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Abstract

Learning a smooth skeleton in a low-dimensional space from
noisy data becomes important in computer vision and com-
putational biology. Existing methods assume that the mani-
fold constructed from the data is smooth, but they lack the
ability to model skeleton structures from noisy data. To over-
come this issue, we propose a novel probabilistic structured
learning model to learn the density of latent embedding given
high-dimensional data and its neighborhood graph. The em-
bedded points that form a smooth skeleton structure are ob-
tained by maximum a posteriori (MAP) estimation. Our anal-
ysis shows that the resulting similarity matrix is sparse and
unique, and its associated kernel has eigenvalues that follow
a power law distribution, which leads to the embeddings of
a smooth skeleton. The model is extended to learn a sparse
similarity matrix when the graph structure is unknown. Ex-
tensive experiments demonstrate the effectiveness of the pro-
posed methods on various datasets by comparing them with
existing methods.

In many fields of science and engineering, one is often
confronted with the problem of dimensionality reduction
(Burges 2009; Van der Maaten, Postma, and van den Herik
2009). The problem aims to extract low-dimensional struc-
tures from high-dimensional datasets, which are generally
characterized by much fewer degrees of freedom than actual
number of features.

In this paper, we are particularly interested in unveiling a
smooth skeleton structure in a latent space from data with
noise. Figure 1 illustrates an intuitive example in which syn-
thetic data points are drawn from a smooth circle with noises
in two-dimensional space. It is challenging to recover the
circle (Figures 1(c) and 1(d)) from the noisy data without
any prior knowledge of the structure. Datasets with a smooth
skeleton structure have become widely accessible in com-
puter vision (Weinberger and Saul 2006) and computational
biology (Curtis et al. 2012). In the study of human can-
cer, a widely accepted hypothesis is that human cancer is
a dynamic disease developed over an extended period with
the accumulation of genetic alterations (Greaves and Ma-
ley 2012). The evolution trajectories of tumor persistence,
growth, and ultimately metastasis, are complex and branch-
ing (Greaves and Maley 2012). Massive molecular profile
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Figure 1: A synthetic example illustrating the motivation for
unveiling the smooth skeleton structure from noisy data. The
data is drawn from a circle with added noise. Each point
is colored for the purpose of illustration. Our two proposed
methods PSL-�2 and PSL-�1 are compared with MVU.

data from excised tumor tissue makes it feasible to uncover
the branching architecture of cancer evolution (Mao et al.
2015). However, learning a smooth branching structure em-
bedded in a low-dimensional space from high-dimensional
noisy datasets poses a great challenge.

Existing methods mostly rely on distances (or similari-
ties) to model the intrinsic structure of data. They either pro-
vide a similarity matrix as a prior (Belkin and Niyogi 2001;
Schölkopf, Smola, and Muller 1999), or learn a similar-
ity measurement based on a subset of distances in a lo-
cal region (Elhamifar and Vidal 2011; Saul and Roweis
2003), or directly learn a kernel matrix from data (Wein-
berger, Packer, and Saul 2005; Xiao, Sun, and Boyd 2006;
Mao and Tsang 2010). These distances become unreliable if
the data is noisy. Moreover, they lack the ability to model a
smooth skeleton from noisy data. As shown in Figure 1, the
strict distance preservation in maximum variance unfolding
(MVU) (Weinberger, Sha, and Saul 2004) fails to capture the
smooth circle from the data (see Figure 1 (b)).

We aim to learn a smooth skeleton from noisy data. To
achieve this goal, we first present expected distances of em-
bedded data points following an unknown density. We then
propose a novel probabilistic structured learning model to
learn the density of latent embedding variables given high-
dimensional data. The main contributions of this paper are:

1) By directly modeling the unknown density of embed-
ding latent variables, the proposed model can be considered
as a probabilistic version of MVU. The embedding data is
obtained by MAP estimation.

2) Our duality analysis shows that the unknown density
has an analytic solution in the form of a sparse similarity
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matrix or a regularized Laplacian kernel (Smola and Kondor
2003), and the eigenvalues of the kernel learned by the pro-
posed model follows a power law distribution, which leads
to a smooth skeleton of embedded points, while the duality
view of MVU cannot achieve this.

3) The proposed model possesses a variety of advanta-
geous properties from probabilistic and discriminative view-
points, including the robust representation of expected dis-
tances, easy extension for error tolerance, model selection of
neighborhood structures, and global optimum of the result-
ing convex optimization problems.

4) We further extend the proposed model for two settings:
a neighborhood graph is given as a priori but distances are
noisy, and the graph is unknown. An efficient alternating di-
rection of multiplier method (ADMM) is proposed to handle
an optimization problem that generalizes both cases.

Related Work
Let Y = {yi}Ni=1 be a set of N data points where yi ∈
R

D. MVU aims to find a set of embedded data points X =
{xi}Ni=1 where xi ∈ R

d and d < D such that the variance
of the embedded points is maximized subject to constraints
such that distances between nearby data points are preserved
(Weinberger, Sha, and Saul 2004).

MVU consists of three steps. The first step is to compute
the k-nearest neighbors Ni of data point yi, ∀i. Let φi,j =
||yi − yj ||2 and Di,j = ||xi − xj ||2. The second step is to
solve the following optimization problem given by

max
X

N∑
i=1

||xi||2 :

N∑
i=1

xi = 0, Di,j = φi,j , ∀i, j ∈ Ni, (1)

where the first constraint eliminates the translational degree
of freedom on the embedded data points by constraining
them to be centered at the origin; the remaining constraints
preserve distances between k-nearest neighbors. Instead of
optimizing X, MVU reformulates (1) as a semidefinite pro-
gramming by learning a kernel matrix K with the (i, j)th
element denoted by Ki,j = 〈xi,xj〉 with a semidefinite
constraint K � 0 for a valid kernel (Scholkopf and Smola
2001). We have Di,j = ||xi − xj ||2 = Ki,i +Kj,j − 2Ki,j .
The resulting problem is given by

max
K

Tr(K) :
∑
i,j

Ki,j = 0,K � 0, Di,j = φi,j , ∀i, j ∈ Ni,

where
∑

i,j Ki,j =
〈∑N

i=1 xi,
∑N

j=1 xj

〉
= 0 is a re-

laxed constraint for ease of kernelization. The final step is
to obtain the embedding X by applying KPCA (Schölkopf,
Smola, and Muller 1999) on the optimal K.

A duality view of the MVU problem has been studied in
(Xiao, Sun, and Boyd 2006). Define Ei,j as an N ×N ma-
trix consisting of only four nonzero elements: Ei,j [i, i] =
Ei,j [j, j] = 1,Ei,j [i, j] = Ei,j [j, i] = −1. The preserving
constraints can be rewritten as Tr(KEi,j) = φi,j , ∀i, j ∈Ni. Thus, the dual MVU problem is

min
∑

i,j∈Ni

wi,jφi,j : λN−1(L) ≥ 1,L =
∑

i,j∈Ni

wi,jE
i,j , (2)

where wi,j is the dual variable subject to the preserving
constraint associated with edge (i, j), and λN−1 denotes the
second smallest eigenvalue of a symmetric matrix.

Expected Distance Preserving

Even though MVU has been successfully applied to a num-
ber of datasets, two challenging problems exist. 1) The dis-
tances over noisy data lack the reliability for modeling em-
bedded points, and the manifold constructed over these dis-
tances may not directly reflect a smooth skeleton structure.
Thus, it is challenging to learn a smooth skeleton structure
from noisy data in high dimension. 2) The k-nearest neigh-
bor graph might be not adequate for modeling points with
large variances in different regions (Elhamifar and Vidal
2011). It is important to automatically learn a neighborhood
graph so as to better approximate the true structure. We re-
solve these issues by proposing a novel probabilistic model,
which can be viewed as a probabilistic version of MVU.

Proposed Probabilistic Model

As the embedding X is the variable of interest, we treat it
as a random variable. Let X = [x1, . . . ,xN ] ∈ R

N×d be
a matrix of embedded points. Define p(X) as the density
of embedded points, and the bases of the embedding space
are assumed to be independent so that p(X) =

∏d
k=1 p(fk)

where [f1, . . . , fd] = XT . This assumption is commonly
used in spectral methods. We can now reformulate the dis-
tance of embedded points xi and xj as the expected distance
with respect to density p(X) given by E[||xi − xj ||2] =∑d

k=1

∫
(fi,k−fj,k)

2p(fk)dfk, where the equality holds due
to ||xi − xj ||2 =

∑d
k=1(fi,k − fj,k)

2 and the indepen-
dence over features. The centralized constraint can be re-
formulated for each reduced dimension as E[

∑N
i=1 fi,k] =∫

1T fkp(fk)dfk = 0, ∀k. In addition, we assume that the
prior distribution p0(X) =

∏d
k=1 p0(fk) where p0(fk) is a

multivariate normal distribution with zero mean and covari-
ance matrix γ−1I, i.e. fk ∼ N (0, γ−1I). In order to learn
p(X) from data Y = [y1, . . . ,yN ] ∈ R

D×N given a set of
expected constraints, the principle of maximum entropy is
used. Given a prior distribution and a neighborhood graph,
we minimize the following optimization problem

min
{p(fk)∈Pk}dk=1

d∑
k=1

∫
p(fk) log

p(fk)

p0(fk)
dfk (3)

s.t. E[||xi − xj ||2] = φi,j , ∀i, j ∈ Ni,

E

[
N∑
i=1

fi,k

]
= 0, ∀k,

where P = ×d
k=1Pk is a Cartesian product of d i.i.d. prob-

ability spaces and Pk = {∫ p(fk)dfk = 1, p(fk) ≥ 0} is a
feasible set of density functions.
Proposition 1. Problem (3) has an analytic solution

p(fk) = N (
0, (L+ γI)−1), ∀k, (4)

where Laplacian matrix L = diag(W1) −W, the (i, j)th
element wi,j of W is the dual variable of its correspond-
ing distance preserving constraint, and the dual optimiza-
tion problem is convex given by

max
W

d

2
log det(L+ γI)− 1

4
〈W,Φ〉 (5)

s.t.L+ γI 	 0, wi,j = 0, ∀i, j 
∈ Ni,
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where Φ is a distance matrix with the (i, j)th element as
φi,j if for any i, j ∈ Ni and ∞ otherwise, and 〈·, ·〉 is the
standard trace inner product.

According to Proposition 1, there are several interesting
properties. First, the zero mean constraint holds automati-
cally in (3). This can be verified by the posterior distribu-
tion with zero mean. Second, our model can obtain smooth
skeleton structure of embedding, which will be discussed in
details below.

Analyses from Spectrum and Optimization

The objective function contains log-determinant of L + γI,
which can be equivalently formulated as log det(L+ γI) =∑N

i=1 log(λi(L)+γ), where λi denotes the ith largest eigen-
value of a symmetric matrix. Thus, the log determinant can
be related to the negative log-likelihood of a power law
distribution of λi as p(λi) ∝ λ−θ

i where θ is called the
power law exponent, and γ is a positive term used to make
λi+γ > 0. The power law distribution imposes large values
on a small set of eigenvalues, while the remaining eigenval-
ues have small values. In the proposed model, θ = d

2 . This
is critically different from the dual MVU problem where the
second smallest eigenvalue is maximized (Xiao, Sun, and
Boyd 2006). The positive term γ represents the sensitivity
threshold for the parameters and is used to smooth out the
scale-free property (Liu and Ihler 2011). If γ � λi, we
have log(λi + γ) ≈ 1

γλi + log(γ). This generalizes the
�1 regularizer over the eigenvalues. According to the above
spectral analysis, the proposed model puts more emphasis
on the whole spectrum of the Laplacian matrix following a
power law distribution. The difference between MVU and
our model will be illustrated in the experiments.

From an optimization perspective, the proposed unfolding
framework provides a novel approach to learn a sparse sim-
ilarity matrix W automatically from a set of pairwise dis-
tances, and the similarity matrix is intentionally designed for
learning the embedded points that achieve a smooth skeleton
structure because: (i) The proposed formulation (3) learns a
posterior distribution of embedded points since the expected
distance of these points with respect to the posterior distri-
bution has much more flexibility than the deterministic dis-
tances used in MVU. (ii) The smoothness of the manifold
structure is achieved by the expected constraints over an in-
finite number of possible candidates of embedded points,
where distances can be varied flexibly so that these dis-
tances may not be strictly preserved. In contrast, determinis-
tic constraints used in MVU are strictly preserved. (iii) The
not-restrictively-preserved constraints allow the embedded
points to move flexibly to form a smooth skeleton in terms
of 〈W,Φ〉 in (5). In other words, by minimizing 〈W,Φ〉, if
two points are close on the given graph, their corresponding
embedded points are also close.

Embedding via MAP Estimation

Once W has been obtained, the posterior distribution of em-
bedding is explicitly represented as p(X) =

∏d
k=1 p(fk),

which is the same as the matrix normal distribution (Gupta
and Nagar 1999) given by p(F|Y) ∼ MNN,d(0,U, I),

where U = (L + γI)−1 is the sample-based covariance
matrix and can also be interpreted as a regularized Lapla-
cian kernel with regularization parameter γ (Smola and Kon-
dor 2003). Given the posterior distribution, we can obtain
the point estimate of X by using MAP estimation. Thus,
from probabilistic point of view, we can apply KPCA on
U to achieve the embedded data points similar to MVU for
embedding. For reference, we name the proposed model as
Probabilistic Structured Learning (PSL).

Latent Smooth Skeleton Embedding

In addition to imposing constraints for strictly preserving
distances, we also consider variants of the difference be-
tween two pairwise distances. One is to tolerate the errors
of distances on the edges of a given neighborhood graph,
the other is to learn the neighborhood graph from data. Both
relaxations can be formulated according to the maximum
entropy density estimation with generalized regularization
(Dudı́k, Phillips, and Schapire 2007). Next, we propose the
two variants of PSL to learn smooth skeleton embedding on
noisy high-dimensional data.

Known Neighborhood Structure

Suppose that a neighborhood graph G is known in advance
and can reliably capture the underlying structure of the data.
However, the distance φi,j is not reliable due to noisy sam-
ples or features. In this case, we aim to obtain a set of em-
bedded points that can preserve the distances with a penalty
on the violated pair of points corresponding to an edge in
{(i, j) : ∀i, j ∈ Ni}. By introducing variable ξi,j for the
distance violation on edge (i, j) and parameter C > 0, PSL
with �2 regularization (PSL-�2) can be formulated as

min
{p(fk)∈Pk}dk=1

d∑
k=1

∫
p(fk) log

p(fk)

p0(fk)
dfk +

C

2

∑
i,j∈Ni

ξ2i,j (6)

s.t. E[||xi − xj ||2]− φi,j = ξi,j , ∀i, j ∈ Ni.

Proposition 2. Problem (6) has an analytic solution (4)
where W can be obtained by solving

max
W

d

2
log det(L+ γI)− 1

4
〈W,Φ〉 − 1

2C
||W||2F (7)

s.t. L+ γI 	 0, wi,j = 0, ∀i, j 
∈ Ni,

where ||W||F is the Frobenius norm of W, Φ is a matrix
with the (i, j)th element as φi,j if for any i, j ∈ Ni and ∞
otherwise. The violation can be computed as ξi,j =

wi,j

C .
According to Proposition 2, a large C imposes a small

violation of pairwise distances. As C → ∞, problem (6)
is equivalent to (3). Note that MVU was extended for data
without noise by introducing a tolerance term similar to (6)
(Weinberger and Saul 2006), whose motivation was only to
overcome the “lock up” effect of embedding data if strictly
preserving distances is impossible for data without noise.

Unknown Neighborhood Structure

If the data does not provide a reliable neighborhood structure
as a prior, we propose to automatically learn a sparse graph
by imposing sparsity on W. To achieve this goal, we mod-
ify the constraints in (6) such that the absolute difference
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of distances between E[||xi − xj ||2] and φi,j is restricted
in a range between −βφi,j and βφi,j , which is the scaled
distance by β. In other words, we can interpret the parame-
ter β as a tolerance for the deviation of an embedding dis-
tance from its associated observed distance, which we want
to preserve. This variant of the MAP unfolding with the de-
fined constraints called PSL with �1 regularization (PSL-�1)
is formulated as

min
{p(fk)∈Pk}dk=1

d∑
k=1

∫
p(fk) log

p(fk)

p0(fk)
dfk (8)

s.t.
∣∣E[||xi − xj ||2]− φi,j

∣∣ ≤ βφi,j , ∀i, j.
Proposition 3. Problem (8) has an analytic solution (4)
where W can be obtained by solving

max
W

d

2
log det(L+ γI)− 1

4
〈W,Φ〉 − β||Φ�W||1 (9)

s.t. L+ γI 	 0

where ||Φ �W||1 =
∑N

i=1

∑N
j=1 φi,j |wi,j | and Φ is a

matrix with the (i, j)th element as φi,j .
Proposition 3 shows that the objective function of (9)

leads to a sparse similarity matrix due to the �1 regulariza-
tion. That is, wi,j approaches to 0 if φi,j is large. This is
consistent with the intuition that two data points are dissim-
ilar if they are distant. Problem (9) is similar to the model
proposed for sparse structure learning (Lake and Tenenbaum
2010). The key difference is that the latter model has a non-
negative constraint on W, i.e. W ≥ 0, while our model
does not have this constraint. In addition, MEU (Lawrence
2012) for estimating graph structure by imposing �1 regu-
larizer over the kernel matrix based on the assumption that
original features are identically independent. However, our
model takes weighted �1 regularizer over W and is derived
from the independence of latent variables, which is com-
monly used in spectral methods. A very recent work (Mao,
Wang, and Tsang 2016) can learn a sparse similarity matrix
for shrinkage effect, but our method effectively controls the
deviation of distances using the absolute difference.

Optimization Algorithm
We propose to solve the following optimization problem

min
W,G

〈W,A〉+Ω(W)− log det(G) (10)

s.t. G = diag(W1)−W + γI,G 	 0,W ∈ S,
where S is a set of symmetric matrices. It is easy to see that
problem (10) is a generic problem of (5), (7), and (9).

ADMM (Boyd et al. 2011) is employed to solve (10). By
introducing Z ∈ R

N×N as the multiplier of the linear matrix
equation and τ > 0 as the penalty parameter for the viola-
tion of the linear matrix constraint, we have an augmented
Lagrangian function of problem (10) as Lτ (G,W,Z, τ) =
〈W,A〉+Ω(W)−log det(G)−〈Z,G−gγ(W)〉+ τ

2 ||G−
gγ(W)||2F , where gγ(W) = diag(W1)−W+γI. ADMM
iteratively solves following subproblems until convergence:

G(t+1)=arg min
G�0

τ

2
||G−Q(t)||2F − log det(G), (11)

W(t+1)=arg min
W∈S

〈W,A〉+Ω(W)+
τ

2
||gγ(W)−P(t)||2F , (12)

Z(t+1)=Z(t) − τ(G(t+1) − gγ(W
(t+1))), (13)

where Q(t) = gγ(W
(t)) + 1

τZ
(t) and P(t) = G(t+1) −

1
τZ

(t). Next, we discuss detailed methods for solving the
above subproblems separately.

First, problem (11) has an analytic solution, which is
shown in the following proposition.

Proposition 4. Let the eigen-decomposition of Q(t) be
Q(t) = VΛVT where V is an orthogonal matrix whose
column vectors are eigenvectors of Q(t) and Λ = diag([λi])
is a diagonal matrix with corresponding eigenvalues. The
optimal solution of (11) is G(t+1) = Vdiag([λ̃i])V

T where

λ̃i =
λi

2
+

√
λ2
i

4
+

1

τ
, ∀i. (14)

Next, we solve subproblem (12). Before detailing the op-
timization method, we present the following lemma, which
reduces the number of variables to be optimized.
Lemma 1. Given A, problem (12) with Ω defined above has
wi,i = 0, ∀i at the optimum.

According to Lemma 1 and the symmetry property of W,
the optimization problem (12) can be rewritten as a prob-
lem with respect to W = {wi,j : ∀(i, j) ∈ ES} where
ES = {(i, j) : ∀i, j < i ∧ j ∈ Ni}. Let w be a vectorized
representation of optimized variables in W by applying a
mapping function ϕ(i, j) = � that maps indexes (i, j) ∈ ES
to the �th element of w. As a result, problem (12) can be
written as minw h(t)(w) + Ω(w), where

h(t)(W) = 〈W,A〉+ τ

2
||gγ(W)−P(t)||2F . (15)

The following proposition shows that the objective function
(15) is a quadratic function with respect to w.
Proposition 5. Let w be the vectorized representation of
variables in W with the mapping function ϕ defined above.
Define φ and p as the vectorizations of Φ and P(t) with the
same mapping function, respectively. We have that minimiz-
ing the objective function (15) with respect to W is equiva-
lent to minimizing the following quadratic function with re-
spect to w given by

h(t)(w) =
τ

2
wTBw + τwT c

where B =
∑

i bib
T
i + 2I, bi is a binary vector with the

�th element, and for j �= i, if j < i, bi[ϕ(i, j)] = 1, and if
j > i, bi[ϕ(j, i)] = 1, and the remaining elements of bi are
0s, and c = 2p+

∑
i(γ − pi,i)bi +

1
dτφ .

According to Proposition 5, we can equivalently trans-
form the constrained optimization problem (12) into an un-
constrained quadratic optimization problem with a smaller
number of variables to be optimized. To take full advantage
of structure B, we seek optimization methods (Byrd et al.
1995; Schmidt 2010) to solve problem (12) by exploring the
first order information since we can compute the objective
h(t)(w) = τ( 12

∑N
i=1(b

T
i w)2 + ||w||2 +wT c) and its gra-

dient∇wh(t)(w) = τ(
∑N

i=1 bi[b
T
i w] + 2w+ c) very effi-

ciently as they only involve the inner product of two vectors,
and either bi or w are sparse in general.

According to Propositions 4 and 5, the reformulated prob-
lem follows the standard form of ADMM since the positive
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Figure 2: Results of �MVU, PSL-�2, and PSL-�1 on Teapot and Breast cancer, including the embedded points in 2-D or 3-D
space, the eigenvalues of the learned kernel matrix, and the sparse similarity matrix learned by PSL-�2 and PSL-�1. Eigenvalues
are plotted in descending order and the similarity matrix is rearranged in terms of encoded colors in ascending order.

definite constraint on G automatically holds due to the log
determinant function and the vectorized w is unconstrained.
As a result, the stopping criterion discussed in Section 3.3.1
of work (Boyd et al. 2011) is used and the penalty param-
eter τ is varied adaptively according to the primal and dual
residues as given in Section 3.4.1 of the same work. The con-
vergence property of ADMM proved in (Boyd et al. 2011) is
thus readily adapted to the proposed algorithm. Our method
has computational complexity O(N3), which is the same as
that of most of spectral based methods, but is much faster
than semi-definite programming used in MVU.

Experiments

Experiments were conducted on various datasets to evaluate
the proposed methods. The first experiment is to verify the
embedded points by visualizing them in 2-D or 3-D space,
while the second experiment is to evaluate clustering perfor-
mance on the embedded points.

Nonlinear Dimensionality Reduction

We evaluated the proposed methods on datasets in which
the high-dimensional points were sampled from a low-
dimensional skeleton structure. Two datasets were used in
this experiment. One is teapot data (Weinberger, Sha, and
Saul 2004) which consists of 400 color images of a teapot
viewed from different angles in the plane (rotated 360◦), and
each image consists of 76 × 101 RGB pixels in a 23, 028
dimensional vector space (Weinberger and Saul 2006). The
other is breast cancer data, which contains the expression

levels of over 25, 000 gene transcripts obtained from 144
normal breast tissue samples and 1, 989 tumor tissue sam-
ples (Mao et al. 2015). All data points are encoded with col-
ors for checking the distribution of embedded points.

Landmark MVU (�MVU) (Weinberger, Packer, and Saul
2005) was evaluated for computational consideration, and
the number of landmarks was set to 40. As KPCA and MVU
have been compared thoroughly in (Weinberger, Sha, and
Saul 2004), KPCA is not reported. As the �2 regularized
model is a generalized version of PSL in the case of C ap-
proaching infinity, we set C = 103. A very broad, spherical
Gaussian density with γ = 10−5 is used as a surrogate for
the uninformative prior. For PSL-�1, β controls the sparsity
of the similarity matrix, so our model does not have a preset
number of nearest neighbors. We set β = 103 to promote
the sparsity of W.

Figure 2 shows the results of �MVU and our proposed
methods on Teapot and Breast cancer. First, we observe that
all three methods can correctly recover the circle structure
of the teapot images, but our proposed methods obtain a
skeleton of embedded points that is much smoother than that
obtained by �MVU. The smoothness of the skeleton struc-
ture becomes much clearer on Breast cancer data since the
data tends to be very noisy. The skeleton structures of our
proposed methods suggest a linear bifurcating progression
path, starting from the normal tissue samples, and diverg-
ing to either luminal A or basal subtypes. The linear trajec-
tory through luminal A continues to luminal B and to the
HER2+ subtype. This is consistent with the branching ar-
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Table 1: Clustering results of 11 methods on seven datasets
in terms of accuracy and NMI. The best results are in bold.
Dataset COIL20 Isolet Pendigits Satimage USPS YALE-B Letter
(N, c) (1440, 20) (3119, 2) (3498, 10)(4435, 6)(2007, 10) (2414, 38) (5000, 26)
(D, d) (1024, 84)(617, 165) (16, 9) (36, 6) (256, 32) (1024, 116) (16, 12)

Accuracy
Kmeans 0.6674 0.5633 0.6544 0.6685 0.6153 0.1081 0.2632
PCA 0.6674 0.5633 0.6527 0.6681 0.6208 0.1110 0.2634
KPCA 0.6694 0.5643 0.7384 0.6728 0.6313 0.1135 0.2752
LLE 0.3493 0.5021 0.1215 0.6510 0.1624 0.0667 0.3084
LE 0.2035 0.5005 0.7607 0.6870 0.3767 0.0597 0.0634
�MVU 0.5042 0.5989 0.5692 0.6886 0.3896 0.0684 0.1484
GPLVM 0.6674 0.5630 0.6527 0.6681 0.4709 0.0671 0.2634
MEU 0.3590 0.5476 0.7138 0.7398 0.6129 0.3094 0.2518
SMCE 0.3813 0.5162 0.8333 0.7143 0.6009 0.2933 0.2824
PSL-�2 0.7181 0.6794 0.8208 0.7132 0.6487 0.4138 0.2816
PSL-�1 0.7319 0.5973 0.8468 0.7454 0.7309 0.3521 0.3320

NMI
Kmeans 0.7845 0.0117 0.6669 0.6097 0.5657 0.1694 0.3621
PCA 0.7845 0.0117 0.6627 0.6090 0.5664 0.1781 0.3591
KPCA 0.7893 0.0121 0.6846 0.6110 0.5769 0.1742 0.3664
LLE 0.3848 0.0004 0.0059 0.5080 0.0106 0.0810 0.3992
LE 0.2357 0.0003 0.7554 0.6038 0.2943 0.0515 0.0213
�MVU 0.6494 0.0292 0.6422 0.5818 0.3858 0.0870 0.1379
GPLVM 0.7845 0.0116 0.6627 0.6090 0.3824 0.0716 0.3591
MEU 0.5067 0.0151 0.7635 0.6826 0.5743 0.4174 0.3341
SMCE 0.4920 0.0165 0.8071 0.6515 0.6176 0.4042 0.3890
PSL-�2 0.8412 0.0952 0.7999 0.6526 0.7130 0.6094 0.3940
PSL-�1 0.8517 0.0392 0.8230 0.6953 0.7641 0.4796 0.4482

chitecture of cancer progression (Greaves and Maley 2012).
However, �MVU does not obtain a clear structure. More-
over, the skeleton structure learned by PSL-�1 is slightly bet-
ter than the structure by PSL-�2. This is partially because
the varied neighborhood on Breast cancer data is better than
fixed neighborhood. We also demonstrate the distribution
of eigenvalues. �MVU obtained a kernel with few non-zero
eigenvalues, while our methods learned a kernel with eigen-
values that follow a power law distribution. Our methods ob-
tain a sparse similarity matrix, while �MVU does not. These
observations are in line with our theoretical analysis, and
imply that our proposed methods can learn smooth skeleton
structures of embedded points from noisy data.

Clustering with Dimensionality Reduction

We evaluated clustering performance on embedded points
obtained by both proposed methods and existing dimension-
ality reduction methods. The datasets used in the experi-
ments are listed in Table 1, where the reduced dimensions
are set so that retain 95% energy of each dataset after apply-
ing PCA. We compared the proposed methods PSL-�2 and
PSL-�1 with PCA, KPCA (Schölkopf, Smola, and Muller
1999), LLE (Belkin and Niyogi 2001), LE (Saul and Roweis
2003), �MVU (Weinberger, Packer, and Saul 2005), GPLVM
(Lawrence 2005), MEU (Lawrence 2012) and SMCE (El-
hamifar and Vidal 2011). For methods with a k-nearest
neighborhood graph as the input, we either obtained k us-
ing the normal neighborhood selection strategy (Van der
Maaten, Postma, and van den Herik 2009) or tuned k in a

range {5, 10, 15, 20, 30, 50, 100} for the best performance.
For methods that use Gaussian kernel, we set the band-
width parameter to the estimated standard deviation within
neighborhoods (Weinberger, Sha, and Saul 2004). The pa-
rameter β in PSL-�1 and regularization parameter in SMCE
were tuned in a large range {0.1, 1, 10, 102, 103}. Other pa-
rameters use default setting suggested in drtoolbox (lvd-
maaten.github.io/drtoolbox/), MEU and SMCE. Kmeans on
the original data was used as the baseline. To alleviate the
non-convex issue of Kmeans, we ran Kmeans with 20 ran-
dom initialization, and the clustering with the best objective
value was evaluated in terms of accuracy and normalized
mutual information (NMI) (Nie et al. 2009). All methods
used the same reduced dimension and conducted Kmeans
on embedded points with the number of true clusters.

Table 1 shows the clustering results of 11 methods on
seven datasets in terms of accuracy and NMI. We make sev-
eral observations from the results. First, Kmeans on the em-
bedded data points obtained by half the existing dimension-
ality reduction methods may not be better than PCA, which
was also observed in (Van der Maaten, Postma, and van den
Herik 2009). Second, the proposed methods can consistently
obtain robust results on most of the datasets in terms of
both accuracy and NMI. Third, methods with learning a
sparse graph structure can obtain better results than methods
with a fixed neighborhood graph as input. Although PSL-�2
does not learn a graph, its robust distance modeling allevi-
ate this issue, so the clustering performance is comparable
with PSL-�1 and even better than SMCE. Lastly, the pro-
posed methods perform much better than probabilistic mod-
els such as GPLVM and MEU due to the strategy of directly
modeling the posterior distribution of embedded points. This
is also verified by the superior performance of PSL to MVU
where a smooth skeleton might be better for clustering prob-
lems than only unfolding the data by preserving distances.

Conclusion

In this paper, we proposed a novel probabilistic model for
nonlinear dimensionality reduction. Unlike MVU, we model
the posterior distribution of embedded points by preserving
the expected pairwise distances encoded in a given neigh-
borhood graph. The duality of this model can be interpreted
as maximizing the log-likelihood of a power law distribu-
tion over the eigenvalues of a sparse dual matrix, which
leads to a smooth skeleton. Two variants of the model are
also discussed for noise samples and graph structure learn-
ing. The formulated problems are convex and can be effi-
ciently solved by ADMM. Extensive experiments demon-
strate that the proposed model achieves a smooth skeleton
of embedded points and outperforms various existing meth-
ods on seven datasets in terms of clustering performance.
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