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Abstract

A number of machine learning domains, such as informa-
tion retrieval, recommender systems, kernel learning, neural
network-biological systems etc, deal with importance scores.
Very often, there exist some prior knowledge that could help
improve the performance. In many cases, these prior knowl-
edge manifest themselves in the rank ordering constraints.
These inequality constraints are usually very difficult to deal
with in optimization. In this paper, we provide a slack vari-
able transformation methods, which effectively eliminates the
rank ordering inequality constraints, and thus simplify the
learning task significantly. We apply this transformation in
kernel learning problem, and also provide an efficient algo-
rithm to solved the transformed system. On seven datasets,
our approach reduces the computational time by orders of
magnitudes as compared to the current standard quadratically
constrained quadratic programming(QCQP) optimization ap-
proach.

Introduction

A number of data mining and machine learning domains
deal with importance scores relevant to rank ordering. Very
often, there exist some prior knowledge that could help im-
prove the performance.

In information retrieval (IR)(Manning, Schuetze, and
Raghavan 2009), the relevance scores determine the ranking
of retrieved documents. If some prior knowledge exist that
says certain documents must be more relevant than certain
other documents, than this partial rank ordering knowledge
should be incorporated in the IR system, maybe in a form of
constraints if the system uses an optimization framework to
compute the relevance scores.

In recommender systems(Jannach et al. 2010), the final
rating scores are used to rank the recommendation list to a
user. If some prior knowledge are known that certain movies
should be ranked higher than certain other movies, this prior
knowledge should be incorporated into the system.

In kernel learning(Lanckriet et al. 2004), in the popu-
lar framework of learning the weights of a linear combina-
tion of input kernels, there are sometimes prior knowledge
that should incorporated into the system. For example, spec-
tral kernel learning optimizes the weights of eigenvector-
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based kernels so that to maximize the final kernel’s align-
ment(Cristianini et al. 2001b; 2001a) with the class infor-
mation in the data.

In neural network or biological systems, very often some
parts play more important role than others. For example, in
human eyes, the primary visual cortex (V1) is considered
most important part that provides spatial features for human
recognition (deep learning are motivated by simple-cell and
complex cells populated in V1). This knowledge should be
utilized in the learning system.

In many cases, these prior knowledge manifest them-
selves in the rank ordering constraints(Zhu et al. 2005;
Hoi, Lyu, and Chang 2006). These are inequality constraints,
and the generally very difficult to deal with in optimization.
This is partly the reason that incorporating the prior knowl-
edge in the form of rank ordering constraints are not widely
used so far. Note also that rank ordering constraints also
occur in other contexts, for example in cost-sensitive SVM
(Lee and Scott 2010).

In this paper, we provide a slack variable transforma-
tion methods, that effectively eliminates the rank ordering
inequality constraints, and simplify the learning task sig-
nificantly. We apply this transformation in kernel learning
problem, and also provide an efficient algorithm to solved
the transformed system. On seven datasets, we demonstrate
the slack variable transformation approach reduces the com-
putational time by orders of magnitudes as compared to
the current standard quadratically constrained quadratic pro-
gramming(QCQP) optimization approach.

Rank Ordering Constraints

Let α1, · · · , αm be the relevance score of documents in in-
formation retrieval system, or rating score of items in rec-
ommender system, or the weights of kernels in linear com-
bination of kernels for kernel learning, etc. Sometimes, we
have some prior knowledge and wish to impose the rank
ordering constraints(Zhu et al. 2005).

αi ≥ αi+1, i = 1, · · · ,m− 1. (1)

Typically, the learning system ( IR system, recommender
system, kernel learning system, etc) determines these impor-
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tance score by optimizing a target function

min
α

J(α) (2)

s.t. αi ≥ 0, i = 1, · · · ,m (3)
αi ≥ αi+1, i = 1, · · · ,m− 1. (4)

The nonnegative constraints αi ≥ 0 in Eq.(2) enforce the
fact that importance scores should naturally be non-negative.
Nonnegative constraints can be efficiently handled partially
due to the advancement of nonnegative matrix factorization
methodologies. (Lee and Seung 2001; Ding, Li, and Jordan
2010).

It is well-known that the rank ordering inequality con-
straints Eq.(4) are generally much harder to handle. Gen-
erally, the number of constraints is several hundreds up to
thousands or much larger in today’s big data environment.
Thus there is urgent need to develop efficient computational
methods to handle these rank ordering constraints.

More general rank ordering constraints

We solve a more general rank ordering constraints(Hoi, Lyu,
and Chang 2006).

αi ≥ σαi+1, i = 1, · · · ,m− 1. (5)

where σ ≥ 1. If σ = 1, this reduces to the standard
rank ordering constraints Eq.(1). For larger σ, for exam-
ple σ = 1.2, this gives a series of constraints which sys-
tematically discourages/discounts the lower ranked1 vari-
ables: This is similar to discounted cumulative gain (DCG)
(Manning, Schuetze, and Raghavan 2009) popularly used in
rank ordering measures, where the lower ranked documents
are systematically discounted.

Thus the constrained optimization problem Eqs.(2,3,4) is
generalized to the following problem

min
α

J(α) (6)

s.t. αi ≥ 0, i = 1, · · · ,m (7)
αi ≥ σαi+1, i = 1, · · · ,m− 1. (8)

The main purpose of this paper is to develop an efficient
method to deal with large number of constraints.

Slack variable transformation

The main contribution of this paper is to provide a variable
transformation that eliminate the rank ordering constraints
completely. This technique reduces the computational ef-
forts by order of magnitudes, and is appropriate for big data
analysis.

Our work is motivated by the success of support vec-
tor machines (SVM). of soft-margin SVM where different
classes can not be completely separated in most practical
applications. Slack variables are most prominently used in
to handle the inequality constraints

yi(w
Txi + b) ≥ 1, i = 1 · · ·n

where yi = ±1 is the class of data sample xi; and w, b
are the weight vector and bias of the linear classifier y =

1α1 is highest ranked and αm is lowest ranked.

sign(wTx + b). These inequality constraints are similar to
the rank ordering constraints of Eqs.(1,5).

In SVM, these constraints are expressed as
yi(w

Txi + b) = 1 + si, si ≥ 0, i = 1 · · ·n
where si is the slack variable.

Slack variable transformation

Our main results is that score variables (α1, · · · , αm)
in Eqs.(6,7,8) can be transformed to the slack variables
(s1, · · · , sm) , leading to significant reduction of con-
straints.
Theorem 1 (A. Slack variable transformation)
Score variables α = (α1, · · · , αm)T can be transformed in
to slack variables s = (s1, · · · , sm)T through the relation

α = Cs. (9)
(B. Rank ordering constraints elimination)
The optimization problem Eqs.(6,7,8) is transformed to

min
s

J(Cs) (10)

s.t. si ≥ 0, i = 1, · · · ,m (11)

where C ∈ �m×m is a upper-triangular matrix:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 σ σ2 · · · σm−1

0 1 σ · · · σm−2

0 0 1 · · · σm−3

· · · · · · · · ·

0 · · · 0 1 σ1

0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

Thus the rank ordering constraints Eq.(8) are completely
eliminated.

Proof of Theorem 1

We define {αi} using {si} via the following recurrence re-
lation. Starting at i = m, we run backwards:

αm = sm

αi = si + σαi+1, i = m−1,m− 2, · · · , 1 (13)

Since si ≥ 0, constraints αi ≥ 0, αi ≥ σαi+1 are clearly
satisfied.

Now we need to solve the recurrence relation Eq.(13) to
obtain {αi} as a function of {si}.

We work backwards
αm−1 = sm−1 + σsm,

αm−2 = sm−2 + σαm−1 = sm−2 + σsm−1 + σ2sm,

...

αi =

m∑
k=i

σk−isk, i = m,m− 1, · · · , 1 (14)

Thus the solution to the recurrence relation Eq.(13) is given
by Eq.(14). Eq.(14) can be written using matrix - vector mul-
tiplication, as Eq.(10) with C given in Eq.(13). �–
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Kernel Learning

From here on in the rest of this paper, we discuss the utiliza-
tion of slack variable transform to kernel learning problem.

Kernel-based algorithms explore information about pair-
wise similarity between data points. Often, kernels are com-
puted from feature vectors. In some applications, there exit
several kernels {Ki} on the data. One of the popular ap-
proach is linear combination of these kernels:

K(α) =
m∑
i=1

αiKi, αi ≥ 0, (15)

The combination weights {αi} are determined by some cri-
teria. This is the most basic form of kernel learning.

A commonly used method to build kernels Ki is to use the
eigenvectors {vi} of the Laplacian matrix2 (D−W ), where
W is either known pairwise similarity or a kernel computed
from feature vectors. D = diag(d1, · · · , dn), di =

∑
j Wij .

The kernel Ki is constructed as Ki = viv
T
i .

The criteria to determine the weights α is to incorporate
the available class information into the kernel K(α). This is
done through class label matrix S = Y Y T , where Y is the
class indicator matrix: Yik = 1 if data sample i belongs to
class k. Otherwise, Yik = 0.

In kernel alignment, the alignment between two kernels
K,S is defined as

A(K,S) =

∑
ij KijSij√∑

ij K
2
ij

√∑
ij S

2
ij

(16)

We optimize α so that K(α) is best aligned with class label
kernel S = Y Y T through

max
{αi}

A(K(α), Y Y T )

s.t. αi ≥ 0, i = 1, · · · ,m
(17)

This framework is called spectral kernel alignment.
When using eigenvectors of the Laplacian matrix, vi is

more important than vi+1. i.e., Ki is more important that
Ki+1. Thus we may impose rank order constraints of Eq.(1)
or Eq.(5). The above kernel learning problem becomes

max
{αi}

A(K(α), Y Y T )

s.t. αi ≥ 0, i = 1, · · · ,m
αi ≥ αi+1, i = 1, · · · ,m− 1.

(18)

Our goal here is to demonstrate the usefulness of the slack
variable transform in kernel learning. Thus we will restrict
to the above basic kernel learning framework, not getting
into more advanced methods of kernel learning. Below, we
gives more discussions of the kernel learning and related lit-
eratures.

2In practice, we use the normalized Laplacian matrix
D−1/2(D −Q)D−1/2.

Brief Discussion on Kernel Learning

Since the introduction of support vector machine, kernels
play central role in machine learning. Standard methods
on constructing kernels are built on pairwise distances be-
tween feature vectors xi, xj , such as the RBF kernel Kij =
exp(−‖xi−xj‖2/σ). However, this approach does not take
into account the class label information available in some
applications, such as semi-supervised learning.

Kernel learning(Lanckriet et al. 2004) initially constructs
a linear combination of input kernels. The weights α are
optimized according to some procedures. A popular ap-
proach is to use kernel alignment(Cristianini et al. 2001b;
2001a) to maximally align the kernel with the available class
labels.

In spectral kernel construction(Chapelle, Weston, and
Schälkopf 2002; Kondor and Lafferty 2002; Smola and Kon-
dor 2003), eigenvectors of the Laplacian matrix are used to
construct the kernel. Here α is set to a pre-defined function
from for example αi = e−μλi (Kondor and Lafferty 2002)
or αi = 1/(λi+ ε) (Zhu et al. 2005) where λi are the eigen-
values.

In these approaches, there are sometimes prior knowledge
that should incorporated into the system. These show up as
the rank ordering constraints of Eqs.(1,5).

This rank order contrained approach achieved success in
several studies (Zhu et al. 2005; Hoi, Lyu, and Chang 2006;
Cortes, Mohri, and Rostamizadeh 2010; Howard and Jebara
2009; Ye, Ji, and Chen 2008; Cuturi 2011; Liu et al. 2009).

However, in solving the alignment problem in semi-
supervised learning case, a quadratically constrained
quadratic programming(QCQP) problem is required to ad-
dress an ordered constraint that generally improve the
learned kernel(Zhu et al. 2005).

In practice, these methods are time consuming. QCQP
method in general scales with m3 where m is the number
of constraint; Usually m is the same order of n, n is the
number of data samples. This is prohibitively slow for large
problems.

The slack variable transform introduced above effectively
eliminates the rank order constraints, and greatly speeds up
computation. We explain this in the rest of the paper.

Semi-supervised kernel learning

The most useful application of kernel learning is in semi-
supervised learning area. In semi-supervised learning, the
input data set contains L labeled and U unlabeled instances.
Our task is to learn the class labels for the unlabeled data.
Here we follow the transductive learning where both la-
beled data and unlabeled data are used to build the final op-
timal kernel. Let n = L + U represents the total number
of samples; typically L � U . The data are feature vectors
Xp×n = {x1, x2, · · · , xn} in some input space. The label
information Yn×c = {y1, y2, · · · , yc} is defined as{0, 1}, c
is the number of classes.

For presentation convenience, we decompose the class la-
bel matrix and base kernel K as:

Y =

⎛
⎝

Y L

Y U

⎞
⎠ , K =

⎛
⎝

KLL KLU

KUL KUU

⎞
⎠ (19)
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Since we do not know Y U , we can not align K with Y .
Instead, we align the labeled part KLL. We maximize the
correlation/alignment using

max
{αi}

A(KLL, Y LY LT
),

s.t. αi ≥ 0, i = 1, · · · ,m
(20)

The following can be easily derived:
Lemma 1 For the semi-supervised kernel alignment,

A(KLL, Y LY LT
) =

bTα√
αTFα

, (21)

where F, b are given by

Fij = (vLi
T
vLj )

2, bi = (Y LT
vi)

2, (22)

and vi is an eigenvector of length n = L + U , decomposed
as 3

vi =

⎛
⎝

vLi

vUi

⎞
⎠ , KLL =

m∑
i=1

αiv
L
i (v

L
i )

T , (23)

Lemma 2 In Lemma 1, F is a semi-positive definite.

Reformulation of semi-supervised kernel learning

We need to solve Eq.(20). Note that the scale of {αi} is
undetermined up to an over-all proportional constant. We
can fix this constant by imposing bTα = 1, and minimize
αTFα (this is desirable because F is s.d.p). Thus optimiza-
tion problem of Eq.(20) is equivalent to

min
{αi}

αTFα,

s.t. bTα = 1

αi ≥ 0, i = 1, · · · ,m
(24)

Since the objective function is convex, and the constraints
are convex, the optimization is convex and has a unique so-
lution. We will device an efficient algorithm to solve it.

Incorporating Prior Knowledge

When using eigenvectors of the Laplacian matrix, vi is more
important than vi+1. i.e., Ki is more important that Ki+1.
Thus we may impose rank order constraints of Eqs.(1,5).
The above kernel learning problem becomes

min
{αi}

αTFα,

s.t. bTα = 1

αi ≥ 0, i = 1, · · · ,m
αi ≥ σαi+1, i = 1, · · · ,m− 1.

(25)

This problem is usually solved using QCQP approach. Our
contribution is to use slack variable transform of Theorem 1,
and transform the above optimization problem to

3Although eigenvectors v1, · · · , vm are mutually orthonormal,
however, the labeled part vL1 , · · · , vLm are not orthonormal. This
seems to be ignored or ambiguous in previous work.

Theorem 2 The optimization problem of Eq.(25) is equiva-
lent to solving the following

min
s

sT F̃ s,

s.t. b̃T s = 1

si ≥ 0, i = 1, · · · ,m
(26)

where
F̃ = CTFC, b̃ = CT b. (27)

Once the optimal solution s∗ is obtained from Eq.(23), the
optimal α∗ = Cs∗.

With this theorem, the difficult rank order constraints are
eliminated. Thus the problem of Eq.(25) can be solved more
efficiently than the usual QCQP approach.

Solution Algorithm

Here we present an efficient algorithm to solve the optimiza-
tion problem Eq.(24) and Eq.(26).

The algorithm for solving Eq.(29) is the following:

(1) Initialize α = (1 · · · 1)T ; set α = α/(αT b) .
(2) For every i, update αi using

αi ← αibi(α
TFα)/(Fα)i (28)

(3) Set α← α/(αT b).
Repeat (2,3) until α converges.

This algorithm scales as O(n2) (assuming F is a dense
matrix). However, because the operations involved are
matrix-vector multiplications which are typically very effi-
ciently implemented using Level-3 BLAS on multi-core pro-
cessors and frequently used data are stored in Cache. Thus,
this algorithm is suitable for large datasets. When storage
for large matrix F becomes a bottleneck, Nyström type of
approximation scheme can be implemented to save signifi-
cantly amount of memory. This algorithm can be efficiently
implemented on multi-core Cache-based processor, and suit-
able for large datasets.

Analysis of the Algorithm

We study the following issues: (1) KKT condition, (2) Cor-
rectness, (3) Feasibility, and (4) Convergence .

KKT condition. We introduce a Lagrangian multiplier λ
to enforce bTα = 1. and another Lagrangian multiplier ξi ≥
0 to enforce αi ≥ 0. The Lagrangian function is

L = αᵀFα− 2λ
(
bTα− 1

)−
n∑

i=1

αiξi, (29)

The corresponding KKT conditions are

∂L(α)
∂αi

= 2 (Fα)i − 2λbi − ξi = 0, ∀i
∂L(α)
∂λ

= −2 (bTα− 1
)
= 0,

ξiαi = 0, ∀i

(30)
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From first equation of Eq.(30), we have ξi = 2(Aα)i−2λbi.
Substituting into second equation, we obtain the condition

[(Fα)i − λbi]αi = 0 (31)
From this condition, summing over i, we obtain

λ = αTFα > 0, (32)
because F is semi-positive definite. With this λ value, the
computational algorithm of Eq.(28) is in fact the updating
rule

αi ← αi
λbi

(Fα)i
(33)

Correctness. We now show the algorithm is exact, i.e.,
when the algorithm converges, the converged solution
satisfies the KKT condition. By definition, this is the correct
solution.

Theorem 3 Using updating algorithm of Eq.(33), the con-
verged solution satisfies the KKT condition of Eq.(30).
Proof. At convergence, from Eq.(33), we have

α∗i = α∗i λbi/(Fα∗)i, (34)
This is exactly the KKT condition of Eq.(31)

Feasibility. We show that at convergence, the solution sat-
isfies the

∑
i αibi = 1 constraint. From Eq.(34), we have

α∗i λbi = α∗i (Fα∗)i. Summing over i, we have

λ(
∑
i

α∗i bi) = α∗TFα∗. (35)

Since λ = α∗TFα∗ > 0 in most cases due to F is s.p.d., we
have

∑
i α
∗
i bi = 1, i.e., α∗ is a feasible solution.

Convergence. Below, Theorem 4 shows that the La-
grangian functionL(α) monotonically decrease. SinceL(α)
is bonded below due to F 
 0, this monotonicity implies
convergence.
Theorem 4 The following Lagrangian function

L(α) = αTFα− 2λ(αT b− 1) (36)
monotonically decreases under the updating rule Eq.(33).
Proof is omitted due to space limitation.

Experiments
We run the above rank order constrained Kernel Alignment
on several data sets(some of them are used in (Zhu et al.
2005)). These datasets are shown in Table 1. In our ex-
periments, KA0 means unordered constrained kernel align-
ment model, KA1 means ordered constrained kernel align-
ment model. Once the kernel is learned through the semi-
supervised learning, we use support vector machine (SVM)
and the harmonic function (Zhu, Ghahramani, and Lafferty
2003) as the base classification methods.

Computational time comparison

Figure 1 show the average computational time, based on a
PC with a 2.3GHz Intel Core Processor, 6GB memory run-
ning Windows 7, with the Matlab implementation. Clearly,
the time on our proposed algorithm are order of magnitude
smaller compared to the QCQP algorithm. For example on
pc-mac dataset, QCQP used 12.5 seconds but our ordered
alignment model(KA1) used only 0.125 seconds.

Table 1: Datasets

Dataset # of instances classes dimensions
pc-mac 1943 2 600

baseball-hockey 1993 2 600
one-two 2200 2 320
odd-even 4000 2 320
Scence 2407 6 294
USPS 400 10 256

BinNumbers 1014 26 320
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pc-mac base-hoc one-two odd-even  USPS   BinNum   Scence

Figure 1: Time cost(seconds) on QCQP, KA0, KA1 on seven
datasets (r=200, labeled size=100).

Performance on Semi-Supervised Learning

We use different number of data points as labeled data and
the rest as unlabeled data, and learn the kernel. The learned
kernels are used in SVM classification and harmonic func-
tion based semi-supervised learning. All results are the av-
erage of 30 runs each time using a different random set as
labeled data points. The average accuracy are shown in Fig-
ure 2. We see that ordered constrained kernels consistently
outperform kernels without ordering.

Summary

We propose slack variable transformation that effectively
eliminates the rank order constraints and thus significantly
speed the optimization of learning systems. We design an
efficient algorithm to solve the transformed optimization in
kernel learning/alignment problem. Experiments show that
the proposed transformation combined the new efficient al-
gorithm speeds up the computation by orders of magnitudes.
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