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Abstract

Unsupervised neural networks, such as restricted Boltzmann
machines (RBMs) and deep belief networks (DBNs), are
powerful tools for feature selection and pattern recognition
tasks. We demonstrate that overfitting occurs in such mod-
els just as in deep feedforward neural networks, and discuss
possible regularization methods to reduce overfitting. We also
propose a “partial” approach to improve the efficiency of
Dropout/DropConnect in this scenario, and discuss the theo-
retical justification of these methods from model convergence
and likelihood bounds. Finally, we compare the performance
of these methods based on their likelihood and classification
error rates for various pattern recognition data sets.

1 Introduction

Unsupervised neural networks assume unlabeled data to be
generated from a neural network structure, and have been
applied extensively to pattern analysis and recognition. The
most basic one is the restricted Boltzmann machine (RBM)
(Salakhutdinov, Mnih, and Hinton 2007), an energy-based
model with a layer of hidden nodes and a layer of visible
nodes. With such a basic structure, we can stack multiple
layers of RBMs to create an unsupervised deep neural net-
work structure, such as the deep belief network (DBN) and
the deep Boltzmann machine (DBM) (Hinton, Osindero, and
Teh 2006; Salakhutdinov and Hinton 2009a). These models
can be calibrated with a combination of the stochastic gradi-
ent descent and the contrastive divergence (CD) algorithm or
the PCD algorithm (Salakhutdinov, Mnih, and Hinton 2007;
Tieleman 2008). Once we learn the parameters of a model,
we can retrieve the values of the hidden nodes from the vis-
ible nodes, thus applying unsupervised neural networks for
feature selection. Alternatively, we may consider applying
the parameters obtained from an unsupervised deep neu-
ral network to initialize a deep feedforward neural network
(FFNN), thus improving supervised learning.

One essential question for such models is to adjust for the
high-dimensionality of their parameters and avoid overfit-
ting. In FFNNs, the simplest regularization is arguably the
early stopping method, which stops the gradient descent al-
gorithm before the validation error rate goes up. The weight
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decay method, or Ls regularization, is also commonly used
(Witten, Frank, and Hall 2011). Recently Dropout is pro-
posed, which optimizes the parameters over an average of
exponentially many models with a subset of all nodes (Sri-
vastava et al. 2014). It has been shown to outperform weight
decay regularization in many situations.

For regularizing unsupervised neural networks, sparse-
RBM-type models encourage a smaller proportion of 1-
valued hidden nodes (Cho, Ilin, and Taiko 2012; Lee,
Ekanadham, and Ng 2007). DBNs are regularized in Goh et
al. (2013) with outcome labels. While these works tend to be
goal-specific, we consider regularization for unsupervised
neural networks in a more general setting. Our work and
contributions are as follows: (1) we extend common regular-
ization methods to unsupervised deep neural networks, and
explain their underlying mechanisms; (2) we propose partial
Dropout/DropConnect which can improve the performance
of Dropout/DropConnect; (3) we compare the performance
of different regularization methods on real data sets, thus
providing suggestions on regularizing unsupervised neural
networks. We note that this is the very first study illustrating
the mechanisms of various regularization methods for un-
supervised neural nets with model convergence and likeli-
hood bounds, including the effective newly proposed partial
Dropout/DropConnect.

Section 2 reviews recent works for regularizing neural
networks, and Section 3 exhibits RBM regularization as a
basis for regularizing deeper networks. Section 4 discusses
the model convergence of each regularization method. Sec-
tion 5 extends regularization to unsupervised deep neural
nets. Section 6 presents a numerical comparison of differ-
ent regularization methods on RBM, DBN, DBM, RSM
(Salakhutdinov and Hinton 2009b) and Gaussian RBM
(Salakhutdinov, Mnih, and Hinton 2007). Section 7 dis-
cusses potential future research and concludes the paper.

2 Related Works

To begin with, we consider a simple FFNN with a single
layer of input ı = (ı1, . . . , ıI)

T and a single layer of output
o = (o1, . . . , oJ)

T ∈ {0, 1}J . The weight matrix W is of
size J × I . We assume the relation

E(o) = a(W · ı), (1)
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where a(·) is the activation function, such as the sigmoid
function σ(x) = 1/(1 + e−x) applied element-wise. Equa-
tion (1) has the modified form in Srivastava et al. (2014),{

E(o|m) = a(m � (W · ı)),
m = (m1, . . . ,mJ)

T iid∼ Ber(p),
(2)

where � denotes element-wise multiplication, and Ber(·)
denotes the Bernoulli distribution, thereby achieving the
Dropout (DO) regularization for neural networks. In
Dropout, we minimize the objective function

−lDO(W ) = −
N∑

n=1

Em[log p(o(n)|ı(n),W,m)], (3)

which can be achieved by a stochastic gradient descent al-
gorithm, sampling a different mask m per data example
(o(n), ı(n)) and per iteration. We observe that this can be
readily extended to deep FFNNs. Dropout regularizes neu-
ral networks because it incorporates prediction based on any
subset of all the nodes, therefore penalizing the likelihood.
A theoretical explanation is provided in Wager, Wang, and
Liang (2013) for Dropout, noting that it can be viewed as
feature noising for GLMs, and we have the relation

−lDO(W )
.
= −

N∑
n=1

log p(o(n)|ı(n),W ) +Rq(W ). (4)

Here J = 1 for simplicity, and Rq(W ) = 1
2

p
1−p

∑N
n=1∑I

i=1 A
′′(Wı(n))(ı

(n)
i )2W 2

i , where A(·) is the log-partition
function of a GLM. Therefore, Dropout can be viewed ap-
proximately as the adaptive L2 regularization (Baldi and
Sadowski 2013; Wager, Wang, and Liang 2013). A recur-
sive approximation of Dropout is provided in Baldi and Sad-
owski (2013) using normalized weighted geometric means
to study its averaging properties.

An intuitive extension of Dropout is DropConnect (DC)
(Wan et al. 2013), which has the form below{

E(o|m) = a((m �W ) · ı),
m = (mij)J×I

iid∼ Ber(p),
(5)

and thus masks the weights rather than the nodes. The ob-
jective lDC(W ) has the same form as in (3). There are a
number of related model averaging regularization methods,
each of which averages over subsets of the original model.
For instance, Standout varies Dropout probabilities for dif-
ferent nodes which constitute a binary belief network (Ba
and Frey 2013). Shakeout adds additional noise to Dropout
so that it approximates elastic-net regularization (Kang, Li,
and Tao 2016). Fast Dropout accelerates Dropout with Gaus-
sian approximation (Wang and Manning 2013). Variational
Dropout applies variational Bayes to infer the Dropout func-
tion (Kingma, Salimans, and Welling 2015).

We note that while Dropout has been discussed for RBMs
(Srivastava et al. 2014), to the best of our knowledge, there
is no literature extending common regularization methods to
RBMs and unsupervised deep neural networks; for instance,

adaptive Ls regularization and DropConnect as mentioned.
Therefore, below we discuss their implementations and ex-
amine their empirical performance. In addition to studying
model convergence and likelihood bounds, we propose par-
tial Dropout/DropConnect which iteratively drops a subset
of nodes or edges based on a given calibrated model, there-
fore improving robustness in many situations.

3 RBM Regularization

For a Restricted Boltzmann machine, we assume that v =
(v1, · · · , vJ)T ∈ {0, 1}J denotes the visible vector, and h =
(h1, · · · , hI)

T ∈ {0, 1}I denotes the hidden vector. Each
vj , j = 1, . . . , J is a visible node and each hi, i = 1, . . . , I
is a hidden node. The joint probability is{

P (v, h) = e−E(v,h)/
∑

ν,η e
−E(ν,η),

E(v, h) = −bT v − cTh− hTWv.
(6)

We let the parameters ϑ = (b, c,W ) ∈ Θ, which is a vector
containing all components of b, c, and W . To calibrate the
model is to find θ̂ = argmax

ϑ∈Θ
∑N

n=1 logP (v(n)|ϑ).
An RBM is a neural network because we have the follow-

ing conditional probabilities{
P (hi = 1|v) = σ(ci +Wi·v),
P (vj = 1|h) = σ(bj +WT

·j h),
(7)

where Wi· and W·j represent, respectively, the i-th row and
j-th column of W . The gradient descent algorithm is applied
to calibration. The gradient of the log-likelihood can be ex-
pressed in the following form

−∂ logP (v(n))

∂ϑ
=

∂F(v(n))

∂ϑ
−

∑
v∈{0,1}J

P (v)
∂F(v)

∂ϑ
, (8)

where F(v) = −bT v −∑I
i=1 log(1 + eci+Wi·v) is the free

energy. The right-hand side of (8) is approximated by con-
trastive divergence with k steps of Gibbs sampling (CD-k)
(Salakhutdinov, Mnih, and Hinton 2007).

3.1 Weight Decay Regularization

Weight decay, or Ls regularization, adds the term λ‖W‖ss
to the negative log-likelihood of an RBM. The most com-
monly used is L2 (ridge regression), or L1 (LASSO). In all
situations, we do not regularize biases for simplicity.

Here we consider a more general form. Suppose we have
a trained set of weights W from CD with no regulariza-
tion. Instead of adding the term λ‖W‖ss, we add the term
μ
IJ

∑
i,j |Wij |s/|Ŵij |s to the negative log-likelihood. Ap-

parently this adjusts for the different scales of the compo-
nents of W . We refer to this approach as adaptive Ls. We
note that adaptive L1 is the adaptive LASSO (Zou 2006),
and adaptive L2 plus L1 is the elastic-net (Zou and Hastie
2005). We consider the performance of L2 regularization
plus adaptive L1 regularization (L2 +AL1) below.
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3.2 Model Averaging Regularization

As discussed in Srivastava et al. (2014), to characterize a
Dropout (DO) RBM, we simply need to apply the following
conditional distributions{

PDO(hi = 1|v,m) = mi · σ(ci +Wi·v),
PDO(vj = 1|h,m) = σ(bj +WT

·j h).
(9)

Therefore, given a fixed mask m ∈ {0, 1}I , we actually
obtain an RBM with all visible nodes v and hidden nodes
{hi : mi = 1}. Hidden nodes {hi : mi = 0} are fixed
to zero so they have no influence on the conditional RBM.
Apart from replacing (7) with (9), the only other change
needed is to replace F(v) with FDO(v|m) = −bT v −∑I

i=1 mi log(1 + eci+Wi·v). In terms of training, we sug-
gest sampling a different mask per data example v(n) and
per iteration as in Srivastava et al. (2014).

A DropConnect (DC) RBM is closely related; given a
mask m = {0, 1}IJ on weights W , W in a plain RBM is
replaced by m ∗W everywhere. We suggest sampling a dif-
ferent mask m per mini-batch since it is usually much larger
than a mask in a Dropout RBM.

3.3 Network Pruning Regularization

There are typically many nodes or weights which are of lit-
tle importance in a neural network. In network pruning, such
unimportant nodes or weights are discarded, and the neural
network is retrained. This process can be conducted itera-
tively (Reed 1993). Now we consider two variants of net-
work pruning for RBMs. For an trained set of weights Ŵ
with no regularization, we consider implementing a fixed
mask m = (mij)I×J where

mij = 1|Ŵij |≥Q, Q = Q100(1−p)%(|Ŵ |), (10)

i.e. Q is the 100(1 − p)%-th left percentile of all |Ŵij |,
and p ∈ (0, 1) is some fixed proportion of retained weights.
We then recalibrate the weights and biases fixing mask m,
leading to a simple network pruning (SNP) procedure which
deletes 100(1 − p)% of all weights. We may also consider
deleting 100(1−p)/r% of all weights at a time, and conduct
the above process r times, leading to an iterative network
pruning (INP) procedure.

3.4 Hybrid Regularization

We may consider combining some of the above approaches.
For instance, Srivastava et al. (2014) considered a combi-
nation of Ls and Dropout. We introduce two new hybrid
approaches, namely partial DropConnect (PDC) presented
in Algorithm 1 and partial Dropout (PDO), which general-
izes DropConnect and Dropout, and borrows from network
pruning. The rationale comes from some of the model con-
vergence results exhibited later.

As before, suppose we have a trained set of weights Ŵ
with no regularization. Instead of implementing a fixed mask
m, we perform DropConnect regularization with different
retaining probabilities pij for each weight Wij . We let the
quantile Q = Q100(1−q)%(|Ŵ |), and

pij = 1|Ŵij |≥Q + p0 · 1|Ŵij |<Q. (11)

Therefore, we sample a different m = (mij)I×J
ind∼

Ber(pij) per mini-batch, which means that we always keep
100q% of all the weights, and randomly drop the remaining
weights with probability 100(1− p0)%. The mask m can be
resampled iteratively. Intuitively, we are trying to maximize
the following

max
ϑ∈Θ,pij∈{p0,1}

Em[logP (data|ϑ,m)]. (12)

such that mij
ind∼ Ber(pij), and

∑
1pij=1 = qIJ .

Algorithm 1. (Partial DropConnect)

1. Initialize θ̂p = θ̂, the unregularized trained param-
eters for an RBM.

2. Find retaining rates p = (pij)I×J from (11).
3. Retrain weights ϑ with DropConnect for a given

number of iterations, and then update θ̂p.
4. If maximum number of iterations reached, stop and

obtain θ̂p; otherwise, go back to Step 2.

This technique is proposed because we hypothesize that
some weights could be more important than others a poste-
riori, so dropping them could cause much variation among
the models being averaged. From (11), in partial Dropout,
we tend to drop weights which have smaller magnitude,
since setting larger weights to zero may substantially alter
the structure of a neural network. Experiments on real data
show that this technique can effectively improve the perfor-
mance of plain DropConnect.

We denote lp(ϑ) = Em∼Ber(p)[logP (data|ϑ,m)], and
l(ϑ) = logP (data|ϑ). From first-order Taylor’s expansion,

|lp(θ̂p)− l(θ̂)| ≤ |lp(θ̂p)− l(θ̂p)|+ |l(θ̂p)− l(θ̂)|

=

∣∣∣∣∣∣
∑
i,j

∂

∂Wij
l(θ̃)(1− pij)Ŵij,p

∣∣∣∣∣∣+ |l(θ̂p)− l(θ̂)|

≤ K
∑

(1− pij)|Ŵij,p|+ |l(θ̂p)− l(θ̂)|. (13)

Here θ̃ lies between θ̂p and m ∗ θ̂p from Taylor’s expansion,
and K = supϑ∈Θ ‖ ∂

∂ϑ l(ϑ)‖∞ is a Lipschitz constant.
Note that given p and θ̂p, Step 2 in Algorithm 1 low-

ers the term
∑

(1 − pij)|Ŵij,p| by assigning (1 − p0) to
weights of smaller magnitude, reducing an upper bound of
|lp(θ̂p) − l(θ̂)|. Step 3 further increases lp(θ̂p) and reduces
the gap |lp(θ̂p) − l(θ̂)|. Therefore, each iteration of Algo-
rithm 1 tends to increase lp(θ̂p), and hence Algorithm 1 pro-
vides an intuitive solution to problem (12).

We also consider a partial Dropout approach which is
analogous to partial DropConnect and keeps some impor-
tant nodes rather than weights. We set a mask for nodes
m = (m1, . . . ,mI), mi

ind∼ Ber(pi), where{
pi = 1‖Ŵi·‖≥Q + p0 · 1‖Ŵi·‖<Q,

Q = Q100(1−q)%(‖Ŵi·‖).
(14)
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This algorithm protects more important hidden nodes from
being dropped in order to reduce variation. We also evaluate
its empirical performance later.

4 More Theoretical Considerations

Here we discuss the model convergence properties of dif-
ferent regularization methods when the number of data ex-
amples N → ∞. We mark all regularization coefficients
and parameter estimates with (N) when there are N data
examples. We assume ϑ = (b, c,W ) ∈ Θ, which is com-
pact, dim(Θ) = D, P (v|ϑ) is unique for each ϑ ∈ Θ,
and v(1), . . . , v(N) are i.i.d. generated from an RBM with a
“true” set of parameters θ. We denote each regularized cali-
brated set of parameters as θ̃(N).

Let A = {d : θd 	= 0} and θA = {θd : d ∈ A}. (Zou
2006) showed that AL1 guarantees asymptotic normality
and identification of set A for linear regression. We demon-
strate that similar results hold for L2 + AL1 for RBMs. We
let λ(N) = (λ

(N)
1 , . . . , λ

(N)
D ) and μ(N) = (μ

(N)
1 , . . . , μ

(N)
D )

be the L2 and L1 regularization coefficients for each com-
ponent. The proofs of all propositions and corollaries below
are in the supplementary material (Wang and Klabjan 2016).

Proposition 1. (a) If λ(N)/N → 0, μ(N)/N → 0 as N →
∞, then the estimate θ̃(N) P→ θ; (b) if also, μ(N)

d /
√
N →

0·1θd �=0+∞·1θd=0, λ(N)/
√
N → 0, then

√
n(θ̃

(N)
A −θA)

d→
N(0, I−1(θA)), where I is the Fisher information matrix;
P (Â(N) = A) → 1, where Â(N) = {d : θ̃

(N)
d 	= 0}. �

For Dropout and DropConnect RBMs, we also assume
that the data is generated from a plain RBM structure. We
assume p(N) is of size I × J as in (11) for DropConnect
and of length I as in (14) for Dropout, therefore covering
the cases of both original and partial Dropout/DropConnect
with a fixed set of dropping rates. With a decreasing drop-
ping rate 1−p(N) → 0 with N → ∞, we obtain the follow-
ing convergence result.

Proposition 2. If p(N) → 1 as N → ∞, then θ̃(N) P→ θ.
�

For network pruning, we show that as the number of data
examples increase, if the retained proportion of parameters
p(N) = p can cover all nonzero components of θ, we will
not miss any important component.

Proposition 3. Assume p > p0 := |A|/D. Then for sim-
ple network pruning, as N → ∞, (a) θ̃(N) P→ θ; (b) for
sufficiently large N , there exists ρ > 0 such that P (A ∈
Â(N)) ≥ 1− e−ρN . �

Corollary 1. The above results also hold for iterative net-
work pruning. �

We note that for all regularization methods, under the
above conditions, the calibrated weights converge to the
“true” set of parameters θ, which indicates consistency.
Also, adding L1 regularization guarantees that we can iden-
tify components of zero value with infinitely many exam-
ples. The major benefits of Dropout come from the facts
that it makes L2 regularization adaptive, and also encour-
ages more confident prediction of the outcomes (Wager,
Wang, and Liang 2013). We propose partial DropConnect

also based on Proposition 3, i.e. we do not drop the more im-
portant components of θ, therefore possibly reducing varia-
tion caused by dropping influential weights. Partial Dropout
follows from the same reasoning.

5 Extension to Other Networks

5.1 Deep Belief Networks

We consider the multilayer network below,

P (v, h1, . . . , hL) P (v|h1)

L−1∏
l=1

P (hl|hl+1)P (hL), (15)

where each probability on the right-hand side is from
an RBM. To train the weights of RBM(v, h1), . . .,
RBM(hL−1, hL), we only need to carry out a greedy layer-
wise training approach, i.e. we first train the weights of
RBM(v, h1), and then use E(h1|v) to train RBM(h1, h2),
etc. The weights of the RBMs are used to initialize a deep
FFNN which is finetuned with gradient descent. RBM regu-
larization is applicable to each layer of a DBN.

Here we show that adding layers to a Dropout/Drop-
Connect DBN improves the likelihood given symmetry of
the weights of two adjacent layers. Similar results for plain
DBN are in Hinton, Osindero, and Teh (2006) and Bengio
(2007). We demonstrate this by using likelihood bounds.

We let DBNL denote an L-layer DBN and DBNL+1 de-
note an (L+ 1)-layer DBN with the first L layers being the
same as in DBNL. For a data example of a visible vector v,
the log-likelihood is bounded as follows,

Em[logPDBNL+1
(v|m,m∗)]

≥ Em[HPDBNL
(hL|v,m)] +

∑
hL

Em,m∗{PDBNL
(hL|v,m)

· [logPRBML+1
(hL|m∗) + logPDBNL

(v|hL,m)]}.
(16)

Here, H is the entropy function, and the derivation is
analogous to Section 11 in Bengio (2007). Mask m is for
DBNL, and mask m∗ is for the new (L+ 1)-th layer. Note
that after we have trained the first L layers, and initialized
the (L+1)-th layer symmetric to the L-th layer, assuming a
constant dropping probability, we have

Em∗ [logPRBML+1
(hL|m∗)] = Em[logPDBNL

(hL|m)],
(17)

so DBNL+1 has the same log-likelihood bound as DBNL.
Training RBML+1, Em∗ [logPRBML+1

(hL|m∗)] is guaran-
teed to increase, and therefore the likelihood of DBNL+1 is
expected to improve. As a result, for regularized unsuper-
vised deep neural nets, adding layers also tend to elevate
the explanatory power of the network. Adding nodes has the
same effect, providing a rationale for deep and large-scale
networks. We present the following proposition.

Proposition 4. Adding nodes or layers (preserving weight
symmetry) to a Dropout/DropConnect DBN continually im-
proves the likelihood; also, adding layers of size J ≤ H1 ≤
H2 ≤ · · · continually improves the likelihood. �
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5.2 Other RBM Variants

More descriptions of DBMs, RSMs, and Gaussian RBMs
are in the supplementary material (Wang and Klabjan 2016).
RBM regularization can be extended to all these situations.

6 Data Studies

In this section, we compare the empirical performance of
the aforementioned regularization methods on the follow-
ing data sets: MNIST, NORB (image recognition); 20 News-
groups, Reuters21578 (text classification); ISOLET (speech
recognition). All results are obtained using GeForce GTX
TITAN X in Theano.

6.1 Experiment Settings

We consider the following unsupervised neural network
structures: DBN/DBM for MNIST; DBN for NORB;
RSM plus logistic regression for 20 Newsgroups and
Reuters21578; GRBM for ISOLET. CD-1 is performed for
the rest of the paper. The following regularization meth-
ods are considered: None (no regularization); DO; DC; L2;
L2 + AL1; SNP; INP(r = 3); PDO; PDC. The number of
pretraining epochs is 100 per layer and the number of fine-
tuning epochs is 300, with a finetuning learning rate of 0.1.
For L2 +AL1, SNP, and INP which need re-calibration, we
cut the 100 epochs into two halves (4 quarters for INP). For
regularization parameters, we apply the following ranges:
p = 0.8 ∼ 0.9 for DO/DC/SNP/INP; λ = 10−5 ∼ 10−4 for
L2, similar to Hinton (2010); μ = 0.01 ∼ 0.1 for L2+AL1;
p0 = 0.5, q = 0.7 ∼ 0.9 or the reverse for PDO/PDC.
We only make one update to the “partial” dropping rates to
maintain simplicity. From the results, we note that unsuper-
vised neural networks tend to need less regularization than
FFNNs. We choose the best iteration and regularization pa-
rameters over a fixed set of parameter values according to
the validation error rates.

6.2 The MNIST Data Set

The MNIST data set consists of 282 pixels of handwritten
0-9 digits. There are 50,000 training examples, 10,000 val-
idation and 10,000 testing examples. We first consider the
likelihood of the testing data of an RBM with 500 nodes
for MNIST. There are two model fitting evaluation criteria:
pseudo-likelihood and AIS-likelihood (Salakhutdinov and
Murray 2008). The former is a sum of conditional likeli-
hoods, while the latter directly estimates P (v) with AIS.

In Figure 1 below using log-scale, p = 0.9 for DO,
and λ = 10−4 for L2. These figures tend to be represen-
tative of the model fitting process. The pseudo-likelihood
is a more optimistic estimate of the model fitting. We ob-
serve that Dropout outperforms the other two after about 50
epochs, and L2 regularization does not improve the pseudo-
likelihood. In terms of the AIS-likelihood, which is a much
more conservative estimate of the model fitting, the fitting
process seems to have three stages: (1) initial fitting; (2)
“overfitting”; (3) re-fitting. We observe that L2 improves the
likelihood significantly, while Dropout catches up at about
300 epochs. Therefore, Dropout tends to improve model fit-
ting according to both likelihood criteria.

Figure 1: Left: Pseudo-likelihood of the RBM over 500 pre-
training epochs. Right: AIS-likelihood of the RBM over 500
pretraining epochs.

In Figure 2, we can observe that more nodes increase the
pseudo-likelihood, which is consistent with Proposition 4,
but exhibit “overfitting” for the AIS-likelihood. However,
such “overfitting” does not exist for pretraining purposes as
well. Thus we suggest the pseudo-likelihood, and the AIS-
likelihood should be viewed as too conservative.

Figure 2: Left: Pseudo-likelihood of the Dropout RBM
over 500 pretraining epochs. Right: AIS-likelihood of the
Dropout RBM over 500 pretraining epochs.

Classification error rates tend to be a more practical mea-
sure. We first consider a 3-hidden-layer DBN with 1,000
nodes per layer, pretraining learning rate 0.01, and batch
size 10; see Table 1. We tried DBNs of 1, 2, and 4 hidden
layers and found the aforementioned structure to perform
best with None as baseline. The same was done for all other
structures. We calculate the means of the classification er-
rors for each regularization method averaged over 5 random
replicates and their standard deviations. In each table, we
stress in bold the top 3 performers with ties broken by devi-
ation. We note that most of the regularization methods tend
to improve the classification error rates, with DC and PDO
yielding slightly higher error rates than no regularization.

None DO DC L2 L2 +AL1

m. 1.35% 1.30% 1.37% 1.31% 1.35%
sd. 0.02% 0.04% 0.02% 0.03% 0.01%

SNP INP PDO PDC
m. 1.30% 1.32% 1.36% 1.30%
sd. 0.03% 0.03% 0.04% 0.03%

Table 1: Classification errors for a 3-layer DBN for the
MNIST data set.
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In Table 2, we consider a 3-hidden-layer DBM with 1,000
nodes per layer. For simplicity, we only classify based on the
original features. We let the pretraining learning rate be 0.03
and the batch size be 10.

None DO DC L2 L2 +AL1

m. 1.22% 1.21% 1.20% 1.14% 1.15%
sd. 0.02% 0.02% 0.02% 0.02% 0.04%

SNP INP PDO PDC
m. 1.18% 1.26% 1.21% 1.12%
sd. 0.03% 0.02% 0.03% 0.02%

Table 2: Classification errors for a 3-layer DBM for the
MNIST data set.

It can be observed that regularization tends to yield more
improvement for DBM than DBN, possibly because a DBM
doubles both the visible layer and the third hidden layer,
resulting in a “larger” neural network structure in general.
Only INP proves to be unsuitable for the DBM; all other reg-
ularization methods work better, with PDC being the best.

6.3 The NORB Data Set

The NORB data set has 5 categories of images of 3D objects.
There are 24,300 training examples, with 2,300 validation
examples held out, and 24,300 testing examples. We follow
preprocessing of Nair and Hinton (2009), and apply a sparse
two-hidden-layer DBN with 4,000 nodes per layer as in Lee,
Ekanadham, and Ng (2007) with a sparsity regularization
coefficient of 10.0 and the first hidden layer being a Gaus-
sian RBM. The pretraining learning rates are 0.001 and 0.01
for the first and second hidden layer, and the batch sizes for
pretraining and finetuning are 100 and 20. Because the vali-
dation error often goes to zero, we choose the 300-th epoch
and fix the regularization parameters as follows based on the
best values of other data sets: p = 0.9 for DO/DC/SNP/INP,
λ = 10−4 for L2, μ = 0.1 for L2+AL1, (p0, q) = (0.5, 0.8)
for PDO and (p0, q) = (0.8, 0.5) for PDC. In Table 3, only
weight decay and PDO/PDC perform better than None, with
PDC again being the best.

None DO DC L2 L2 +AL1

m. 11.00% 11.15% 11.19% 10.93% 10.91%
sd. 0.15% 0.12% 0.10% 0.18% 0.17%

SNP INP PDO PDC
m. 11.04% 11.14% 10.95% 10.81%
sd. 0.18% 0.20% 0.15% 0.13%

Table 3: Classification errors for the NORB data set.

6.4 The 20 Newsgroups Data Set

The 20 Newsgroups data set is a collection of news docu-
ments with 20 categories. There are 11,293 training exam-
ples, from which 6,293 validation examples are randomly
held out, and 7,528 testing examples. We adopt the stemmed
version, retain the most common 5,000 words, and train an
RSM with 1,000 hidden nodes in a single layer. We con-
sider this as a simple case of deep learning since it is a two-
step procedure. The pretraining learning rate is 0.02 and the

batch size is 50. We apply logistic regression to classify the
trained features, i.e. hidden values of the RSM, as in Sri-
vastava, Salakhutdinov, and Hinton (2013). This setting is
quite challenging for unsupervised neural networks. In Table
4, Dropout performs best with other regularization methods
yielding improvements except DropConnect.

None DO DC L2 L2 +AL1

m. 30.8% 28.8% 35.2% 30.1% 30.1%
sd. 0.70% 0.23% 0.91% 0.30% 0.65%

SNP INP PDO PDC
m. 29.7% 29.7% 30.1% 29.7%
sd. 0.26% 0.48% 0.71% 0.34%

Table 4: Classification errors for the trained features of RSM
for the 20 Newsgroups data set.

6.5 The Reuters21578 Data Set

The Reuters21578 data set is a collection of newswire ar-
ticles. We adopt the stemmed R-52 version which has 52
categories, 6,532 training examples, from which 1,032 val-
idation examples are randomly held out, and 2,568 testing
examples. We retain the most common 2,000 words, and
train an RSM with 500 hidden nodes in a single layer. The
pretraining learning rate is 0.1 and the batch size is 50. We
make the learning rate large because the cost function is
quite bumpy. From Table 5, we note that PDC works best,
and PDO improves the performance of Dropout.

None DO DC L2 L2 +AL1

m. 10.50% 11.91% 10.10% 10.06% 9.99%
sd. 0.64% 0.70% 0.32% 0.28% 0.41%

SNP INP PDO PDC
m. 9.99% 10.10% 9.98% 9.84%
sd. 0.27% 0.30% 0.24% 0.23%

Table 5: Classification errors for the trained features from
RSM and the Reuters21578 data set.

6.6 The ISOLET Data Set

The ISOLET data set consists of voice recordings of the
Latin alphabet (a-z). There are 6,138 training examples,
from which 638 validation examples are randomly held out,
and 1,559 testing examples. We train a 1,000-hidden-node
Gaussian RBM with pretraining learning rate 0.005, batch
size 20, and initialize a FFNN, which can be viewed as a
single-hidden-layer DBN. From Table 6, it is evident that
all regularization methods work better then None, with PDC
again being the best.

None DO DC L2 L2 +AL1

m. 3.98% 3.87% 3.88% 3.83% 3.86%
sd. 0.09% 0.06% 0.11% 0.10% 0.07%

SNP INP PDO PDC
m. 3.86% 3.86% 3.96% 3.78%
sd. 0.07% 0.10% 0.08% 0.05%

Table 6: Classification errors for the ISOLET data set.
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6.7 Summary

From the above results, we observe that regularization does
improve the structure of unsupervised deep neural networks
and yields lower classification error rates for each data set
studied herein. The most robust methods which yield im-
provements for all six instances are L2, L2+AL1, and PDC.
SNP is also acceptable, and preferable over INP. PDO can
yield improvements for Dropout when Dropout is unsuitable
for the network structure. PDC turns out to be the most sta-
ble method of all, and thus the recommended choice.

7 Conclusion

Regularization for deep learning has aroused much interest,
and in this paper, we extend regularization to unsupervised
deep learning, i.e. for DBNs and DBMs. We proposed sev-
eral approaches, demonstrated their performance, and em-
pirically compared the different techniques. For the future,
we suggest that it would be of interest to consider more vari-
ants of model averaging regularization for supervised deep
learning as well as novel methods of unsupervised learning;
for instance, Kingma and Welling (2015) provided an inter-
esting variational Bayesian auto-encoder approach.
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