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Abstract

We propose an algorithm for enumerating solutions to
the Lasso regression problem. In ordinary Lasso regres-
sion, one global optimum is obtained and the resulting
features are interpreted as task-relevant features. How-
ever, this can overlook possibly relevant features not
selected by the Lasso. With the proposed method, we
can enumerate many possible feature sets for human in-
spection, thus recording all the important features. We
prove that by enumerating solutions, we can recover a
true feature set exactly under less restrictive conditions
compared with the ordinary Lasso. We confirm our the-
oretical results also in numerical simulations. Finally, in
the gene expression and the text data, we demonstrate
that the proposed method can enumerate a wide variety
of meaningful feature sets, which are overlooked by the
global optima.

1 Introduction

Background and Motivation Feature selection is a proce-
dure that selects a subset of relevant features (i.e., variables)
for model construction. It plays a central role in many tasks
in artificial intelligence and data mining.

One of the most common feature selection methods
is Lasso regression (Tibshirani 1996; Chen, Donoho, and
Saunders 2001). We consider a prediction problem with n
observations and p predictors. Here, we have a response vec-
tor y ∈ R

n and a predictor matrix X ∈ R
n×p. The Lasso re-

gression seeks β ∈ R
p that minimizes �1-regularized resid-

ual sum of squares:

L(β) :=
1

2
‖Xβ − y‖22 + ρ‖β‖1 (1)

where ρ ∈ R≥0 is a regularization parameter. The optimal
solution β∗ ∈ R

p to (1) is usually sparse; therefore, we can
extract a set of features as the support of the optimal solu-
tion, supp(β∗) = {i : |β∗

i | > 0}.
In this study, instead of finding a single optimal solu-

tion to the Lasso regression problem, we try to enumerate
good solutions with different supports in ascending order
based on their objective values. “Solutions enumeration” is
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often used in real applications in various areas such as net-
works (Brander and Sinclair 1996), databases (Chang et al.
2015), power engineering (Voll et al. 2015), and computa-
tional biology (Naor and Brutlag 1994). It has many advan-
tages to enumerate multiple solutions in both theory and ap-
plications, as follows.

1. In many real-world tasks, mathematical models include
some inaccuracy/approximations. Therefore, the optimal
solution to the mathematical model is a good approxima-
tion but not necessarily the best solution. By enumerating
many solutions, we have a chance to obtain more and bet-
ter solutions for the real tasks.

2. In many real-world tasks, some constraints are too vague
and complex to formalize. Thus, it is hard to incorpo-
rate such constraints in the mathematical model. In such
a case, enumerating solutions and then selecting the one
that satisfies the non-formalized constraints would be a
more practical and efficient approach.

3. In theory, the Lasso method can recover the true feature,
if some conditions regarding incoherence are satisfied. By
enumerating more than one solution, we have a chance to
recover the true feature even if these conditions are not
satisfied.

Contributions In this study, we make the following con-
tributions:
• We formulate an enumeration version of the Lasso regres-

sion problem (Section 3) and propose an algorithm for this
problem, which enumerates solutions with different sup-
ports in ascending order of objective values (Section 4).

• We prove an exact support recovery theorem: If there ex-
ists a sparse linear model, by setting the regularization
parameter ρ appropriately, we can obtain a solution that
recovers the exact solution by enumerating solutions up
to some threshold (Section 6).

• We conduct experiments to evaluate the proposed algo-
rithm using a synthetic dataset and a real-world dataset
from computational biology and text categorization (Sec-
tion 7). The results show that using the proposed method,
we can obtain better solutions than the Lasso optimal so-
lution in terms of test error or the solutions tend to involve
important features that are absent in the optimal solution.
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The proposed algorithm can be easily extended to more
general sparsity-inducing convex models such as Lasso Cox
regression (Tibshirani 1996), Lasso logistic regression (Lee
et al. 2006), elastic-net (Zou and Hastie 2005), fused-
Lasso (Tibshirani et al. 2005), and group-Lasso (Yuan and
Lin 2006). For simplicity, here, we only consider the stan-
dard Lasso problem.

2 Preliminaries

Notation For positive integer p, we denote by [p] =
{1, 2, . . . , p}. For p vector u, n × p matrix X , and S ⊆ [p],
uS and XS are the |S| vector indexed by S and the n × |S|
matrix whose columns are indexed by S, respectively. I is
the identity matrix. X� is the transposed matrix of X . ‖ ·‖1,
‖ · ‖2, and ‖ · ‖∞ denote �1, �2, and �∞ norm, respectively.
The vector β∗ ∈ R

p denotes the minimizer of L(β) in (1).
We also use β(k) to denote the k-th enumerated solution,
where β(1) = β∗.

Lasso As described in Section 1, the (regularized) Lasso
problem seeks the vector β∗ ∈ R

p that minimizes the �1-
regularized residual sum of squares, (1). This problem is a
convex quadratic programming problem. Therefore, we can
solve this efficiently using various methods such as proximal
gradient method (Boyd and Vandenberghe 2004).

The most important property of Lasso is that it yields a
sparse solution. Therefore, the obtained features can be eas-
ily interpreted by a human. In theory, under some conditions,
Lasso can recover a sparse model (Knight and Fu 2000;
Wainwright 2009). See (Hastie, Tibshirani, and Wainwright
2015) for more details of Lasso regression.

3 Problem Formulation

Here, we formulate our enumeration problem.
For a subset S ⊆ [p], we consider the Lasso regression

problem Lasso=(S), where the support is specified by S:

Lasso=(S) : min L(β) s.t. supp(β) = S. (2)

Basically, we want to enumerate solutions to Lasso=(S)
for all S ⊆ [p]. However, Lasso=(S) may not have a solu-
tion as the constraint supp(β) = S is discontinuous. There-
fore, we relax the equality constraint to the subset constraint
and consider the following problem:

Lasso(S) : min L(β) s.t. supp(β) ⊆ S. (3)

Lasso(S) can be solved efficiently as it is a Lasso regres-
sion problem wherein the variables are restricted to S. In
addition, the infimum value of Lasso=(S) is attained from
the optimal value of Lasso(S); see Proposition 2 below.
Thus, these problems are essentially equivalent. Therefore,
our problem is formulated as follows.
Problem 1 (Lasso Enumeration Problem). Enumerate the
top-k different support solutions to Lasso(S) for all S ⊆
[p] in ascending order of their objective function values.

Note that, for different S and S′, Lasso(S) and
Lasso(S′) may produce the same solution. Since we are
interested in feature selection, we require our problem to
output only different support solutions.

Algorithm 1 Enumeration algorithm
1: Compute β∗ ∈ Lasso([p]) and insert (β∗, [p], ∅).
2: for k = 1, 2, . . . do
3: Extract (β, S, F ) from the heap and output β as the

k-th solution β(k) if it is not already output.
4: for i ∈ supp(β) and i �∈ F do
5: Compute β′ ∈ Lasso(S \ {i}) and insert

(β′, S \ {i}, F ) to the heap.
6: F ← F ∪ {i}
7: end for
8: end for

Proposition 2.

min{L(β) : supp(β) ⊆ S} = inf{L(β) : supp(β) = S}.
(4)

Proof. Clearly, we have LHS ≤ RHS. Thus, we prove con-
verse inequality. Let β∗ ∈ R

p be an arbitrary solution to
LHS. For any ε > 0, consider β∗ + δ�1S for a sufficiently
small δ > 0. Then β∗ + δ�1S is a feasible solution to RHS
and L(β∗+δ�1S) ≤ L(β∗)+ε. This shows converse inequal-
ity.

4 Algorithm

In this section, we propose an algorithm to solve Problem 1.
Efficient implementation is given in a later section. For no-
tational convenience, we denote by β ∈ Lasso(S), if β is
the optimal solution to problem Lasso(S).

Our approach follows Lawler’s framework (Lawler 1972),
which successively computes the optimal solution and then
constructs subproblems that exclude the obtained optimal
solution.

We maintain a heap (or sorted list) data structure to store
tuples of one vector and two subsets, (β, S, F ) ∈ R

p×2[p]×
2[p], where β ∈ Lasso(S). The heap is ordered by the non-
decreasing order of the objective function value, L(β). F is
used to avoid inserting the same set twice to the data struc-
ture.

At the beginning of the algorithm, we insert (β∗, [p], ∅)
to the heap, where β∗ ∈ Lasso([p]). Then, the algorithm
repeats the following procedure: For the k-th iteration, the
algorithm extracts tuple (β, S, F ) and outputs β as the k-th
solution if it is not already output. We then “branch” this
node to create subproblems that exclude β. The key obser-
vation is that, if subset S′ satisfies supp(β) ⊆ S′ ⊆ S, β is
also the optimal solution to Lasso(S′). Thus, we consider
the subsets S\{i} for each i ∈ supp(β). Here, to avoid enu-
merating the same set multiple times, we avoid branching by
index i ∈ F , which was skipped before. This procedure is
summarized in Algorithm 1

Correctness To prove the correctness of Algorithm 1, we
need to prove the following two claims:

• The algorithm outputs solutions in the non-decreasing or-
der of their objective function values. (Lemma 4)
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• For any subset S ⊆ [p], there exists β(k) ∈ Lasso(S).
(Lemma 6)

These immediately imply the following result.

Theorem 3. Algorithm 1 solves Problem 1.

In the following we prove the claims.

Lemma 4. Algorithm 1 enumerates solutions β(1), β(2), . . .
in the non-decreasing order of objective function values.

Proof. Let β(k) and β(�) (k < �) be two enumerated
solutions. Consider the step when β(k) is extracted from
the heap. If β(�) is in the heap, then L(β(k)) ≤ L(β(�))
by the definition of the heap. Otherwise, there exists
(β(m), S(m), F (m)) in the heap such that β(�) is obtained
from branches of this tuple. Since β(�) is a feasible so-
lution to Lasso(S(m)), we have L(β(k)) ≤ L(β(m)) ≤
L(β(�)).

Lemma 5. For any β ∈ R
p, there exists (β(k), S(k), F (k))

such that supp(β(k)) ⊆ supp(β) ⊆ S(k) and L(β(k)) ≤
L(β).

Proof. Let k = 1 and consider the k-th extracted element
(β(k), S(k), F (k)). We keep invariant supp(β) ⊆ S(k) in the
following discussion.

If supp(β(k)) ⊆ supp(β), since β is a feasible solution to
Lasso(S(k)), we obtain the conclusion. Otherwise, there
exists i ∈ supp(β(k)) with i �∈ supp(β). Following the
algorithm, (β′, S(k) \ {i}, F ′) is inserted to the heap. We
increase k to the index where this tuple is extracted and con-
tinue this discussion.

Since S(k) decreases monotonically during the discus-
sion, this must terminate after finite iterations, i.e., it must
fall into the first situation. This concludes the proof.

Lemma 6. For any subset S ⊆ [p], there exists β(k) ∈
Lasso(S).

Proof. Let β′ ∈ Lasso(S). By Lemma 5, there exists
β(k) such that supp(β(k)) ⊆ supp(β′) and L(β(k)) ≤
L(β′). Since β(k) is feasible to Lasso(S), it is optimal to
Lasso(S).

Complexity Estimating the computational complexity of
Algorithm 1 is difficult because it depends on how many
subsets give the same solution (we refer to such a situation
as collision). Our preliminary experiment shows that colli-
sion occurs a small fraction in a practical setting. If the col-
lision occurs at most constant fraction during enumerating
the top-k solutions, the complexity is O(ksA) time, where
s is the average sparsity of the top-k solutions and A is the
complexity of solving the Lasso regression problem.

5 Efficient Implementation

Here, we describe some implementation technique for Algo-
rithm 1.

Avoiding redundant Lasso computations Consider
when we want to insert a new subset S′ and its optimal
solution β′ ∈ Lasso(S′) to the heap. If we can identify
that the optimal solution β′ is already in the heap, without
computing β′, we can avoid redundant Lasso computations.
Since solving Lasso regression is expensive, avoiding
redundant computations improves practical performance.

Let (β, S) be some element in the heap, where supp(β) ⊆
S′. Then, β is a solution to Lasso(S′), if and only if,

X�
S′(Xβ − y) ∈ −ρ∂‖βS′‖1. (5)

This condition can be easily verified by evaluating both
sides, which is more efficient than solving the Lasso regres-
sion problem. In particular, if we compute θ(k) = Xβ(k)−y
when we insert β(k) to the heap, the condition can be evalu-
ated in O(|XS′ | + |S′|) time, where |XS′ | is the number of
nonzero elements in XS′ .

Warm start on branching Consider when (β, S) is ex-
tracted and Lasso(S \ {i}) is evaluated to insert a new
solution. Then, we observe that the optimal solution to
Lasso(S \ {i}) is often close to β. To exploit this property,
we can reuse β as an initial solution to Lasso(S \ {i}),
where βi is replaced by zero.

Parallel evaluation We can perform Lasso evaluations for
all i ∈ supp(β) \ F in Line 5 in parallel.

6 Support Recovery Theorem

In this section, we assume that there exists a sparse model

y = Xβ◦ + w (6)

where β◦ is an s-sparse vector and w ∈ R
n is a Gaus-

sian noise with mean zero and variance σ2, N(0, σ2). We
show that Algorithm 1 can find a solution β(k) where
supp(β(k)) = supp(β◦), under a suitable choice of the reg-
ularization parameter ρ (Theorem 9, Theorem 10).

First, we show that by enumerating solutions up to
L(β◦) ≤ L(β(�)), we find β(k) as follows. This is a direct
consequence of Lemma 5.

Lemma 7. By enumerating solutions up to L(β(�)) ≥
L(β◦), we can find β(k) (1 ≤ k ≤ �) such that supp(β(k)) ⊆
supp(β◦) ⊆ S(k) and L(β(k)) ≤ L(β◦).

Proof. By Lemma 5 applied to β◦, we can find β(k) with
L(β(k)) ≤ L(β◦) and supp(β(k)) ⊆ supp(β◦) ⊆ S(k).
Since L(β(k)) ≤ L(β◦) ≤ L(β(�)) with Lemma 4, we have
k ≤ �.

Next, we bound L(β) in terms of problem parameters.

Lemma 8. Let β◦ be an s-sparse vector supported by S◦,
and β∗ be the Lasso optimal solution. Suppose the follow-
ing.

C1. ‖Xβ◦ − y‖2 ≤ δ‖Xβ∗ − y‖2 for some δ ≥ 0.
C2. ‖Xβ∗ − y‖2 ≤ ε for some ε ≥ 0.
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C3. For every u �= 0 with ‖Xu‖2 ≤ (1 + δ)ε, ‖uS◦‖1 <
γ‖uS◦c‖1 for some γ ≥ max{1, δ2}.

Then, we have L(β◦) ≤ γL(β∗).

Proof. Let u = β◦ − β∗. Then

‖Xu‖2 ≤ ‖Xβ◦ − y‖+ ‖Xβ∗ − y‖ ≤ (1 + δ)ε. (7)

Therefore, u satisfies the condition C3. Since

‖uS◦‖1 = ‖β◦
S◦ − β∗

S◦‖1 ≥ ‖β◦‖1 − ‖β∗
S◦‖1, (8)

‖uS◦c‖1 = ‖β∗
S◦c‖1, (9)

we have

‖β◦‖1 ≤ ‖β∗
S◦‖1 + γ‖β∗

S◦c‖1 ≤ γ‖β∗‖1. (10)

Therefore,

L(β◦) =
1

2
‖Xβ◦ − y‖22 + ρ‖β◦‖1

≤ δ2

2
‖Xβ∗ − y‖22 + ργ‖β∗‖1

≤ γ

(
1

2
‖Xβ∗ − y‖22 + ρ‖β∗‖1

)

= γL(β∗) (11)

Combining Lemmas 7 and 8, we obtain the following the-
orem.
Theorem 9 (No false inclusion). Assume the same condi-
tion as in Lemma 8. Then, by enumerating solutions up to
L(β(�)) ≥ γL(β∗), we can find (β(k), S(k)) (1 ≤ k ≤ �)
such that supp(β(k)) ⊆ supp(β◦) ⊆ S(k) and L(β(k)) ≤
L(β◦).

This theorem is useful to identify the difficulty of a given
instance, i.e., the required number of solutions for support
recovery. See discussion at the end of this section.

Theorem 10 (No false exclusion). Let (β(k), S(k)) be enu-
merated solution where supp(β(k)) ⊆ supp(β◦) ⊆ S(k). If
X�

S◦XS◦ is invertible, then we have

supp(β(k)) ⊇ {i : ‖β◦
i ‖ > 2ρ‖(X�

S◦XS◦)−1‖∞} (12)

with probability 1− |S◦| exp(−ρ2/2σ
√

λmax(X�
S◦XS◦)).

Proof. The following proof is the same as that for the sup-
port consistency theorem for the standard Lasso regression.
Let u = β(k) − β◦ and S := S(k) \ S◦ . Since β(k) is
the optimal solution to Lasso(S(k)), we have the follow-
ing subgradient characterization

X�
S(k)(Xu− w) = ρz (13)

where z ∈ ∂‖β(k)

S(k)‖1 ⊆ [0, 1]S
(k)

. This is written as
[
X�

S◦XS◦ X�
S◦XS

X�
S
XS◦ X�

S
XS

] [
uS◦

0

]
−
[
X�

S◦w
X�

S
w

]
= ρ

[
zS◦

zS

]
.

(14)

Therefore,
uS◦ = (X�

S◦XS◦)−1X�
S◦w + ρ(X�

S◦XS◦)−1zS◦ . (15)
Here, we evaluate �∞-norm of uS◦ . By the triangle inequal-
ity and the definition of matrix norm, we have

‖uS◦‖∞ ≤ ‖(X�
S◦XS◦)−1‖∞

(‖X�
S◦w‖∞ + ρ

)
. (16)

Since X�
S◦w follows a Gaussian distribution of mean

zero and covariance σ2(X�
S◦XS◦), using the union

bound, we have ‖X�
S◦w‖∞ ≥ ρ with probability

|S◦| exp(−ρ2/2σ
√

λmax(X�
S◦XS◦)). Therefore,

‖u‖∞ = ‖uS◦‖∞ ≤ 2ρ‖(X�
S◦XS◦)−1‖∞ (17)

with probability 1 − |S◦| exp(−ρ2/2σ
√

λmax(X�
S◦XS◦)).

This implies the proposition.

The condition C3 in Lemma 8 is a relaxation of the
nullspace property (Cohen, Dahmen, and DeVore 2009): For
all u �= 0 with Xu = 0,

‖uS◦‖ < ‖uS◦c‖. (18)
The nullspace property is a necessary and sufficient condi-
tion for the unique recovery theorem in compressed sensing.
In our theorem, the nullspace condition is almost equivalent
to γ = 1, which implies that we can recover the solution
by enumerating only a single solution. This is the standard
exact support recovery theorem.

When γ > 1, we need to enumerate multiple solutions to
recover the support. In particular, if γ is very large, we need
to enumerate many solutions. Here, we describe two typical
situations that make γ large, depending on the regularization
parameter ρ and the data collinearity of the matrix X .
A1. If the regularization parameter ρ is very small, we have

a chance to obtain β∗ with very small ‖Xβ∗ − y‖2.
Thus, δ in the condition C1 becomes large; hence, γ
becomes large.

A2. If some columns of X are nearly collinear, γ becomes
large to satisfy the inequality of the condition C3.

It should be emphasized that in the standard support re-
covery theorem, we cannot obtain anything, if the conditions
are not satisfied. Conversely, our conditions C1–C3 are usu-
ally satisfied for a sufficiently large γ. Therefore, our algo-
rithm can recover the support (but requires many enumera-
tions in a bad situation).

Note that we cannot identify which β(k) recovers the sup-
port of β◦ only by this procedure, which is an issue of our
formulation. To select an adequate solution, we need addi-
tional criteria (e.g., test error, interpretability) to the prob-
lem.

7 Experiments
We conducted experiments to evaluate the proposed algo-
rithm. All codes were implemented in Python 3.5 with
scikit-learn1. All experiments were conducted on 64-bit
CentOS 6.7 with an Intel Xeon E5-2670 2.6GHz CPU and
512GB RAM.

1The experiment codes are available at https://github.com/
sato9hara/LassoVariants
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Figure 1: ρ versus the number of solutions required to exact
support recovery. The points indicate the median, and the
error bars show the 25% and 75% percentiles after 100 trials.

Synthetic Dataset

We first evaluate the proposed algorithm using a synthetic
dataset. The input X is constructed by X = UA, where
each element of U ∈ R

n×p is drawn from a standard normal
distribution N(0, 1), and the matrix A ∈ R

p×p is given by

A = (1− α)V V � + αI, (19)

where V ∈ R
p×q is randomly drawn from N(0, 1). The pa-

rameter α ∈ [0, 1] controls the degree of collinearity among
the features; the features are highly collinear when α is
small, and they are independent when α = 1. In the ex-
periment, we set the number of features p = 10, the number
of samples n = 100, and the dimension of V to be q = 5.
We also set the true parameter β◦ to be β◦

1 = β◦
2 = 1 and

β◦
i = 0 otherwise.

Required number of enumerations for exact support re-
covery We observed the number of enumerations required
to exact support recovery. We varied the regularization pa-
rameter ρ and the collinearity parameter α. The results are
shown in Figures 1 and 2, respectively, which coincide with
our theoretical analysis.

Figure 1 shows that if ρ is larger than 0.01n, we can re-
cover the true support by enumerating only a few solutions.
By contrast, the number of required solutions increases as ρ
decreases. This matches the results of our analysis A1.

Similarly, Figure 2 also shows that we can recover the true
support by enumerating only a few solutions, if α is close to
one. By contrast, the number of required solutions increases
when α is small, i.e., when the features are collinear. This
agrees with our analysis A2.

Real Dataset

We applied the proposed method to two real-world datasets.
In the experiments, we demonstrate two advantages of the
solution enumeration. First, in the gene expression data,
we show that through enumeration, we can obtain solu-
tions that predict better than the Lasso optimal solution can.
Next, in the 20 newsgroups text data, we show that the pro-
posed algorithm enumerates many interesting features that
are missed in the Lasso optimal solution.

When applying the proposed method, we adopted one
practical modification to Algorithm 1; we replaced supp(β)
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Figure 2: α versus the number of solutions required to exact
support recovery. The points indicate the median, and the
error bars the show 25% and 75% percentiles after 100 trials.

in line 4 of Algorithm 1 with supp>η(β) = {i : |βi| > η}
with some non-negative η. This modification enabled us to
avoid enumerating uninteresting solutions. In the original
Algorithm 1, when the k-th solution β(k) had a small i-th
entry β

(k)
i ≈ 0, it was likely that the k+1-th solution β(k+1)

was almost equal to β(k), except that the i-th entry was set
to exactly zero. Although the support of these two solutions
are different, they are almost identical as a solution. With the
modified algorithm, we can skip enumerating such almost
identical solutions and can enumerate solutions that differ
more significantly.

Gene Expression Data We used the thaliana gene expres-
sion data used in (Atwell et al. 2010). The data comprises
216,130 genes over 199 different samples. In this experi-
ment, we focused on the FLC gene expression as the re-
sponse y, which is the one related to flowering. As the fea-
ture vector x, we used the majority-based expression. For
each gene, we computed the majority out of four genes (A,
T, G, and C), and set the i-th feature xi to be zero if the gene
was same as the majority, and xi to be 1 otherwise. After re-
moving data with missing values, we obtained 167 samples
with 216,130 dimensional feature vectors. For the evalua-
tion purpose, we randomly split samples into 134 training
samples and 33 test samples.

For the training set, we applied Algorithm 1 with the reg-
ularization parameter ρ = 0.1n and the support parameter
η = 0.05. Figure 3 shows that the enumerated top-50 solu-
tions β(k) had competitive qualities with the Lasso optimal
solution β∗. The increase in the objective function values
was limited to up to 0.05%, and the change of the test error
was limited to up to ± 2%. It is noteworthy that the solu-
tions after 30 enumerations had smaller test mean square er-
rors compared with the Lasso optimal solution. That is, by
enumerating solutions, we obtained a better solution with a
smaller test error. It is also interesting to find that such solu-
tions had smaller number of non-zero coefficients compared
with the Lasso optimal solution. For instance, β(34) had only
39 non-zero coefficients, whereas the Lasso optimal solution
β∗ had 45 non-zeros: β(34) had two additional genes from
β∗ with eight genes removed. This result implies that, by fo-
cusing only on the Lasso optimal solution, we may overlook
important features relevant to prediction.
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Figure 3: [Gene Expression] Changes in the objective func-
tion values, the test mean square errors, and the number of
non-zero coefficients over the enumerated solutions.

20 Newsgroups Data The 20 Newsgroups 2 is a dataset
for text categorization. In this experiment, we tried to
find discriminative words between the two categories
ibm.pc.hardware and mac.hardware. As a feature
vector x, we used tf-idf weighted bag-of-words expression,
with stop words and some common verbs removed. The
training set comprised n = 1, 168 samples with p = 11, 648
words, whereas the test set consisted of n′ = 777 samples.
The task was to find discriminative words that were relevant
to classification from these 11,648 words.

Because the task was binary classification between the
two categories, we used Lasso logistic regression instead of
the ordinary Lasso regression (1). The Lasso logistic regres-
sion objective function is defined by

L(β) :=

n∑
i=1

log(exp (−yix
�
i β) + 1) + ρ‖β‖1, (20)

where yi ∈ {−1, 1} is a category indicator. We note that
even if we replace the objective function, Algorithm 1 is still
valid, and we can enumerate solutions with different sup-
ports.

Using Algorithm 1, we enumerated top-50 solutions with
the regularization parameter ρ = 0.001n and the sup-
port parameter η = 4. In the first solution β∗, 39 words
were selected as relevant for classification. We compared

2http://qwone.com/∼jason/20Newsgroups/

Table 1: Words replacements in enumerated solutions.
Original words Replaced Subject
bios → drive ibm
ide → drive ibm
dos → os, drive ibm
controller → drive ibm
quadra, centris → 040, clock mac
windows, bios, controller → disk, drive ibm
bios, help, controller → disk, drive ibm
centris, pc → 610 mac

the Lasso optimal solution β∗ and the latter 49 solutions
β(2), β(3), . . . , β(50). For each solution (β(k), S(k)) out-
putted from the heap, we picked up the following two sets:

• B(k) = supp(β∗) \ S(k): the words removed from β∗,

• C(k) = supp(β(k)) \ supp(β∗): the words added to β(k).

We then extracted the minimal sets from {B(k), C(k)}50k=2,
and summarized them into Table 1. Here, the minimal set
means that we removed redundant solutions such as B(k) =
{bios, ide}, C(k) = {drive} because this word replacement
could be explained by B(�) = {bios}, C(�) = {drive} and
B(�′) = {ide}, C(�′) = {drive}. Table 1 shows that the
words replacements could be categorized into two subjects:
one for the words relevant to ibm.pc.hardware, and the
other for the words relevant to mac.hardware. The table
indicates that the enumerated solutions were meaningful and
diverse, in a sense that the words were replaced with some
other relevant words.

We also note that the enumerated top-50 solutions β(k)

had competitive qualities with the Lasso optimal solution
β∗ similar to the gene expression data. The increase in the
objective function values was limited to up to 2%, and the
increase in the test error was limited to up to 4%.

8 Conclusion

We proposed an algorithm to enumerate solutions to the
Lasso regression problem. With the algorithm, we could
enumerate solutions with different supports in ascending or-
der of their objective function values. We also proved that
we could recover the true feature set exactly under less re-
strictive conditions compared with the ordinary Lasso. The
experimental results on the synthetic and real-world datasets
demonstrated several advantages of the solution enumera-
tion; the enumerated solutions exhibited a smaller test error,
or the solutions tended to involve important yet missing fea-
tures in the optimal solution.
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