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Abstract

Two-dimensional principle component analysis
(2DPCA) has been widely used for face image rep-
resentation and recognition. But it is sensitive to the
presence of outliers. To alleviate this problem, we
propose a novel robust 2DPCA, namely 2DPCA with
F-norm minimization (F-2DPCA), which is intuitive
and directly derived from 2DPCA. In F-2DPCA,
distance in spatial dimensions (attribute dimensions)
is measured in F-norm, while the summation over
different data points uses 1-norm. Thus it is robust
to outliers and rotational invariant as well. To solve
F-2DPCA, we propose a fast iterative algorithm, which
has a closed-form solution in each iteration, and prove
its convergence. Experimental results on face image
databases illustrate its effectiveness and advantages.

Introduction

Principal component analysis (PCA) (Turk and Pentland
1991), linear discriminant analysis (LDA) (Belhumeur, Hes-
panha, and Kriegman 1997), locality preserving projection
(LPP) (He and Niyogi 2005) and neighborhood preserving
embedding (NPE) (He et al. 2005) are four of the most
representative methods, where PCA is used to extract the
most expressive features, LDA is considered to be capa-
ble of extracting the most discriminating features. Different
from PCA and LDA, which characterize the global geomet-
ric structure, LPP and NPE well preserve the local geometric
structure of data.

Applying the aforementioned methods to image recog-
nition, we need to transform each image, which is repre-
sented as a matrix, into 1D image vector by concatenating
all rows. So, these methods cannot well exploit the spa-
tial structure information that is embedded in pixels of im-
age and important for image representation and recogni-
tion (Yang et al. 2004; Zhang et al. 2015; Lu, Plataniotis, and
Venetsanopoulos 2008). To handle this problem, many two-
dimensional subspace learning methods or tensor methods
have been developed (Yang et al. 2004; Lu, Plataniotis, and
Venetsanopoulos 2008; Yang et al. 2005). In contrast to the
aforementioned methods, two-dimensional subspace learn-
ing methods directly extract features from image matrix and
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fully consider the variation among different rows/columns
of an image. The representative two-dimensional methods
include two-dimensional PCA (2DPCA) (Yang et al. 2004)
and two-dimensional LDA (2DLDA) (Yang et al. 2005). Al-
though their motivations of two-dimensional methods are
different, they can be unified within the graph embedding
framework (Yan et al. 2005) and measure the similar-
ity between images by using squared F-norm. It is com-
monly known that squared F-norm is not robust in the sense
that outlying measurements can arbitrarily skew the solu-
tion from the desired solution. Thus, these methods are not
robust in the presence of outliers (Ke and Kanade 2005;
Collins, Dasgupta, and Schapire 2001; Gao et al. 2013).

Recently, �1-norm based subspace learning technique is
considered to be capable of obtaining the robust projection
vectors and has become an active topic in dimensionality re-
duction. For example, Ke and Kanade (2005) proposed L1-
PCA that uses �1-norm to measure the reconstruction error.
Kwak (2008) used �1-norm to measure the variance and pro-
posed PCA-L1 with greedy algorithm. Nie et al. (2011) pro-
posed a non-greedy iterative to solve PCA-L1. Motivated
by �1-norm based PCA, some �1-norm based LDA algo-
rithms have been developed, such as LDA-L1 (Zhong and
Zhang 2013) and ILDA-L1 (Chen, Yang, and Jin 2014).
However, �1-norm is not rotational invariant (Ding et al.
2006), which is a fundamental property of Euclidean space
with �2-norm. It has been emphasized in the context of learn-
ing algorithms (Kwak 2014). Based on this content, Ding
et al. (2006) proposed the rotational invariant �1-norm for
feature extraction and developed R1-PCA that measures the
similarity among data by R1-norm, which is just �2,1-norm
of a matrix. To further analysis robustness of subspace learn-
ing technique, Kwak et al. extended �1-norm to �p-norm and
proposed �p-norm based subspace learning methods (Kwak
2014; Oh and Kwak 2016).

Although the aforementioned methods are robust to out-
liers, they need to transform 2D image into a vector by con-
catenating all rows of image. So, these methods cannot well
exploit the spatial structure information of data. To handle
this problem, Li et al. (2010) extended PCA-L1 to 2DPCA-
L1 with greedy algorithm. Wang et al. (2013) imposed
sparse constraint in 2DPCA-L1 and proposed 2DPCAL1-S.
Y. Pang et al. (2010) proposed �1-norm based tensor sub-
space learning. Wang et al. (2015) proposed 2DPCA-L1
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with non-greedy algorithm. However, these methods do not
have rotational invariance and do not explicitly consider the
reconstruction error, which is the real goal of PCA.

To handle these problems, we propose a robust 2DPCA
with F-norm minimization, namely F-2DPCA for feature
extraction. In F-2DPCA, distance in spatial dimensions (at-
tribute dimensions) is measured in F-norm, while the sum-
mation over different data points uses �1-norm. Further-
more, we solve F-2DPCA by non-greedy iterative algorithm,
which has a closed-form solution in each iteration. Finally,
we prove the convergence of our proposed algorithm. Com-
pared with �1-norm based 2DPCA methods, our approach
has the following advantages. Fist, F-2DPCA not only is ro-
bust to outliers but also has rotational invariance, which has
been emphasized in the context of learning algorithms; Sec-
ond, our proposed non-greedy algorithm has a local solution
and best minimizes the objective function value. Third, our
approach (solution) relates to image covariance matrix.

2DPCA and 2DPCA-L1

Denote by Ai ∈ Rm×n(i = 1, 2, ..., N) the N training
images, and V = [v1, v2, ..., vk] ∈ Rn×k the projection ma-
trix. Without loss of generality, we assume the data set are
centralized, i.e.,

∑N
i=1Ai = 0. 2DPCA aims to seek a pro-

jection matrix by (Yang et al. 2004):

max
VTV=Ik

N∑
i=1

‖AiV‖2F (1)

where tr(·) is the trace operator of a matrix, Ik ∈ Rk×k

is an identity matrix, and ‖·‖2F denotes the squared F-
norm. It is easy to see that, the objective function (1)
is totally equivalent to the objective function (2) due to
the fact

∑N
i=1

∥∥Ai −AiVV
T
∥∥2
F

+
∑N

i=1 ‖AiV‖2F =∑N
i=1 ‖Ai‖2F .

min
VTV=Ik

N∑
i=1

∥∥Ai −AiVV
T
∥∥2
F

(2)

The solution of the objective function (1) or (2) is com-
posed of the eigenvectors of the image covariance matrix
St =

∑N
i=1 (Ai)

T
Ai corresponding to the first k largest

eigenvalues. We can see that squared large distance will re-
markably dominate the solution of the objective function
(1) or (2). Thus, the objective function (1) or (2) is not
robust in the sense that outlying measurements can skew
the solution from the desired solution. To handle this prob-
lem, 2DPCA-L1 was proposed (Li, Pang, and Yuan 2010;
Wang et al. 2015). It aims to find the projection matrix by
solving the following objective function.

max
VTV=Ik

N∑
i=1

‖AiV‖L1
(3)

where ‖·‖L1
denotes the �1-norm of a matrix, which is de-

fined as follows:

‖D‖L1
=

∑m
i=1

∑n
j=1 |D(i, j)|

D(i, j) denotes the element of the i-th row j-th column of
matrix D.

Compared with traditional 2DPCA, �1-norm based
2DPCA technique is robust, but it has several shortcomings
as follows. Traditional 2DPCA has rotational invariance,
while �1-norm based 2DPCA does not have this property.
Given an arbitrary rotation matrix Γ( ΓΓT = I), in general,
we have ‖ΓAiV‖L1

�= ‖AiV‖L1
. Moreover, it is not clear

whether �1-norm based PCA (i.e., solution) relates to the co-
variance matrix. Finally, the objective function (3) does not
explicitly consider the reconstruction error, which is the real
goal of PCA, due to the fact

∑N
i=1

∥∥Ai −AiVV
T
∥∥
L1

+∑N
i=1 ‖AiV‖L1

�= ∑N
i=1 ‖Ai‖L1

. To handle these prob-
lems, we propose a robust 2DPCA with F-norm minimiza-
tion in the following section.

2DPCA with F-norm minimization

Motivation and Objective function

2DPCA uses the squared F-norm to measure the similarity
among images in the objective function. It is well known that
squared F-norm is not robust in the sense that outlying mea-
surements can arbitrarily skew the solution from the desired
solution. This results in sensitivity of 2DPCA. To handle this
problem, the contribution of distance metric to the criterion
function (2) should reduce the effect of large distance. More-
over, we hope to obtain a robust low-dimensional subspace
that is not uniquely determined up to an orthogonal transfor-
mations. Compared with squared F-norm, F-norm not only
can weaken the effect of large distance but also has rota-
tional invariance. Thus, an intuitive and reasonable way is to
use F-norm instead of squared F-norm, i.e.,

∥∥Ai −AiVV
T
∥∥2
F
→ ∥∥Ai −AiVV

T
∥∥
F

(4)

Substituting Eq. (4) into the objective function (2), we
have

argmin
VTV=Ik

N∑
i=1

∥∥Ai −AiVV
T
∥∥
F

(5)

The objective function (5) is called 2DPCA with F-norm
minimization (F-2DPCA). In the objective function (5), dis-
tance in spatial dimensions (attribute dimensions) is mea-
sured in F-norm, while the summation over different data
points uses �1-norm. Compared with 2DPCA, our proposed
method can further weaken the effect of large distance, and
compared with 2DPCA-L1, our proposed method has rota-
tional invariance due to the fact ‖ΓAiV‖F = ‖AiV‖F .

Now we consider how to solve the objective function (5).
By simple algebra, we have

N∑
i=1

∥∥Ai −AiVV
T
∥∥
F
=

N∑
i=1

∥∥Ai −AiVV
T
∥∥2
F

‖Ai −AiVVT ‖F

=

N∑
i=1

tr(Ai
TAi)− tr(VTAi

TAiV)

‖Ai −AiVVT ‖F

(6)
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Substituting Eq. (6) into Eq. (5), and by simple algebra,
the objective function (5) becomes

argmin
VTV=Ik

N∑
i=1

(
tr(Ai

TAi)− tr(VTAi
TAiV)

)
di (7)

where di =
1

‖Ai −AiVVT ‖F
, in order to avoid being

divided by 0, di is defined as follows.

di =
1

‖Ai −AiVVT ‖F + γ
(8)

where γ > 0 is a small constant.
In the objective function (7), we have two unknown vari-

ables V and di which relate to V . Thus, it has no closed-
form solution and is difficult to directly solve the solution
of the objective function (7). An algorithm can be developed
for alternatively updating V (while fixing di) and di (while
fixing V). To be specific, in the (t + 1)-th iteration, when
di

(t) is known, we can update V by minimizing the objec-
tive function (7). In this case, the first term in the objective
function (7) becomes constant. Thus, the objective function
(7) is converted to solve the following objective function:

argmax
VTV=Ik

tr(VTHV) (9)

where H =
∑N

i=1Ai
T diAi, which is the weighted image

covariance matrix.
According to the matrix theory, the column vectors of

the optimal projection matrix V of Eq. (9) are composed
of the eigenvectors of H =

∑N
i=1Ai

T diAi corresponding
to the k largest eigenvalues. After that, we can calculate di

by Eq. (8). This iterative procedure is repeated until con-
vergence, which is proved in the subsequent subsection. Eq.
(9) illustrates that solution of our proposed method relates
to the weighted image covariance matrix. We summarize the
pseudo code of solving the objective function (5), i.e., F-
2DPCA in Algorithm 1.

Algorithm 1: F -2DPCA

Input:Ai ∈ Rm×n( i = 1, · · · , N ), k , whereA is cen-
tralized, γ = 0.00001. Initialize V(t) ∈ Rm×k which
satisfies VTV = I, t = 1.
while not converge do

1. For all training samples, calculate d(t)(i = 1, · · · , N)
by Eq. (8).

2. Calculate H(t) according to Eq. (9), i.e., H(t) =
N∑
i=1

Ai
T di

(t)Ai .

3. Solve V(t+1) = argmax
VTV=Ik

tr(VTH(t)V): the column

of the optimal solution V(t+1) are the eigenvectors
of H(t) corresponding to the k largest eigenvalues.

4. Update t← t+ 1.
end while

Output:V(t+1) ∈ Rm×k

Convergence analysis

Theorem 1: In each iteration of Algorithm 1, we have:

N∑
i=1

∥∥∥Ai −AiV
(t+1)(V(t+1))

T
∥∥∥
F

≤
N∑
i=1

∥∥∥Ai −AiV
(t)(V(t))

T
∥∥∥
F

(10)

i.e., Algorithm 1 monotonically decreases the objective func-
tion value of F-2DPCA.

Proof: For each iteration t, according to step 3 in Algo-
rithm 1, we have the following inequality

N∑
i=1

tr((V(t+1))
T
Ai

TAiV
(t+1))∥∥∥Ai −AiV(t)(V(t))
T
∥∥∥
F

≥
N∑
i=1

tr((V(t))
T
Ai

TAiV
(t))∥∥∥Ai −AiV(t)(V(t))
T
∥∥∥
F

(11)

Multiplying -1 and adding
N∑
i=1

tr(Ai
TAi)∥∥∥Ai −AiV(t)(V(t))

T
∥∥∥
F

on both sides of Eq. (11), and by simple algebra, the Eq. (11)
becomes

N∑
i=1

tr(Ai
TAi)− tr((V(t+1))

T
Ai

TAiV
(t+1))∥∥∥Ai −AiV(t)(V(t))

T
∥∥∥
F

≤
N∑
i=1

tr(Ai
TAi)− tr((V(t))

T
Ai

TAiV
(t))∥∥∥Ai −AiV(t)(V(t))

T
∥∥∥
F

(12)

According to
∥∥Ai −AiVV

T
∥∥
F

= tr(Ai
TAi) −

tr(VTAi
TAiV), Eq. (12) becomes

N∑
i=1

∥∥∥Ai −AiV
(t+1)(V(t+1))

T
∥∥∥
2

F∥∥∥Ai −AiV(t)(V(t))
T
∥∥∥
F

≤
N∑
i=1

∥∥∥Ai −AiV
(t)(V(t))

T
∥∥∥
2

F∥∥∥Ai −AiV(t)(V(t))
T
∥∥∥
F

(13)

According to inequality a2 + b2 ≥ 2ab⇒ b2

a
≥ 2b− a ,

we have

2
∥
∥
∥Ai −AiV

(t+1)(V(t+1))
T
∥
∥
∥
F
−

∥
∥
∥Ai −AiV

(t)(V(t))
T
∥
∥
∥
F

≤

∥
∥
∥Ai −AiV

(t+1)(V(t+1))
T
∥
∥
∥

2

F∥
∥
∥Ai −AiV(t)(V(t))

T
∥
∥
∥
F

(14)
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Eq. (14) holds for each index i, thus we can rewrite (14)
as

N∑
i=1

(2
∥∥∥Ai −AiV

(t+1)(V(t+1))
T
∥∥∥
F

−
∥∥∥Ai −AiV

(t)(V(t))
T
∥∥∥
F
)

≤
N∑
i=1

∥∥∥Ai −AiV
(t+1)(V(t+1))

T
∥∥∥
2

F∥∥∥Ai −AiV(t)(V(t))
T
∥∥∥
F

(15)

Combining Eq. (13) and Eq. (15) yields

N∑
i=1

(2
∥∥∥Ai −AiV

(t+1)(V(t+1))
T
∥∥∥
F

−
∥∥∥Ai −AiV

(t)(V(t))
T
∥∥∥
F
)

≤
N∑
i=1

∥∥∥Ai −AiV
(t)(V(t))

T
∥∥∥
2

F∥∥∥Ai −AiV(t)(V(t))
T
∥∥∥
F

(16)

By simple algebra, Eq. (16) becomes

N∑
i=1

∥∥∥Ai −AiV
(t+1)(V(t+1))

T
∥∥∥
F

≤
N∑
i=1

∥∥∥Ai −AiV
(t)(V(t))

T
∥∥∥
F

(17)

Eq. (17) shows that the Algorithm 1 monotonically de-
creases the objective function value of F-2DPCA in each it-
eration.

Theorem 2: Algorithm 1 will converge to a local solution
of the objective function (5).

Proof: The Lagrangian function of the objective function
(5) is

L(V) =

N∑
i=1

∥∥Ai −AiVV
T
∥∥
F
− tr

(
ΛT (VTV − I))

(18)
where the Lagrangian multiplies Λ = (Λpq) for enforcing
the orthonormal constrains VTV = I . The KKT condition
for optimal solution specifies that the gradient of L must be
zero, i.e.,

∂L

∂V
=

N∑
i=1

(
∥∥Ai −AiVV

T
∥∥−1

F
)Ai

TAiV −VΛT = 0

(19)
By simple algebra, we have

N∑
i=1

(
∥∥Ai −AiVV

T
∥∥−1

F
)Ai

TAiV = VΛT (20)

According to step 3 in Algorithm 1, we find the optimal
solution of the objective function (9). Thus the converged

solution of Algorithm 1 satisfies the KKT condition of the
objective function (9). The Lagrangian function of Eq. (9) is

L2(V) = tr(VT
N∑
i=1

Ai
T diAiV)− tr(ΛT (VTV − I))

(21)
Taking the derivative w.r.t.V and setting it to zero, we get

the KKT condition of Eq. (9) as follows
N∑
i=1

Ai
TAidiV −VΛT = 0 (22)

Eq. (22) is formally similar to Eq. (20). The main differ-
ence between Eq. (22) and Eq. (20) is that di is known in
each iteration in Algorithm 1. Suppose we obtain the opti-
mal solution V∗ in the (t + 1)-th, thus, we have Vt+1 =
V∗ = Vt. According to the definition of di, we can see
that Eq. (22) is the same as Eq. (20) in this case. It means
that the converged solution of Algorithm 1 satisfies the KKT
condition of Eq. (5), i.e.

∂L

∂V

∣∣∣∣
V=V∗

= 0 (23)

Combining Theorem 1 and Eq. (23), we have that the
converged solution of Algorithm 1 is a local solution of Eq.
(5).

Experimental results

We validate our approach in three face databases (Extended
Yale B, AR and PIE) and compare it with 2DPCA (Yang et
al. 2004), 2DPCA-L1 (Li, Pang, and Yuan 2010), 2DPCA-
L1 non-greedy (Wang et al. 2015), 2DPCAL1-S (Wang and
Wang 2013) and N-2DPCA (Zhang et al. 2015). In our ex-
periments, we use 1-nearest neighbor (1NN) for classifica-
tion. We set the number of projection vectors as 25 in the
Extended Yale B and CMU PIE databases, 30 in the AR
database.

The Extended Yale B database (Georghiades, Belhumeur,
and Kriegman 2001) consists of 2144 frontal-face pictures
of 38 individuals with different illuminations. There are 64
pictures for each person except 60 for 11th and 13th, 59 for
12th, 62 for 15th and 63 for 14th, 16th and 17th. Figure 1(a)
shows some samples of one person in the Extended Yale B
database. In the experiments, each image was normalized to
32× 32 pixels. 14 images of each individual were randomly
selected and noised by black and white dots with random
distribution. The location of noise is random and ratio of
the pixels of noise to number of image pixels is intervenient
0.05 to 0.15. We randomly select 32 images, which include
7 noisy images, per person for training, and the remaining
images for testing. 2DPCA, 2DPCA-L1, 2DPCA-L1 non-
greedy, 2DPCAL1-S, N-2DPCA and our approach are used
to extract features, respectively. We repeat this process 10
times.

In the AR database (Martinez 1998), the pictures of 120
individuals were taken in two sessions. Each session con-
tains 13 color images, which include 6 images with occlu-
sions and 7 full facial images with different facial expres-
sions and lighting conditions. We manually cropped the face
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(a) (b)

Figure 1: (a) Some samples of one person in the Extended Yale B database. (b) Some samples of one person in the CMU PIE
database. (The second row is noised samples.)
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Figure 2: (a) Classification accuracy vs. the number of projection vectors. (b) The optimal Reconstruction Error of six ap-
proaches under ten experiments on the Extended Yale B database.
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Figure 3: (a) Classification accuracy vs. the number of projection vectors. (b) The optimal Reconstruction Error of six ap-
proaches under ten experiments on the AR database.

portion of the image and then normalized it to 50×40 pixels.
In the experiments, we randomly select 13 images per per-
son for training and the remaining images for testing, and
then repeat this process 10 times.

The CMU PIE database (Sim, Baker, and Bsat 2002) con-
sists of 2856 frontal-face images of 68 individuals with dif-
ferent illuminations. In the experiments, each image was
normalized to 32 × 32 pixels, we randomly selected 10 im-
ages and added the same noise as that in the Extended Yale
B database. Figure 1(b) shows some samples of one person

in the CMU PIE database. We randomly select 21 images,
which include 16 without noisy images, per person for train-
ing and the remaining images for testing, and then repeat this
process 10 times.

Tables 1 and 2 list the average recognition accuracy,
running time and the corresponding standard deviation of
each method on the Extended Yale B, AR, and CMU PIE
databases, respectively. Figures 2, 3, and 4 plot the clas-
sification curve versus the number of projection vectors
and the reconstruction error of six approaches under ten
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Figure 4: (a) Classification accuracy vs. the number of projection vectors. (b) The optimal Reconstruction Error of six ap-
proaches under ten experiments on the CMU PIE database.

experiments on the Extended Yale B, AR and CMU PIE
databases, respectively. Figure 5 shows the convergence
curve of our method on the Extended Yale B, AR, and CMU
PIE databases.

(1) 2DPCA is overall inferior to the other five approaches.
The main reason is that 2DPCA is not robust to outliers
such as illumination and occlusion. 2DPCA-L1, 2DPCA-
L1 non-greedy and 2DPCAL1-S are not remarkably better
than 2DPCA. This is probably because that they do not ex-
plicitly consider the reconstruction error. N-2DPCA is not
better. The reason is that in classification stage, we use Eu-
clidean distance to measure similarity between data rather
than nuclear norm as in (Zhang et al. 2015).

Table 1: The average classification accuracy (%) and the cor-
responding standard deviation on the Extended Yale B, AR
and CMU PIE databases.

Experiments
Methods Extended AR CMU PIE

Yale B
2DPCA 59.92±0.42 80.40±0.88 85.39±0.73

2DPCA-L1 60.33±0.38 80.39±0.88 85.71±0.77
2DPCA-L1
non-greedy 66.63±1.01 87.49±1.47 86.34±0.71

N-2DPCA 59.99±0.57 80.37±0.91 85.39±0.73
2DPCAL1-S 60.37±0.54 80.38±0.85 85.91±0.69

F-2DPCA 67.35±0.95 89.19±0.70 91.60±0.74

(2) F-2DPCA is superior to the other five approaches.
Compared with 2DPCA, which uses squared F-norm to mea-
sure similarity, F-norm is robust to outliers. Compared with
the other �1-norm approaches, F-2DPCA is intuitive and di-
rectly derived from 2DPCA. Moreover, F-2DPCA retains
2DPCA’s desirable properties. For example, F-2DPCA con-
siders the reconstruction error and the solution of F-2DPCA
relates to the image covariance matrix. Another reason may
be that F-2DPCA best optimizes the objective function. Fig-

Table 2: The running time and the corresponding stan-
dard deviation on the Extended Yale B, AR and CMU PIE
databases.

Experiments
Methods Extended AR CMU PIE

Yale B
2DPCA 0.01±0.00 0.04±0.00 0.01±0.00

2DPCA-L1 7.07±0.7 11.30±1.37 9.20±1.27
L1-2DPCA
non-greedy 7.05±0.19 14.71±0.10 7.97±0.09

N-2DPCA 12.69±1.38 24.36±5.16 15.41±3.15
2DPCAL1-S 6.66±0.48 11.73±0.79 8.33±0.71

F-2DPCA 3.35±0.08 7.20±1.32 4.70±0.21
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Figure 5: Convergence curve of our method on three
databases.

ure 5 and table 2 illustrate that our proposed algorithm is fast
and convergent. This is consistent with our theory analysis
in the Convergence analysis section.
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Conclusions
We present a robust unsupervised dimensionality reduction
method, namely F-2DPCA. F-2DPCA uses F-norm instead
of squared F-norm as distance metric to measure the recon-
struction error in the criterion function. Compared with �1-
norm, F-norm of matrix not only has rotational invariance
but also retains 2DPCA’s desirable properties such as ro-
tational invariance. Moreover, our method explicitly takes
into account the reconstruction error while �1-norm based
2DPCA technique does not. To solve F-2DPCA, we present
a fast iterative algorithm, which has a closed-form solution
in each iteration and convergence. Experimental results on
several face image databases illustrate the effectiveness and
advantages of our proposed method.
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