of dimension-specific Minimax dis-
tances. In this paper, we particularly study the use of collec-
tive Minimax embedding for high-dimensional data (called
the dimension-specific variant). The dimension-specific vari-
ant requires computing pairwise Minimax distances for each
dimension, which can be computationally expensive. How-
ever, in this setting, the objects stay in an one-dimensional
space. A main property of one-dimensional data is that sort-
ing them immediately gives a minimum spanning tree. We,
then, compute the pairwise distances for each pair of con-
secutive objects in the sorted list to obtain the edge weights
of the minimum spanning tree. Finally, we compute the pair-
wise Minimax distances from the minimum spanning tree.

Experiments

We experimentally study the performance of Minimax clas-
sification on a variety of synthetic and real-world datasets
and illustrate how the use of Minimax distances as an in-
termediate step improves the results. In each dataset, each
object is represented by a vector. We compute the pair-
wise squared Euclidean distances between the vectors to
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construct the base distance matrix D. We use Logistic Re-
gression (LogReg) and Support Vector Machines (SVM) as
the baseline methods and investigate how performing these
methods on the vectors induced from Minimax distances im-
proves the accuracy of prediction. With SVM, we examine
three different kernels: i. linear (lin), ii. radial basis function
(rbf), and iii. sigmoid (sig), and choose the best result. With
Minimax distances, we only use the linear kernel, since we
assume that Minimax distances must be able to capture the
correct classes, such that they can be then discriminated via
a linear separator.

Experiments with synthetic data

We first perform our experiments on two synthetic datasets,
called: i) DS1 (Chang and Yeung 2008), and ii) DS2 (Veen-
man, Reinders, and Backer 2002), which are shown in Fig-
ure 1. The goal is to demonstrate the superior ability of Mini-
max distances to capture the correct class-specific structures,
particularly when the classes have different types (DS2),
compared to kernel methods. Table 1 shows the accuracy
scores for different methods. The standard SVM is per-
formed with three different kernels (lin, rbf and sig), and
the best choice which is the rbf kernel is shown. As men-
tioned, with Minimax distances, we only use the linear ker-
nel. We observe that performing classification on Minimax
vectors yields the best results, since it enables the method to
better identify the correct classes. The datasets differ in the
type and consistency of the classes. DS1 contains very sim-
ilar classes which are Gaussian. But DS2 consists of classes
which differ in shape and type. Therefore, for DS1 we are
able to find an optimal kernel (rbf, since the classes are
Gaussian) with a global form and parametrization, which fits
with the data and thus yields very good results. However, in
the case of DS2, since classes have different shapes, then a
single kernel is not able to capture correctly all of them. For
this dataset, LogReg and SVM with Minimax vectors per-
form better, since they enable to adapt to the class-specific
structures. Note that in the case of DS1, using Minimax vec-
tors is equally good to using the optimal rbf kernel. Remem-
ber that, to Minimax vectors, we apply only SVM with a
linear kernel. Figures 1(c) and 1(d) show the accuracy and
eigenvalues w.r.t. different dimensionality of Minimax vec-
tors. As mentioned earlier, the dimensions of Minimax vec-
tors are sorted according to the respective eigenvalues, since
a larger eigenvalue indicates a higher importance. By choos-
ing only few dimensions, the accuracy attains its maximal
value. We will elaborate in more detail on this further on.

Table 1: Accuracy of different methods on synthetic
datasets. Minimax measure improves the results when the
classes have different shapes and types (e.g. DS2).

standard Minimax
dataset SVM-rbf LogReg SVM-lin LogReg
DS1 0.9924 0.8066 0.9917 0.9918
DS2 0.9295 0.6252 0.9950 0.9983

Experiments on real-world data

We perform our real-world experiments on twelve datasets
from different domains, selected from the UCI reposi-
tory (Lichman 2013): (1) Balance Scale: contains 625 ob-
servations modeling 3 types of psychological experiments.
(2) Banknote Authentication: includes 1372 images taken
from genuine and forged banknote-like specimens (number
of classes is 2). (3) Cloud: consists of 1024 10-dimensional
vectors, each dimension representing a specific parameter.
(4) Contraceptive Method: contains information of 1473
women, where the three classes are about the pregnancy sta-
tus. (5) Glass Identification: contains 6 types (classes) of
glass w.r.t the oxide content. The number of instances is 214.
(6) Haberman Survival: contains the survival of 306 patients
who had surgery for breast cancer. The number of classes
is 2. (7) Hayes Roth: is about a study on human subjects
which contains 160 instances and 3 classes. (8) Ionosphere:
includes 351 34-dimensional instances collected from radars
and organized into 2 classes. (9) Lung Cancer: describes
3 types of pathological lung cancer, including 32 instances
each with 56 dimensions. (10) Perfume: consists of odors
of 20 different perfumes (classes), where the data is col-
lected via OMX-GR sensor. There are in total 560 measure-
ments. (11) Skin Segmentation: the original dataset contains
245, 057 instances generated using skin textures from face
images of different people. However, to make the classifi-
cation task more difficult, we pick only the first 1, 000 in-
stances of each class (to decrease the number of objects per
class). The target variable is skin or non-skin sample, i.e. the
number of classes is 2. (12) User Knowledge: describes 403
students’ knowledge level (4 classes) about the subject of
Electrical DC Machines.
Accuracy scores. Table 2 shows the results for different
methods applied to the datasets, when 60% of the objects
are used for training. We have repeated the random split of
the data for 20 times and report the average results. The
accuracy scores and the ranking of different methods are
very consistent among different splits, such that the stan-
dard deviations are low. We observe that often perform-
ing the classification methods on Minimax vectors improves
the classification accuracy. In only very few cases the stan-
dard setup outperforms (slightly). In the rest, either the
Minimax vectors or the dimension-specific variant of Min-
imax vectors yield a better performance. In particular, the
Minimax variant is more appropriate for low dimensional
data, whereas the dimension-specific Minimax variant out-
performs on high-dimensional data.
Model order selection. Choosing the appropriate number
of dimensions for Minimax vectors (i.e. their dimensional-
ity) constitutes a model order selection problem. We study in
detail how the dimensionality of the Minimax vectors affects
the results. Figure 2 shows the accuracy scores for Minimax-
LogReg applied to four of the datasets w.r.t. different num-
ber of dimensions (the other datasets behave similarly). The
dimensions are ordered according to their importance (infor-
mativeness). Choosing a very small number of dimensions
might be insufficient since we might loose some informative
dimensions, which yields underfitting. By increasing the di-
mensionality, the method extracts more sufficient classes in

1788



(a) DS1 (b) DS2 (c) results on DS1 (d) results on DS2

Figure 1: Illustration of DS1, DS2 and the accuracy. The accuracy scores (shown for LogReg-MM) are stable w.r.t. the dimen-
sionality of the Minimax vectors (Figures 1(c) and 1(d)). The straight green line shows the accuracy for the base LogReg.

Table 2: Accuracy scores of different methods on real-world datasets, when 60% of the data is used for training. Performing the
classification algorithm on Minimax vectors improves the results.

standard Minimax dim.spec. Minimax
data SVM-lin SVM-rbf SVM-sig LogReg SVM-lin LogReg SVM-lin LogReg

Balance Scale 0.8709 0.8974 0.4468 0.8687 0.6187 0.6086 0.9211 0.9739
Banknote Authentication 0.9876 1.0000 0.5577 0.9872 0.9989 1.0000 0.8847 0.9827

Cloud 0.9988 0.5788 0.5349 0.9988 1.0000 1.0000 1.0000 1.0000
Contraceptive Method 0.5190 0.5533 0.4250 0.5107 0.5647 0.5747 0.5392 0.5389

Glass Identification 0.5924 0.6012 0.3371 0.6053 0.5971 0.6671 0.4918 0.6347
Haberman Survival 0.6893 0.7230 0.7344 0.7426 0.7434 0.7377 0.7418 0.7352

Hayes Roth 0.6058 0.7750 0.3596 0.5365 0.7038 0.7115 0.8635 0.8558
Ionosphere 0.8779 0.9300 0.6536 0.8621 0.9457 0.9450 0.8843 0.9336

Lung Cancer 0.6917 0.7500 0.7500 0.6917 0.7750 0.7500 0.8333 0.8333
Perfume 0.7783 0.9318 0.1498 0.6933 0.9865 0.9870 0.9798 0.9830

Skin Segmentation 0.9287 0.9693 0.7635 0.8980 0.9994 0.9994 0.9906 0.9919
User Knowledge 0.7835 0.7233 0.3019 0.8612 0.5893 0.6757 0.6010 0.8592

(a) Glass Identification (b) Hayes Roth (c) Perfume (d) Skin Segmentation

Figure 2: Accuracy score of LogReg-MM applied to different datasets when we choose different number of dimensions of
Minimax vectors. The straight green lines show the base LogReg result.

the data, thus the accuracy improves. We note that this phase
occurs for a very wide range of choices of dimensions. How-
ever, by increasing the number of dimensions even more,
we might include non-informative or noisy features, where
then the accuracy stays constant or decreases slightly, due
to overfitting. However, an interesting advantage of this ap-
proach is that the overfitting dimensions (if there exists any)
have a very small eigenvalue, thus their impact is negligible.

This analysis leads to a simple and effective model order
selection principle: Fix a very small threshold and pick the
dimensions whose respective eigenvalues are larger than the
threshold. However, the exact value of the threshold may not
play a critical role (or it can be estimated via using an addi-
tional validation set).
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Conclusion

We developed a framework to apply Minimax distances to
any classification algorithm that works on numerical data.
Our approach is performed in two steps: First, we compute
the pairwise Minimax distances via obtaining a minimum
panning tree. Then, we compute an embedding of the ob-
jects into a new vector space, such that their pairwise Min-
imax distance in the original space equals to their squared
Euclidean distance in the new space. This embedding pro-
vides to apply any numerical classification method or com-
pute a kernel. We also studied the cases where the data is
represented in a very high-dimensional space. We first pro-
posed an efficient method to compute the pairwise Minimax
distances at each separate dimension. Then, we used an em-
bedding which computes a set of vectors that correspond to
the all Minimax matrices at different dimensions. Finally,
we investigated our framework on Logistic Regression and
SVM and showed that the use of Minimax distances im-
proves the accuracy scores, as well as obviates the need for
choosing critical parameters which might be nontrivial.
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