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Abstract

Feature selection is an important technique in machine learn-
ing research. An effective and robust feature selection method
is desired to simultaneously identify the informative features
and eliminate the noisy ones of data. In this paper, we con-
sider the unsupervised feature selection problem which is par-
ticularly difficult as there is not any class labels that would
guide the search for relevant features. To solve this, we pro-
pose a novel algorithmic framework which performs unsu-
pervised feature selection. Firstly, the proposed framework
implements structure learning, where the data structures (in-
cluding intrinsic distribution structure and the data segment)
are found via a combination of the alternative optimization
and clustering. Then, both the intrinsic data structure and data
segmentation are formulated as regularization terms for dis-
criminant feature selection. The results of the feature selec-
tion also affect the structure learning step in the following
iterations. By leveraging the interactions between structure
learning and feature selection, we are able to capture more
accurate structure of data and select more informative fea-
tures. Clustering and classification experiments on real world
image data sets demonstrate the effectiveness of our method.

Introduction

Real world applications usually involve big data with high
dimensionality, such as in computer vision (Collins, Liu,
and Leordeanu 2005), bioinformatics (Saeys, Inza, and Lar-
ranaga 2007), and data mining (Liu et al. 2010). High di-
mensionality generally poses great challenges, including
“the curse of dimensionality”, huge computation and stor-
age cost, to conventional machine learning algorithms. In
order to address this issue, feature selection is proposed to
select a subset of features from the feature pool of high di-
mensional data for a compact and informative representation
(Guyon and Elisseeff 2003). After the implementation of
feature selection, conventional machine learning algorithms
can be applied on data represented by only the selected rel-
evant features instead of all the features.

According to the availability of class labels of data, fea-
ture selection algorithms can be roughly classified into three
groups, i.e., supervised feature selection (Song et al. 2007),
semi-supervised feature selection (Xu et al. 2010), and un-
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supervised feature selection (He, Cai, and Niyogi 2006). Su-
pervised feature selection evaluates features by computing a
feature’s correlation with the class labels. Representative su-
pervised feature selection methods include the Fisher score
method (Duda, Hart, and Stork 2000), robust �21 regression
method (Nie et al. 2010) and the generalized Fisher score
method (Gu, Li, and Han 2011). By exploiting the informa-
tion of class labels, supervised feature selection is usually
able to identify the discriminative and effective features for
recognition and classification (Tao et al. 2016). On the other
hand, with insufficient class labels, unsupervised and semi-
supervised methods have to consider the capability of the
features in preserving or revealing of the underlying struc-
ture of data (He, Cai, and Niyogi 2006). A frequently used
criterion is to select the features which best preserve in-
trinsic data structure. Recent research has witnessed several
important data structures that should be preserved by fea-
tures, where these data structures include, but not limit to,
the sparse global structure (Du and Shen 2015) and the lo-
cal manifold structure (Han et al. 2015). Generally speaking,
because of insufficient class labels, it is more difficult for un-
supervised and semi-supervised feature selection to find the
discriminative and informative features.

In practice, data structures for unsupervised feature selec-
tion are usually captured in the form of weighted graphs,
such as the sample pair-wise similarity graph and the sparse
graph (Du and Shen 2015) and the locally linear reconstruc-
tion graph (Hou et al. 2014). In graph based feature selection
methods, the constructed graph is fixed in the following pro-
cedures and the performance of feature selection is largely
determined by the quality of graph. Ideally, the quality of
constructed graphs should be improved using the selected
informative features instead of all the features that contain
noisy and irrelevant ones. It is reasonable to alternatively op-
timize the data structure characterization using the selected
features and then identify the selected feature set using the
refined graph. Each sub-task and be iteratively boosted by
using the result of the other one. Motivated by this, the main
contributions of our work are:

• Data structure characterization is learned in two forms,
which are referred as the soft structure and hard struc-
ture. The soft structure is defined by pair-wise similarities
between data points and the hard structure is learned by
data segmentation. Soft data structure is used to evaluate

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1870



the ability of features in preserving geometry of data and
hard structure is used to extract the unsupervised discrim-
inant information of data.

• The results of feature subset selection and data struc-
ture learning are optimized alternatively. In this way, each
sub-task (structure learning and feature selection) and can
boost the result of the other in the proposed feature selec-
tion framework.

• Both the soft and hard data structure can be naturally for-
mulated as regularization terms in the regressional fea-
ture selection framework. And the derived regression al-
gorithm can be efficiently optimized with convergence
guarantee.

The Proposed Framework

Let X = [x1, · · · , xN ] be the given data matrix, where xi ∈
R

D (1 ≤ i ≤ N) denotes the i-th data sample. Feature
selection aims to evaluate the importance of all features of
X , i.e, the row vectors of X . For an arbitrary matrix A ∈
R

m×n, its �1,2-norm is defined as‖A‖1,2 =
∑n

j=1 ‖Ai‖2 =∑n
j=1

√∑m
i=1 a

2
ij . where Ai denotes the i-th column vector

of matrix A. For simplicity, we assume that the elements of
the D-th row of data matrix X are all 1s and thus the bias
term in linear regression can be integrated in matrix A.

Data Structure Learning

A large number of unsupervised feature selection algorithms
have been proposed based on the analysis of the data struc-
tures, such as the Maximum Variance (MaxVar), manifold
structure (Zhao et al. 2009; Du et al. 2013). Inspired by the
recent development of compressive sensing, a popular ap-
proach to learn the affinity matrix of data is based on the
self-expressiveness model. The basic assumption is that data
points lie on a union of subspaces. Each data point can be ex-
pressed in term of a linear combination of other data points.
The general problem can be formulated as below:

min
Z,E

‖Z‖κ + λE‖E‖ω, (1)

subj. to X = XZ + E, diag(Z) = 0,

where matrix Z consists of self-expressive coefficients and
E denotes the matrix of data noise, ‖ · ‖κ and ‖ · ‖ω are
two properly chosen norms, λE > 0 is a tradeoff parameter.
Many successful methods have been proposed based on dif-
ferent choices of the norms for coefficient Z and noise E.
For example, in Sparse Subspace Clustering (SSC) (Elhami-
far and Vidal 2013), �1 norm is used for both ‖ ·‖κ and ‖ ·‖ω
as a convex surrogate over �0 norm to promote sparseness in
coefficient matrix Z and handle the noises E. In Low-Rank
Representation (LRR) (Liu et al. 2013), the nuclear norm
‖ ·‖∗ is adopted for ‖ ·‖κ as a convex surrogate of the matrix
rank function and �1,2 norm is used for ‖·‖ω to handle noise
or outlying entries E. Besides, a number of variants of (1)
for data structure learning have been proposed for various
applications in machine learning and pattern recognition.

Based on the motivation that nearby data points should
have large similarity and far away data points should have

small similarity, (Nie, Wang, and Huang 2014) proposes to
compute the similarities between pair wise data points by
solving the following problem:

min
S=(sij)

∑
i,j

(
‖xi − xj‖2sij + μs2ij

)
, (2)

subj. to
∑N

j=1 sij = 1, sij ≥ 0, and sii = 0.

where μ is the regularization parameter which is used to
avoid trivial solution and add a prior of uniform distribu-
tion. It can be found that nearby data samples have large
similarity sij . With such desirable property, the estimated
similarity matrix S can be considered as an effective local
data structure characterization.

The self-expressive model (1) preserves global and sparse
reconstruction data structure while the adaptive neighbor
model (2) is based on the local similarity of data and fo-
cus on local data structure. Once the coding Z (or similar-
ity matrix S) has been found, the segmentation of data can
be obtained by applying Spectral Clustering (SC) (Ng, Jor-
dan, and Weiss 2001) on the induced affinity matrix W =
|Z|+ |ZT | (or W = |S|+ |ST |). The clustering result is as-
sumed to be given as {t1, · · · , tN}, where ti ∈ {1, · · · , C}
is the assigned cluster label of xi with C denotes the num-
ber of clusters. In this paper, the induced affinity matrix W
is referred to as the soft data structure because it describes
the pair-wise similarity using nonnegative real value, mean-
while, the result of data segmentation is called as the hard
data structure characterization as it provides label attribute
of the data points.

Discriminant Feature Analysis

Linear Discriminant Analysis (LDA) (Fukunaga 1990) is a
popular supervised feature extraction method. It seek direc-
tions on which data points from the same classes are close
and data points from different classes are far away from each
other. Given the class labels of data points, the objective
function of LDA is as follows

A = argmin
A

Tr
(
ASwA

T
)

Tr (ASbAT )
, (3)

where Tr(·) indicates the matrix trace operator, A ∈ R
D×D

is the desired projective matrix and

Sw =
∑C

c=1

(∑nc

i=1(x
(c)
i − x̄(c))(x

(c)
i − x̄(c))T

)
,

and Sb =
∑C

c=1 nc(x̄
(c) − x̄)(x̄(c) − x̄)T ,

are within-class scatter matrix and between-class scatter ma-
trix respectively, with nc indicates the number of samples in
the c-th class, x(c)

i be the i-th sample in the c-th class, x̄(c) is
the mean of the samples in the c-th class, x̄ denotes the mean
of all the samples. Define St =

∑N
i=1(xi − x̄)(xi − x̄)T as

the total scatter matrix, then we have St = Sw + Sb. The
objective function of LDA in (3) is equivalent to

A = argmin
A

Tr
(
AStA

T
)

Tr (ASbAT )
= argmax

A

Tr
(
ASbA

T
)

Tr (AStAT )
. (4)

The solution A is given by the eigenvectors of the top eigen-
values of the generalized eigen-problemSbα = λStα, where
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λ is a eigenvalue and α denotes the corresponding eigen-
vector. Because of its simplicity and effectiveness, LDA has
been widely used in machine learning research.

Unsupervised Discriminative Feature Selection
Framework

In unsupervised scenarios, the label of data samples are un-
known. As discussed above, one can implement data struc-
ture learning (Section ) to find the clustering labels of data
samples, i.e., the hard data structure characterization. Then,
the with assigned clustering labels, we convert LDA into a
feature selection algorithm via adopting �1,2-norm as a reg-
ularizer:

A = argmin
A

Tr
(
ASwA

T
)

Tr (ASbAT )
+ γA‖A‖1,2, (5)

where the regularization term ‖A‖1,2 ensures that A is
sparse in columns, making it suitable for feature selection.
The balancing parameter γA controls the tradeoff between
the two terms.

Furthermore, we hope the result of feature selection can
affect back on the data structure learning process. When Axi
and Axj are close after feature selection, the similarity wij

between samples xi and xj should be large. The objective to
minimize the disagreement between the projected data ma-
trix AX and the data similarity matrix W can be quantified
as:

min
A,W

∑
i,j=1

wij

(
1

2
‖Axi −Axj‖2

)
= min

A,W
‖W �Θ‖1, (6)

where � indicates the hadamard product, W = (wij) and
Θ =

(
1
2‖Axi −Axj‖2

)
. Because of the fact that W =

|Z| + |ZT | (or W = |S| + |ST |), the problem (6) is es-
sentially equivalent to

min
A,Z

∑
i,j=1

|zij |
(
1

2
‖Axi −Axj‖2

)
= min

A,Z
‖Z �Θ‖1,

or min
A,S

∑
i,j=1

|sij |
(
1

2
‖Axi −Axj‖2

)
= min

A,S
‖S �Θ‖1.

Due to the success of SSC method in subspace clustering,
here we adopt the �1-norm for both ‖ · ‖κ and ‖ · ‖ω in (1)
for structure learning. Combining our discriminative feature
selection term (5) and the disagreement term (6), the uni-
fied optimization framework for the Sr-UDFS algorithm is
proposed as follows:

min
Z,E,A

{‖Z‖1 + λE‖E‖1 + λZ‖Θ� Z‖1

+
Tr

(
ASwA

T
)

Tr (ASbAT )
+ γA‖A‖1,2}, (7)

Subj. to: X = XZ + E, diag(Z) = 0.

As can be seen that when A is fixed, our method learns the
data structure with the consideration of the refined data fea-
tures (the third term). When the coding matrix Z is fixed,
both the soft data structure and hard data structure are trans-
formed into regularizers for the problem of feature selection.
In our method, both the adverse effect of data noise E and
noisy features are largely alleviated. The two sub tasks, data
structure learning and feature selection, boosts each other
within the unified learning framework.

Optimization

In this subsection, an efficient solution to the optimization
problem in (7) is proposed based on solving the following
subproblems iteratively:

1. Given A, optimize Z and E through solving a weighted
sparse coding problem.

2. Implement SC on weight matrix W = |Z| + |ZT | to ob-
tain the clustering labels of data.

3. Find the optimal A given Z and E.
Given the projection matrix A (initialized as the identity

matrix I), we solve for matrix Z and E through optimizing
the following structured sparse problem:

min
Z,E

{‖Z‖1 + λE‖E‖1 + λZ‖Θ� Z‖1} (8)

Subj. to: X = XZ + E, diag(Z) = 0.

To implement Alternating Direction Method of Multipliers
(ADMM) method, an augmented matrix Q should be intro-
duced, and the problem (8) is equivalent to:

min
Z,E

{‖Z‖1 + λE‖E‖1 + λZ‖Θ� Z‖1}

Subj. to: X = XQ+ E, Q = Z − diag(Z).

The augmented Lagrangian function is given by:
L (Z,Q,E, Y1, Y2) = ‖Z‖1 + λE‖E‖1 + λZ‖Θ� Z‖1

+〈Y1, X −XQ− E〉+ 〈Y2, Q− Z + diag(Z)〉
+
μ

2

(‖X −XQ− E‖2F + ‖Q− Z + diag(Z)‖2F
)
, (9)

where Y (1), Y (2) are matrices of Lagrange multipliers, and
μ > 0 is a adaptive parameter. The iterative scheme of
ADMM method for (8) can be presented as (at the t + 1-
th iteration) where ρ > 1 is a given parameter.

For the Z-subproblem in (9), we solve the following prob-
lem

Z(t+1) = argmin
Z

{
‖
(
11T + λZΘ

)
� Z‖1+

μ(t)

2
‖Q(t) − Z + diag(Z) +

Y
(t)
2

μ
‖2F

}
,

where 1 indicates the vector with entries are all 1s. The
closed-form solution for Z can be given as

Z(t+1) = Z̃(t+1) − diag(Z̃(t+1)), (10)

where Z̃(t+1)
ij = S 1

μ(t)
(1+λZΘij)

(
U

(t)
ij

)
with U (t) = Q(t)+

Y
(t)
2

μ . Here, Sτ (·) is the element-wise shrinkage thresh-
olding operator. It should be noted that instead of soft-
thresholding all entries of matrix U (t) with a constant value
as in SSC (Elhamifar and Vidal 2013), the proposed method
thresholds the entries of U t with different values.

To optimize Q in (9), taking derivative of the objective
function with respect to Q and the solution is given by

Q(t+1) =
(
XTX + I

)−1
(
XT (X − E(t) +

Y
(t)
1

μ(t)
)

+Z(t+1) − diag(Z(t+1))
)
. (11)
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Algorithm 1 ADMM for solving problem (8)
Input: Data matrix X , projective mapping A
Output: Sparse coding matrix Z and the noise matrix E

1: while not converged do

2: Update Z(t+1) as in (10);
3: Update Q(t+1) as in (11);
4: Update E(t+1) as in (12);
5: Update Y

(t+1)
1 , Y (t+1)

2 and μ(t+1) as follows

Y
(t+1)
1 = Y

(t)
1 + μ

(t)
(X − XQ

(t+1) − E
(t+1)

),

Y
(t+1)
2 = Y

(t)
2 + μ

(t)
(Q

(t+1) − Z
(t+1)

+ diag(Z(t+1)
)),

μ
(t+1)

= ρ ∗ μ
(t)

6: If not converged, set t ← t+ 1.
7: end while

When other variables are fixed, the subproblem to find E
is: E(t+1) = argmin

E
λE‖E‖1 + μ

2 ‖X −XQ(t+1) − E +

Y
(t)
1

μ(t) ‖2F . The closed-form solution for E can be given as

E(t+1) = S λE

μ(t)

(
V (t)

)
, (12)

where V (t) = X −XQ(t+1) +
Y

(t)
1

μ(t) .

After the convergence of ADMM method (9), the self-
expressive sparse representation matrix Z is obtained. The
next step is to infer the segmentation of data into different
clusters. To address this problem, one can directly compute
the similarity matrix as W = |Z|+ |ZT | and then apply SC
method to W . The segmentation of data can be obtained as
T = {t1, · · · , tN}, where ti ∈ {1, · · · , C} is the assigned
cluster label of xi.

Solving Structure regularized Unsupervised Discrimi-
nant Feature Selection. Given the labels T , the problem (7)
reduces to the following problem:

min
A

Tr
(
ASwAT

)
Tr (ASbAT )

+
λZ

2

∑
i,j

wij‖Axi −Axj‖2 + γA‖A‖1,2, (13)

where the scatter matrices Sw and Sb are calculated based
on the labels T . Because matrix A exists in the numerator,
denominator and the summed terms, it is difficult to directly
solve (13). In this paper, we resort to the spectral regression
method (Cai, He, and Han 2008) which can transform the
intricate problem (13) to an equivalent regression form and
make it easier and more efficient to solve.

Let X̄ = [x1−x̄, · · · , xN−x̄] be the centered data matrix.
The between-class scatter matrix Sb can be rewritten as

Sb =

C∑
c=1

ncx̄
(c)(x̄(c))T = X̄W̃ X̄T ,

where W̃ij = 1
nc

if xi and xj are of the same class c and 0
otherwise. The following Theorem can be obtained

Theorem 0.1. Let Y ∈ R
(C−1)×N be a matrix of which

each row vector is an eigenvector of the eigen-problem

Algorithm 2 The algorithm for solving problem (13)
Input: Data matrix X , Sparse coding matrix Z
Output: Converged matrix A

1: Implement SC on W = |Z|+ |ZT | to obtain data labels
T = {t1, · · · , tN};

2: Compute the regression target Y ;
3: while not converged do

4: Compute the diagonal matrix D
(t+1)
A as (16);

5: Update A(t+1) as (17);
6: If not converged, set t ← t+ 1.
7: end while

W̃y = λy. If there exist a matrix A ∈ R
(C−1)×D such that

AX̄ = Y , then each row vector of A is an eigenvector of
the generalized eigen-problem X̄W̃ X̄Tα = λX̄X̄Tα (i.e.,
eigen-problem for LDA) with the same eigenvalue λ.

Proof. With AX̄ = Y and W̃y = λy, we have the following
equation

X̄W̃ X̄Tα = X̄W̃y = X̄λy = λX̄X̄Tα,

where α is the transpose of a row vector of matrix A and y
is the transpose of a row vector of Y .

Theorem 0.1 indicates that under mild condition, the LDA
problem (4) is essentially equivalent to the regression prob-
lem: A = argmin

A
‖AX̄ − Y ‖2F , where the row vectors in

Y are eigenvectors of eigen-problem W̃y = λy. One advan-
tage of LDA is that one need not to really solve the eigen-
problem to obtain the eigenvectors Y . The C + 1 eigen-
vectors of W can be directly given as {1}

⋃
{vc}Cc=1 ⊂

{0, 1}N , with the j-th entry of vc is 1 if and only if xj is
in class c. Subsequently, we can get the C − 1 useful or-
thogonal eigenvectors {yc}C−1

c=1 by implementing the Gram-
Schmidt orthogonalization algorithm on {1}

⋃
{vc}Cc=1. As

is shown in (Cai, He, and Han 2008), the C − 1 orthogonal
eigenvectors are sufficient to represent a C class problem.

Based on the above discussions, the problem (13) is
equivalent to the following problem:

min
A

‖AX̄ − Y ‖2F + λZTrAXLXTAT + γA‖A‖1,2, (14)

where L = D − W is the graph Laplacian matrix, D is a
diagonal matrix with diagonal elements Dii =

∑N
j=1 wij ,

i = 1, · · · , N .
Motivated by the recent progress on �1,2 norm minimiza-

tion, the problem (14) can be efficiently solved by an itera-
tive re-weighted approach which solve the following prob-
lems (at the (t+ 1)-th iteration):

A(t+1) = argmin
A

‖AX̄ − Y ‖2F + λZTrAXLXTAT

+γATrA(D
(t)
A )−1AT , (15)

[
D

(t+1)
A

]
ii
= ‖A(t+1)

i ‖2. (16)
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The solution to (15) can be given as

A(t+1) = Y X̄D
(t)
A

(
X̄X̄TD

(t)
A + λZXLXTD

(t)
A + γAI

)−1
(17)

We can show that the objective function of problem (14)
is nonincreasing under the updating rules of A and D in Al-
gorithm 2.
Theorem 0.2. The Algorithm monotonically decrease the
objective function of the problem (14) in each iteration, and
converge to the global optimum of the problem.

Proof. The proof follows the work (Nie et al. 2010) and can
be found in the supplement material.

Discussions

In this section, we discuss the relationships between the pro-
posed method and several algorithms, including TRACK
(Wang, Nie, and Huang 2014), CGSSL (Li et al. 2014), and
DFS (Tao et al. 2016).

TRACK proposed an unsupervised feature selection by
integrating Fisher criterion and clustering as below

min
AAT=I,G∈Ind

{
TrASwA

T

TrAStAT
+ γA‖A‖1,2

}
, (18)

where G is the {0, 1} cluster indicator matrix. In TRACK,
G is computed by the k-means method and A is given by the
eigenvectors of the smallest eigenvalues of the matrix

Sw − TrASwA
T

TrAStAT
St + γATr

(
AStA

T
)
DA, (19)

where DA is a diagonal matrix whose i-th diagonal entry
DA(ii) =

1
2‖Ai‖2

. As can be seen, TRACK implement clus-
tering directly on transformed data matrix AX , meanwhile,
Sr-UDFS implements SC on refined similarity matrix W .
DFS proposed a supervised feature selection based on the
Fisher criterion, which compute the projection matrix A by
solving the generalized eigen-problem:

(γADA − Sb)α = λStα. (20)

Compared with both TRACK and DFS, our Sr-UDFS effi-
ciently transforms objective of Fisher criterion into a regres-
sion model and avoid solving the eigen-problem (19) or the
generalized eigen-problem (20).

CGSSL is an one-stop unsupervised feature selection
method. The objective function of CGSSL can be presented
as

min
A,P,Q,Y

Tr(Y LY T ) + α‖Y −AX‖2F + β‖A‖1,2

+γ‖A− PQ‖2F
subj. to. Y Y T = I, Y ≥ 0, QQT = I,

where L is the graph Laplacian matrix, α, β and γ are given
parameters. As can be seen, different from Sr-UDFS, the en-
tries of target Y are nonnegative reals instead of {0, 1} val-
ues. Besides, the data structure learned in CGSSL is based
only on the local manifold assumption, which cannot utilize
the refined data features to improve the quality of data struc-
ture learning.

Table 1: Statistics of the data sets
Data sets # of samples # of Dimension # of Classes
Coil-20 1440 1024 20
YaleB 2414 1024 38
USPS 9298 256 10
CMUPIE 11554 1024 68

Experiments

In this section, we evaluate the proposed Sr-UDFS to
data clustering and classification on benchmark image
datasets. Besides, state-of-the-art unsupervised feature se-
lection methods are compared under various experimental
settings.

Datasets Description

The experiments are conducted on publicly available im-
age data sets: the Coil-20 data set (Coil-20)1, the USPS
handwritten digits data set (USPS)2, the Yale-B Extended
(YaleB) and the CMUPIE face data sets3. The statistics of
the data sets are summarized in Table 1.

Experiment Setup

The validate the effectiveness of the proposed Sr-UDFS, we
compare it with several state-of-the-art unsupervised feature
selection methods, which includes LapScore (He, Cai, and
Niyogi 2006), SPFS (Zhao et al. 2013), UDFS (Yang et al.
2011), MCFS (Cai, Zhang, and He 2010), RUFS (Qian and
Zhai 2013), and JELSR (Hou et al. 2014). Also, one base-
line (all features) for data clustering and classification is also
compared.

There are some parameters to be set for the com-
paring methods. For methods require neighborhood sizes
for data structure learning, the neighborhood size is
searched in {4, 6, 8, 10}. For UDFS, RUFS, and JELSR,
the regularization parameters are searched in the range
{10−5, 10−4, · · · , 101, 102}. The parameter γA is searched
in the range {0.01, 0.05, 0.1, 0.5, 1}. To make the experi-
mental results reproducible, λZ for Sr-UDFS is set as 0.1
respectively throughout the experiments. The experimental
results of the parameters sensitivity for Sr-UDFS on Coil-20
data set is shown in Fig. 2.

Given a data set, we randomly select p percents from ev-
ery class in data X to formulate the training set Xtrain, and
the left data are used as the test data Xtest. The results when
p = 30 is presented here and the results when p = 10 is
provided in the supplement material. The feature selection
methods are implemented on training data to rank all the
features. In our data clustering experiments, the test data is
clustered by k-means method with some selected features.
In our classification experiments, we assume the class labels
of training data is known and implement the nearest neigh-
bor classifier on the test data with a few of selected features.
Both clustering and classification accuracies are computed

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

2http://www.escience.cn/people/fpnie/
3http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Figure 1: 1-NN classification results of the comparing feature selection methods with 30% percents training data the on (a)
Coil-20, (b) YaleB, (c) USPS and (d) CMUPIE data sets. (1-NN in legend means the 1-NN classifier on all features) High
resolution figures can be found in supplement material

Table 2: Clustering results when 30% of data are used as the training data. The result is in bold when one feature selection
method outperforms the comparing feature selection methods.

Clustering Acc
p = 30 All Fea LapScore SPFS UDFS MCFS RUFS JELSR Sr-UDFS
Coil-20 48.72(0.17) 52.81(7.16) 50.59(4.47) 48.87(4.98) 50.76(4.61) 47.67(4.73) 48.27(7.88) 57.20(5.61)
YaleB 8.44(0.21) 8.61(0.42) 12.72(2.65) 8.43(0.62) 9.83(1.62) 10.74(1.68) 7.94(0.50) 16.71(4.59)
USPS 65.56(0.06) 54.68(7.55) 62.91(4.15) 46.88(11.93) 54.28(5.32) 59.15(7.60) 59.46(5.95) 65.41(4.21)
CMUPIE 9.77(0.16) 7.91(0.18) 11.42(0.60) 8.87(0.24) 9.08(0.48) 9.64(0.45) 8.95(0.30) 11.91(1.13)

Clustering NMI
p = 30 All Fea LapScore SPFS UDFS MCFS RUFS JELSR Sr-UDFS
Coil-20 67.31(0.23) 64.18(6.32) 64.07(2.49) 62.84(4.05) 64.63(5.13) 62.93(4.61) 61.04(7.16) 71.46(3.08)
YaleB 11.61(0.43) 11.80(0.82) 22.33(6.46) 12.52(1.75) 15.81(3.70) 17.39(4.13) 10.20(0.91) 29.30(6.39)
USPS 62.79(0.05) 53.33(7.70) 60.19(2.81) 42.11(13.69) 53.08(7.05) 54.16(8.85) 56.70(5.79) 62.28(3.52)
CMUPIE 21.57(0.77) 19.42(0.45) 25.07(1.67) 21.35(0.56) 21.25(1.56) 21.32(0.91) 19.05(1.32) 26.73(2.36)
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Figure 2: Performance variation of Sr-UDFS on Coil-20
with respect to different values of the parameters (p = 30%,
number of features = 200)

only on the test data. For each setting, the experiments are
repeated 10 times, and both the mean of results and standard
deviation are reported.

Performance Evaluation

For classification experiments, we choose the 1-Nearest
Neighbor (1-NN) classifier because it is parameter free and
the results will be easily reproducible. The results are mea-
sured by classification accuracy. Because the optimal num-
ber of features are unknown, we compare the algorithms
with different percentages of training subset and varying
number of selected features. The classification results are
shown in Fig. 1.

As can be seen, most of the time Sr-UDFS outperforms
the comparing methods on the data sets. On Coil-20, YaleB
and CMUPIE data sets, Sr-UDFS outperforms the 1-NN

with all features. And on USPS data set, Sr-UDFS can
achieve comparable performance as 1-NN with fewer se-
lected features. These results indicate that the proposed
method can effectively remove redundant and noisy features
of data.

With the selected features, we evaluate the per-
formance of clustering by two common evalua-
tion metrics, Accuracy (Acc) and Normalized Mu-
tual Information (NMI). The range of the num-
ber of the selected feature for Coil-20, YaleB, and
CMUPIE is {15, 25, 35, 45, 50, 100, 150, 200, 250, 300}
and the range of selected features for USPS is
{15, 25, 35, 45, 50, 100, 150, 200, 250}. We finally re-
port the averaged results and standard deviation over the
range of selected features. The clustering results in terms of
Acc and NMI are reported in Table 2.

Compared with clustering using all features, except the
case on USPS data set when p = 30, the proposed method
not only largely reduce the number of selected features, but
also improve the clustering performance. Compared with
other unsupervised feature selection methods, the Sr-UDFS
produces better performance in most of the cases. And the
performance are very close when some other methods out-
perform the proposed method.

Conclusion

In this paper, we proposed a novel unsupervised feature
selection method which can simultaneously perform data
structure learning and feature selection. In our method, two
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data structures, soft structure and hard structure, are learned
via a combination of the alternative optimization and clus-
tering. Both the two types of data structures are formulated
as regularization terms for our discriminant feature selec-
tion. An efficient algorithm for the proposed algorithm is
proposed. The connections between our method with other
counterparts are discussed. Experiments on benchmark im-
age data sets have been presented to demonstrate the supe-
rior performance of our method.
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