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Abstract

Matrix completion as a common problem in many applica-
tion domains has received increasing attention in the machine
learning community. Previous matrix completion methods
have mostly focused on exploiting the matrix low-rank prop-
erty to recover missing entries. Recently, it has been noticed
that side information that describes the matrix items can help
to improve the matrix completion performance. In this paper,
we propose a novel matrix completion approach that exploits
side information within a principled co-embedding frame-
work. This framework integrates a low-rank matrix factor-
ization model and a label embedding based prediction model
together to derive a convex co-embedding formulation with
nuclear norm regularization. We develop a fast proximal gra-
dient descent algorithm to solve this co-embedding problem.
The effectiveness of the proposed approach is demonstrated
on two types of real world application problems.

Introduction

In many data analysis problems, the relevant information
often lies in a low-dimensional subspace of the ambient
space and the data matrix exhibits low-rank properties. Ma-
trix completion exploits this observation to recover a low-
rank matrix from sparsely observed entries, by implicitly
or explicitly identifying low-dimensional vector representa-
tions of the row and column objects and decomposing the
matrix into the product two low-dimensional matrices (typ-
ically in an implicit manner through nuclear norm); e.g.,
X = AB for X ∈ R

n×t, A ∈ R
n×m, B ∈ R

m×t with
m < min(n, t). The underlying principle is that the dis-
tributed low-dimensional representations of the row and col-
umn objects can be learned from the sparsely observed en-
tries in a statistical manner, which can then be used to re-
cover the missing entries with their inner products. Ma-
trix completion has broad applications including collabora-
tive filtering (Abernethy et al. 2009; Hu, Koren, and Volin-
sky 2008), clustering (Yi et al. 2012), and feature learn-
ing (Argyriou, Evgeniou, and Pontil 2008). Many algorithms
and theoretical results have been developed in the standard
setting of matrix completion based on the low-rank prop-
erty (Cai, Candès, and Shen 2010; Candès and Tao 2010;
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Candès and Recht 2012; Lin et al. 2009; Keshavan, Mon-
tanari, and Oh 2010; Koltchinskii, Lounici, and Tsybakov
2011; Mazumder, Hastie, and Tibshirani 2010; Recht 2011;
Richard, Savalle, and Vayatis 2012), without considering
side information about the row or column objects.

Recently, it has been observed that in a number of ap-
plications of matrix completion, in addition to the observed
entries of the target matrix, auxiliary information that de-
scribes the row or column objects of the matrix usually ex-
ist and can benefit the matrix completion process. For ex-
ample, in collaborative filtering, besides the user-item rec-
ommendation matrix, side information such as product re-
views, which comment on the product items, are often avail-
able and can be used to improve recommendation perfor-
mance (Adams, Dahl, and Murray 2010; Fang and Si 2011;
Menon et al. 2011; Porteous, Asuncion, and Welling 2010).
In (Natarajan and Dhillon 2014), matrix completion with
side information has been used to predict gene-disease asso-
ciations. These works however mostly use non-convex learn-
ing techniques without exploiting the structure of the side
information. Convex methods for matrix completion have
been explored for multi-label learning problems with in-
complete labels (Cabral et al. 2011; Goldberg et al. 2010;
Xu, Jin, and Zhou 2013), where the partially observed la-
bel matrix is the target matrix to be completed and the fea-
tures of the instances can be used as side information. These
works however exploit either the low-rank property of the
label matrix or the prediction models, but not both.

In this paper, we propose a novel matrix completion ap-
proach to exploit side information within a principled co-
embedding framework. The proposed framework not only
takes the low-rank property of the target matrix into ac-
count, but also simultaneously exploits a label embedding
idea to enforce a consistent low-rank structure for the pre-
diction model on the side information. Label embeddings
have been exploited in the literature to capture label se-
mantic structures and consequently prediction model struc-
tures to improve prediction performance (Akata et al. 2013;
Bengio, Weston, and Grangier 2010; Mirzazadeh, Guo, and
Schuurmans 2014). The idea of our co-embedding frame-
work is to enforce the consistency of the label embeddings
induced from the prediction model and that induced from
the low-rank target matrix. We formulate this framework as a
convex minimization problem with nuclear norm regulariza-
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tion, provide a bound analysis, and develop a fast proximal
gradient descent algorithm to solve the problem efficiently.
We conduct experiments on two types of applications, trans-
ductive incomplete multi-label learning and matrix comple-
tion for recommendation systems. Our proposed approach
demonstrates very effective empirical results.

Related Work

Matrix Completion The main goal of matrix completion
is to exploit the low-rank structure of a data matrix to fill
the missing entries based on the observed ones, addressing
applications such as collaborative filtering (Rennie and Sre-
bro 2005). Theoretical studies show that one can perfectly
recover a low-rank matrix with very high probability from
a small number of observed entries under certain assump-
tions (Candès and Tao 2010; Candès and Recht 2012; Recht
2011). A number of computational algorithms have been de-
veloped to solve standard matrix completions (Cai, Candès,
and Shen 2010; Lin et al. 2009; Keshavan, Montanari,
and Oh 2010; Koltchinskii, Lounici, and Tsybakov 2011;
Mazumder, Hastie, and Tibshirani 2010; Richard, Savalle,
and Vayatis 2012), which mostly seek efficient optimiza-
tions with nuclear norms. Recently, several works have taken
side information into account to improve matrix comple-
tion, including incorporating side information in probabilis-
tic matrix factorization (Adams, Dahl, and Murray 2010;
Porteous, Asuncion, and Welling 2010), conducting induc-
tive matrix factorization (Shin et al. 2015), performing ma-
trix co-factorization (Fang and Si 2011), collective factor-
ization (Bouchard, Guo, and Yin 2013), and weighted fac-
torization (Menon et al. 2011). These methods however are
limited to solving non-convex optimization problems.

Convex matrix completion methods have been explored
for transductive incomplete multi-label learning in a few
recent works (Goldberg et al. 2010; Cabral et al. 2011;
Xu, Jin, and Zhou 2013), which use the feature matrix of
the instances as side information for label matrix comple-
tion. The work in (Goldberg et al. 2010) proposes to per-
form matrix completion over the concatenation of the input
feature matrix and the incomplete label matrix. The work
in (Cabral et al. 2011) further adapts the algorithms to ad-
dress image classifications. The recent work in (Xu, Jin, and
Zhou 2013) assumes the label assignments are linear combi-
nations of the feature vectors of the instances, and proposes
to speed up convex matrix completion by posing low-rank
regularization over the linear combination parameter matrix.
The idea of (Xu, Jin, and Zhou 2013) has also been devel-
oped in a non-convex form for inductive matrix completion
in (Natarajan and Dhillon 2014). A most recent work ex-
tends inductive matrix completion by considering noisy side
information in a convex formulation with nuclear norm reg-
ularization on the parameter matrices (Chiang, Hsieh, and
Dhillon 2015). Different from these works, our proposed
approach will simultaneously exploit low-rank structures of
both the target label matrix and the prediction model to en-
force consistent label embeddings, which is expected to en-
hance the complementary reconstruction of the label matrix
from the two information sources.

Label Embedding Label embeddings refer to the dis-
tributed vector representations of the label concepts. Here
we use label in a broad way to refer to prediction targets.
The learning and employment of label embeddings can fa-
cilitate statistical information sharing across different labels
and hence improve the learning performance with sparse
data. Label embeddings have been exploited in the literature
to capture label semantic structures and improve prediction
performance in applications such as image tagging (Akata et
al. 2013; Weston, Bengio, and Usunier 2010; 2011), multi-
class classification (Bengio, Weston, and Grangier 2010),
multi-label learning and tag recommendation (Mirzazadeh,
Guo, and Schuurmans 2014). These previous methods how-
ever do not address learning problems with incomplete la-
bels. Moreover, they mostly rely on local training methods
to pursue local optimal solutions. One exception is (Mirza-
zadeh, Guo, and Schuurmans 2014), which generalizes la-
bel embedding into a convex co-embedding framework to
handle a set of learning tasks which can be formulated as
associations between two types of objects. By contrast, our
proposed convex co-embedding framework exploits the low-
dimensional associations of three types of objects to en-
force consistent label co-embeddings from two information
sources for matrix completion.

Approach

In this section, we propose a convex co-embedding solution
for general matrix completion problems with side informa-
tion. In the following presentation, we will refer to the target
matrix as label matrix, which is taken as the prediction target
of the auxiliary side feature matrix.

Notation The following notations are used in the presenta-
tion: 1 is used to denote any column vector with all 1 values,
assuming its length can be determined from the context; 1a
is used to denote a (0, 1)-valued vector with only a single
1 in its a-th entry; In denotes an identity matrix of size n;
0n,d denotes a n× d matrix with all zeros, and 1n,d denotes
a n × d matrix with all 1s. For a vector x, we use ‖x‖2 to
denote its Euclidean norm. For a matrix X , we use Xij to
denote its (i, j)-th entry, and use Xi to denote its i-th row.
Let [m : n] = {m,m + 1, · · · , n}. We use X[m:n] to de-
note the submatrix of X formed by the rows with indices in
[m : n]. We use ‖X‖F to denote the Frobenius norm, use
‖X‖1 =

∑
ij |Xij | to denote the entrywise �1 norm, use

‖X‖tr =
∑

i σi to denote the nuclear norm (trace norm) of
X , and use ‖X‖sp = σmax(X) = σ1 to denote the spectral
norm of X , where σi denotes the i-th largest singular value
of X . We use “◦” to denote the Hadamard product operator
such as [X ◦ Y ]ij = XijYij .

Convex Co-Embedding for Matrix Completion

We assume Y ∈ {0, 1}N×L is a target label matrix for N
instances over L labels. We only observe a subset of entries
of Y and use Ω ∈ {0, 1}N×L to denote the mask matrix that
encodes the observation status for each entry of Y ; that is,
Ωij = 1 if Yij is observed and Ωij = 0 if Yij is not ob-
served. Moreover, we also assume the feature vectors for the
N instances are given as auxiliary side information, which
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forms an input feature matrix X ∈ R
N×d with each instance

described as a d-dimensional feature vector. We assume d is
a reasonable small number such that d < N and use di-
mensionality reduction to avoid the curse of dimensionality
when necessary. We aim to recover the missing entries of Y .

Co-Embedding Perspective of Matrix Completion Due
to the existence of statistical correlations between the obser-
vations of different labels, we assume the matrix Y is in-
herently low-rank; i.e., k = rank(Y ) � min(N,L). Stan-
dard matrix completion can exploit this low-rank property
to recover the target matrix Y by performing a constrained
nuclear norm minimization:

min
Ŷ

‖Ŷ ‖tr s.t. Ω ◦ Y = Ω ◦ Ŷ (1)

This is equivalent to identifying a set of latent factors Z ∈
R

N×h for the N instance items and a set of latent factors
B ∈ R

L×h for the L labels through matrix factorization:

min
Z,B

1

2
(‖Z‖2F +‖B‖2F ) s.t. Ω◦Y = Ω◦(ZB�) (2)

where the minimization is over Z and B with a dimen-
sion value h no less than k. The latent factor matrices Z
and B can be viewed as embedding matrices for the in-
stance items and prediction labels respectively, such that
each pair of embeddings, e.g., Zi and Bj , can produce an
association score, ZiB

�
j , to explain the entry Ŷij . This idea

is referred to as co-embedding since the two sets of ob-
jects are embedded into the same space (Mirzazadeh, Guo,
and Schuurmans 2014). Ŷ hence contains the co-embedding
scores of the two sets of objects, instance items and pre-
diction labels. The equivalence of (1) and (2) is built based
on a well-known identity (Bach, Mairal, and Ponce 2008;
Srebro, Rennie, and Jaakkola 2004):

‖Ŷ ‖tr = min
Z,B: Ŷ=ZB�

1

2
(‖Z‖2F + ‖B‖2F ) (3)

Co-Embedding Perspective of Linear Predictions
Given the side information matrix X that provides feature
descriptions for the instances, we can build a prediction
model to predict the entries of the recovered label matrix Ŷ .
The simplest method is to build L predictors independently,
one for each label. However, this simple model ignores the
correlations/dependencies of the label observations and may
degrade the prediction capacity and performance (Zhang
and Zhou 2014). Nevertheless, by exploiting label embed-
dings to build co-embedding based prediction models, we
can simultaneously maintain the simplicity of independent
prediction models while taking the label dependencies into
account. Co-embedding provides a natural way to evaluate
the associations between two objects by first embedding
them into a common space and then use Euclidean geometry
(e.g., inner product) to determine the association score.
Given the label embedding matrix B ∈ R

L×h, we can
project the instances from their input feature space into
the embedding space with a projection matrix W ∈ R

d×h.
The association score between the i-th instance and the
j-th label can then be determined as s(i, j) = XiWB�

j ,

where XW produces the feature-based embeddings of
the instances. Note the label embeddings express each
label as a vector in terms of h latent common attributes.
Hence even the independent computation of the association
scores between the instances and each label will naturally
capture the label correlations through the latent common
attributes. By further considering a bias term for each label,
we propose to build the following linear prediction model
f : Rd → R

L to predict the entries of the recovered label
matrix Ŷ :

f(Xi) = XiWB� + b� (4)

where b ∈ R
L is the bias term vector for the L labels. For

simplicity, we henceforward will use f(X) = XWB� +
1b� to denote the prediction scores from all the N in-
stances. We can train this linear prediction model by min-
imizing a regularized loss function:

min
W,b

�(f(X), Ŷ ) +
α

2
‖W‖2F (5)

Convex Co-Embedding Framework Note the two co-
embedding models above share two common components.
First, they share the same label embedding matrix B. Sec-
ond, the prediction target Ŷ of f(X) is also the recovery
matrix of the matrix completion model such that Ŷ = ZB�.
Hence by integrating the co-embedding based matrix com-
pletion and linear prediction training together, we can for-
mulate the following joint co-embedding framework:

min
Z,B,W,b

�(f(X), ZB�)+
α

2
‖W‖2F +

γ

2
(‖Z‖2F +‖B‖2F )

s.t. Ω ◦ Y = Ω ◦ (ZB�) (6)

where �(·, ·) is a convex loss function in both of its two pa-
rameters, α and γ are trade-off parameters. The minimiza-
tion framework in (6) is in general non-convex due to the
existence of the bilinear terms. Below we will reformulate it
into a convex learning framework.

Proposition 1 Let M ∈ R
(d+N)×L and let X̃ =

√
γ
αX .

We define two row selection matrices,

A = [Id,0d,N ] and A = [0N,d, IN ],

which extract the first d rows and the last N rows of M re-
spectively, such that AM = M[1:d] and AM = M[d+1:d+N ].
Then the minimization problem (6) over {Z,B,W,b} can
be equivalently reformulated into the following convex op-
timization problem over {M,b} with the same convex loss
function �(·, ·):

min
M,b

�(X̃AM + 1b�, AM) + γ‖M‖tr (7)

s.t. Ω ◦ Y = Ω ◦ (AM)

Proof: Let W̃ =
√

α
γW . By replacing XW with X̃W̃ , we

can rewrite the objective function of (6) equivalently as

(6) = �(X̃W̃B�+1b�, ZB�)+
γ

2

(∥∥∥∥ W̃Z
∥∥∥∥2
F

+‖B‖2F
)

(8)
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Then we introduce matrix M to replace {W̃ , Z,B} with

M =

[
W̃
Z

]
B�, such that AM = W̃B� and AM =

ZB�. Finally based on the equivalence equation (3), we can
derive (7). �

To produce a concrete learning problem, we use a least
squares loss function in this work such that

�(X̃AM + 1b�, AM) =
∥∥X̃AM + 1b� −AM

∥∥2
F
.

Moreover, following a routine of solving equality con-
strained problems, we relax (7) to an unconstrained opti-
mization problem

min
M,b

‖X̃AM + 1b� −AM‖2F
+ ρ‖Ω ◦ (Y −AM)‖2F + γ‖M‖tr (9)

This is equivalent to relaxing the equality constraints into an
inequality constraint, ‖Ω ◦ (Y − AM)‖2F ≤ δω , to handle
noise (Candès and Plan 2009).

Theoretical Analysis

Proposition 2 Let h = [11,N ,01,N ]� and

Λ̃ =

[
X̃A−A√

ρA

]
, Ỹ =

[
0N,L√
ρY

]
, Ω̃ =

[
1N,L

Ω

]
. (10)

There exists a proper τ > 0, such that the minimization
problem (9) can be rewritten as below

min
M,b

‖Ω̃ ◦ (Λ̃M + hb� − Ỹ )‖2F s.t. ‖M‖tr ≤ τ (11)

The re-expression of our proposed model in (11) presents
a similar form as the matrix completion with noisy side in-
formation model in (Chiang, Hsieh, and Dhillon 2015). But
induced from the co-embedding framework our formulation
has special structures on both the side information feature
matrix Λ̃ and the parameter matrix hb�. It is easy to show
that the problem (11) has the following closed-form solu-
tion for b by setting the derivative of the objective function
regarding b to zero:

b =
1

N
M�

(
A− X̃A

)�
1 (12)

Let fθ(i, j) = Λ̃iM1j + hibj be the prediction function
for Ỹij parameterized by θ={M,b}, and FΘ = {fθ|θ ∈ Θ}
be the feasible function class. We study the objective loss
function of the problem (11) in a relaxed situation where we
assume each entry (i, j) ∈ {(ia, ja)}ma=1 is sampled i.i.d.
under an unknown distribution. Note that the prediction val-
ues in the top N rows of Ỹ are automatically obtained con-
stants, hence the assumption above induces no additional re-
quirement but a sampling of the entries in the top N rows.
We use Ω̌ to denote the relaxed Ω̃ and then m = ‖Ω̌‖1. The
objective loss function then can be viewed as an empirical
�-risk for function f ,

R̂�(f) =
1

m

∑
(i,j)∈Ω̌

�(f(i, j), Ỹij)

with a squared loss function �(x, y) = |x−y|2 and bounded
arguments. The corresponding expected �-risk is:

R�(f) = E(i,j)

[
�(f(i, j), Ỹij)

]
.

Let L� be a Lipschitz constant for the loss function � with
respect to its first argument, and assume it is bounded by

B�. Let κ = max

(√
ρ,maxi

√
‖X̃i‖22 + 1

)
, nmax =

max(2N,L) and dmax = max(d + N,L). We then have
the following bound.

Theorem 1 Consider problem (11) with the closed-form so-
lution for b in (12). Assume the feature matrix X̃ is centered
around zero mean vector. Then with probability at least 1−δ,
the expected �-risk of an optimal solution f∗ will be bounded
by:

R�(f
∗) ≤ R̂�(f

∗) + B�

√
log 2

δ

2m
+ 4τκL�

√
log 2dmax

m
+

min

⎧⎨⎩4L�τ

√
log 2nmax

m
,

√
36CL�B�

τ(
√
2N+

√
L)

m

⎫⎬⎭
The bound above suggests a sample complexity of

O(τ2 log nmax). A proper chosen τ can significantly re-
duce the sample complexity. For low-rank matrix Y , this
bound can yield a sample complexity of O(nmax log nmax).
This shows that by exploiting the co-embedding structure,
with predictive auxiliary information from only one side,
our model can achieve a lower sample complexity than the
O(n3/2) reported in (Shamir and Shalev-Shwartz 2014) in a
similar distribution-free manner.

Optimization Algorithm

We consider the minimization problem in (9), which is a
convex optimization problem with parameters M and b.
Given fixed M , by setting the derivative of the objective
function regarding b to zeros, we can derive the same
closed-form solution in (12) for b. By plugging (12) back
into (9), we obtain the following equivalent minimization
problem:

min
M

F (M) =‖H(X̃A−A)M‖2F+
ρ‖Ω ◦ (Y −AM)‖2F + γ‖M‖tr (13)

where H = IN − 1
N 11� is a centering matrix. The prob-

lem (13) remains to be a convex but non-smooth minimiza-
tion problem. We develop a fast proximal gradient algorithm
(Beck and Teboulle 2009) to solve it with a quadratic con-
vergence rate. The algorithm treats the objective function
F (M) of (13) as a combination of the non-smooth nuclear
norm regularization term and the remaining convex smooth
term g(M) such that F (M) = g(M) + γ‖M‖tr. In each it-
eration of the proximal gradient descent algorithm, we need
to compute the gradient of g(M) at a given point Q(t) (e.g.,
in the t-th iteration), ∇g(Q(t)), and then apply a proximal
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Algorithm 1 Fast Proximal Gradient Descent Algorithm
Input: X,Y,Ω, ρ > 0, γ > 0, η∗ > 0.
Initialization: Q(1) = M (0), β1 = 1, t = 0.
Repeat

1. Set t = t+ 1

2. Update: M (t) = Pη∗(Q(t)), βt+1 = 1+
√

1+4β2
t

2 ,

Q(t+1) = M (t) +
(

βt−1
βt+1

)
(M (t) −M (t−1))

Until Converge

operator which solves the following intermediate optimiza-
tion problem for an analytical closed-form solution:

Pη(Q
(t)) = argminM

{η

2
‖M − Q̂(t)‖2F + γ‖M‖tr

}
= Udiag

(
(σ − γ/η)+

)
V � (14)

where Q̂(t) = Q(t) − 1
η∇g(Q(t)); the U, V and σ are the

left and right singular vectors and the corresponding singu-
lar value vector of Q̂(t) such as Q̂(t) = Udiag(σ)V �; and
(·)+ = max(·, 0). With a fast convergence update scheme
from (Beck and Teboulle 2009), the overall algorithm is pre-
sented in Algorithm 1.

Proposition 3 Let η∗ = 2σmax(Γ) + 2ρ with Γ = (X̃A −
A)�H(X̃A − A). Then η∗ is the Lipschitz constant of the
gradient function ∇g, and the Algorithm 1 has a quadratic
rate of convergence O(1/t2).

Experiments

We conducted experiments on two types of applications,
transductive multi-label learning with incomplete labels
and recommendation matrix completion. In this section we
present the experimental settings and results.

Transductive Incomplete Multi-label Learning

Experimental setting We conducted experiments for
transductive incomplete multi-label learning on ten standard
multi-label datasets for web page classification from “ya-
hoo.com” (Ueda and Saito 2002). Each dataset has around
5,000 instances with the number of labels varies from 21
to 40. We treated the label matrix as the target completion
matrix and used the web page descriptions as the side fea-
ture matrix. We preprocessed the features by reducing the
feature vector dimensionality to d = 500 with PCA. For
each dataset, we randomly sampled 10% instances for test-
ing and used the remaining 90% data for training. The labels
for the testing data are completely removed during the train-
ing process. Moreover, given a label observation rate value
ε%, for each class Lj , we randomly sampled ε% positive
and negative training instances and kept their label assign-
ment values for class Lj , while ignoring all the other train-
ing instances’ label assignments for this class. We conducted
experiments with a few different ε% values in the range of
{10%, 30%, 50%}.

We compared the proposed convex co-embedding
method, which we denote as CoEmbed, with three state-
of-the-art matrix completion methods: Maxide, IMC and

DirtyIMC. Maxide is developed for general matrix com-
pletion problems with side information, and evaluated
on transductive incomplete multi-label learning (Xu, Jin,
and Zhou 2013). IMC is a non-convex inductive matrix
completion method (Natarajan and Dhillon 2014) and
DirtyIMC is a convex inductive matrix completion method
that considers noisy side information (Chiang, Hsieh, and
Dhillon 2015). The proposed approach, CoEmbed, has
three trade-off parameters α, γ and ρ. Note as shown in
Proposition 1, any difference between α and γ will simply
lead to rescaling the input feature values. Hence we just set
α = γ. Moreover, the ρ parameter controls the degree of
the soft approximation for the equality constraints. It should
be a reasonably large value. In our experiments, we set
ρ = 100. We did parameter selection for the regularization
parameter γ from the set 2{−9,−8,··· ,8,9} by using two-fold
cross-validation on the labeled training data. Parameter
selection for the three comparison methods are conducted
in the same way with the same range of values. For the
non-convex IMC, we used an inner dimensionality of 200
for the parameter matrices.

Experimental Results For each ε% ∈ {10%, 30%, 50%},
we randomly partitioned the training and testing data as
described above. We performed transductive training using
each comparison method on the training and testing data.
The label matrix completion results are evaluated on all
the unobserved label entries. We used two standard metrics
to evaluate the results, average precision (AP) (Zhang and
Zhou 2014) and area under the curve (AUC). Both are stan-
dard measures used for multi-label learning evaluation. The
average results over 10 runs in terms AP and AUC scores
are reported in Figure 1 and Figure 2 respectively. We can
see Maxide outperforms IMC and DirtyIMC in most cases
in terms of AP score, but DirtyIMC outperforms Maxide in
many cases in terms of AUC score. The proposed CoEmbed
nevertheless consistently produced the best results across all
the data sets in terms of both AP and AUC. Moreover, in
most cases, CoEmbed outperforms the other methods with
considerable margins. These results demonstrate the efficacy
of the proposed convex co-embedding model.

Recommendation Matrix Completion

We have also conducted recommendation experiments on
three real-word Amazon datasets: Beauty, Office and Sports.
Each dataset contains the implicit user feedbacks on Ama-
zon products as the target label matrix. These matrices are
extremely sparse. After filtering the product items and users
that rarely appear, we used the remaining transaction data:
Beauty (2,275 product items, 1,965 users, 11,051 transac-
tions), Office (2,107 product items, 1,888 users, 8,307 trans-
actions), and Sports (1,789 product items, 1,324 users, 7,947
transactions). We used the product reviews as side feature
information for the items. We preprocessed the reviews into
term-frequency feature vectors with the 5,000 most frequent
unigram features and then performed dimensionality reduc-
tion with PCA to reduce the feature dimension to 500.

We consider performing recommendation matrix comple-
tion for advertisement purpose. Given observed user-item
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Figure 1: Comparison results in terms of AP on 10 Yahoo datasets with three different observation rates: 10%, 30% and 50%.

0.1 0.3 0.5

0.7

0.8

0.9

1

Observation Rate

A
rt

s
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5

0.7

0.8

0.9

1

Observation Rate

B
u
s
in

e
s
s
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.5

0.6

0.7

0.8

0.9

Observation Rate

C
o
m

p
u
te

rs
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.4

0.5

0.6

0.7

0.8

0.9

Observation Rate

E
d
u
c
a
ti
o
n
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.5

0.6

0.7

0.8

0.9

Observation Rate

E
n
te

rt
a
in

m
e
n
t−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.4

0.6

0.8

1

Observation Rate

H
e
a
lt
h
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.5

0.6

0.7

0.8

0.9

Observation Rate

R
e
c
re

a
ti
o
n
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.2

0.4

0.6

0.8

1

Observation Rate

R
e
fe

re
n
c
e
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5
0.65

0.7

0.75

0.8

0.85

0.9

Observation Rate
S

c
ie

n
c
e
−

−
A

U
C

 

 

CoEmbed Maxide DirtyIMC IMC

0.1 0.3 0.5

0.7

0.8

0.9

1

Observation Rate

S
o
c
ia

l−
−

A
U

C

 

 

CoEmbed Maxide DirtyIMC IMC

Figure 2: Comparison results in terms of AUC on 10 Yahoo datasets with three different observation rates: 10%, 30% and 50%.

purchase/recommendation history, our goal is to accurately
identify the right group of users for each item, to whom
we should send advertisement about the particular item. A
good recommendation system (matrix completion system)
should send the advertisement to users who are most likely
to be interested in (or purchase) the item. In this setting,
the target label matrix is much larger than the multi-label
output matrix. The linear prediction model is built to pre-
dict the user tastes from the item features. For each dataset,
we randomly dropped 50% entries to perform matrix com-
pletion and repeated the experiment five times. We com-
pared our approach, CoEmbed, to Maxide, IMC, DirtyIMC
and a convex collective matrix factorization method (Con-
vexCMF) (Bouchard, Guo, and Yin 2013). We evaluated the
matrix completion results using the mean average precision
(MAP) at the top-K user recommendations over each item
with K = 5 and K = 10. The average results are reported
in Table 1. We can see that Maxide, IMC and DirtyIMC out-
perform ConvexCMF while our proposed approach outper-
forms all the four comparison methods on the three datasets.
These results again verified the effectiveness of our convex
co-embedding method.

Conclusion

In this paper, we proposed a novel convex co-embedding ap-
proach for matrix completion with one side information. It
integrates the standard low-rank matrix completion model

Table 1: Matrix completion results in terms of MAP@5 (%)
and MAP@10 (%).

Methods Beauty Office Sports

MAP@5

Maxide 19.8± 0.4 20.6± 0.4 21.9± 0.2
ConvexCMF 12.4± 0.3 9.5± 0.3 15.6± 0.3
IMC 17.6± 0.4 19.1± 0.4 19.6± 0.2
DirtyIMC 19.1± 0.1 20.0± 0.1 20.2± 0.0
CoEmbed 21.1± 0.2 23.0± 0.5 23.5± 0.3

MAP@10

Maxide 20.1± 0.3 20.7± 0.3 22.2± 0.2
ConvexCMF 12.8± 0.3 10.0± 0.3 16.1± 0.3
IMC 17.9± 0.4 19.2± 0.4 20.0± 0.2
DirtyIMC 19.4± 0.1 20.1± 0.1 20.5± 0.0
CoEmbed 21.4± 0.2 23.1± 0.4 23.8± 0.4

on the target matrix and the linear prediction model on the
auxiliary side information to jointly recover the missing en-
tries of the target matrix within a co-embedding framework.
The co-embedding framework can enforce the consistency
of the label embeddings induced from the prediction model
and from the low-rank target matrix to improve the matrix
completion performance. We formulated this framework as a
convex minimization problem with nuclear norm regulariza-
tion, provided a bound analysis, and developed a fast prox-
imal gradient descent algorithm to solve it efficiently. We
conducted experiments on two types of applications: trans-
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ductive incomplete multi-label learning and recommenda-
tion matrix completion. The results show that the proposed
approach outperforms a few state-of-the-art methods.
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