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Abstract

Visual versus near infrared (VIS-NIR) face recognition is still
a challenging heterogeneous task due to large appearance dif-
ference between VIS and NIR modalities. This paper presents
a deep convolutional network approach that uses only one
network to map both NIR and VIS images to a compact Eu-
clidean space. The low-level layers of this network are trained
only on large-scale VIS data. Each convolutional layer is im-
plemented by the simplest case of maxout operator. The high-
level layer is divided into two orthogonal subspaces that con-
tain modality-invariant identity information and modality-
variant spectrum information respectively. Our joint formu-
lation leads to an alternating minimization approach for deep
representation at the training time and an efficient computa-
tion for heterogeneous data at the testing time. Experimen-
tal evaluations show that our method achieves 94% verifica-
tion rate at FAR=0.1% on the challenging CASIA NIR-VIS
2.0 face recognition dataset. Compared with state-of-the-art
methods, it reduces the error rate by 58% only with a com-
pact 64-D representation.

1 Introduction

Active near infrared (NIR) imaging technique provides an
inexpensive and simple means to enhance the performance
of face recognition systems in low light conditions. It has
been proved to be less sensitive to visible (VIS) light illu-
mination variations (Zhu et al. 2014), and has been widely
used in face identification or authorization applications, such
as security surveillance and E-passport. In many real-world
applications, face recognition systems almost require indi-
viduals to enroll by using their VIS images, which results in
the matching problem between NIR and VIS face images.
This matching problem is also called the NIR-VIS heteroge-
neous face recognition problem (Li et al. 2013).

Despite recent advances in the field of deep learning
based VIS face recognition (Sun et al. 2014; Taigman et
al. 2014; Parkhi, Vedaldi, and Zisserman 2015; Schroff,
Kalenichenko, and Philbin 2015), implementing NIR-VIS
face recognition efficiently presents serious challenges to
current approaches. These challenges may be incurred by
two facts. First, since NIR and VIS images are captured from
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Figure 1: An illustration of our modality invariant deep rep-
resentation architecture. Orthogonal constraints and maxout
operator are used to learn invariant representation and avoid
overfitting on a small dataset. At the testing time, both NIR
and VIS features are exacted from the shared layer and com-
pared in cosine distance.

different spectral domains, they have large appearance dif-
ference. Hence, the deep convolutional networks trained on
VIS data do not contain NIR spectral information so that
they fail to deal with NIR images very well. How to uti-
lize large-scale VIS face data to explore modality invariant
representation of NIR and VIS face images is an ongoing is-
sue. Second, benefitting from web data, we can easily collect
millions of VIS face images. However, pair-wised NIR face
images are often unavailable on internet. The collection of
large-scale and pair-wised NIR and VIS face images is still
expensive. How to apply deep learning on a small NIR-VIS
dataset remains a central problem.

Previous NIR-VIS matching methods often use a trick
to alleviate the appearance difference problem by removing
some principal subspaces that are assumed to contain light
spectrum information (Li et al. 2013)(Yi et al. 2015). Obser-
vation and results also demonstrate that the appearance of
a face is composed of identity information and variation in-
formation (e.g., lightings, poses, and expressions) (Chen et
al. 2012). Inspired by these observations, this paper presents
a deep convolutional network method to learn modality In-
variant Deep Representation (IDR) that contains the identity
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information of both NIR and VIS face images. Our method
employs one single network to map both NIR and VIS im-
ages to a compact Euclidean space so that the NIR and VIS
images in the embedding space directly correspond to face
similarity.

Our convolutional network is first trained on large-scale
VIS data. Its convolutional layers and fully connected layer
are implemented by the simplest case of maxout oper-
ator (Goodfellow et al. 2013). This network makes our
learned representation be robust to intra-class variation of
individuals. Then, the low-level layers of this network are
fixed and fine-tuned to be adaptable to NIR data. The high-
level layer is divided into two orthogonal subspaces that con-
tain modality-invariant identity information and modality-
variant spectrum information respectively. The orthogonal
constraints and the maxout operator in the high-level layer
can reduce parameter space and hence avoid the overfitting
problem on a mall NIR-VIS dataset. Our joint formulation
leads to an alternating minimization approach for deep rep-
resentation at the training time and an efficient computation
for heterogeneous data at the testing time. Extensive experi-
mental evaluations demonstrate that our IDR method learns
modality-invariant representation and outperforms state-of-
the-art NIR-VIS face recognition methods. Fig. 1 gives an
illustration of our IDR method. The main contributions are
summarized as follows,

• An effective deep neural network architecture is devel-
oped to learn modality invariant representation, and effi-
ciently optimized by alternating minimization. This archi-
tecture can naturally combine previous invariant feature
extraction and subspace learning into a unified network.

• Two orthogonal subspaces are embedded in the network
to model identity and spectrum information respectively.
This formulation not only results in one single network
structure to extract compact representation but also alle-
viates the overfitting problem on small-scale data.

• Experimental results on the challenging CASIA NIR-VIS
2.0 face database show that the proposed 64-D IDR ad-
vances the best rank-1 accuracy from 86.16% to 95.82%
and VR (@FAR=0.001) from 85.80% to 94.03%.

The rest of this paper is organized as follows. We
briefly review some related work on heterogeneous biomet-
ric recognition in Section 2. In Section 3, we present the
details of our IDR method for NIR-VIS face recognition.
Section 4 provides experimental results, prior to summary
in Section 5.

2 Related Work

During the last decade, heterogeneous biometric recognition
has drawn much attention due to the rapid development of
various sensors. The notation ’heterogeneous’ may refer to
NIR vs. VIS (2013; 2015), sketch vs. VIS (2002), 2D vs.
3D (2008), cross-sensor (2013a; 2013b) and different res-
olutions (2012). Many methods have been proposed to al-
leviate the appearance difference problem of heterogeneous
data. Most of these methods can be generally categorized
into three classes: image synthesis, subspace learning and

invariant feature extraction (Zhu et al. 2014)(Jin, Lu, and
Ruan 2015).

Image synthesis methods aim to synthesize face images
from one modality (or domain) into another so that heteroge-
neous images can be compared in the same distance space.
(Wang et al. 2009) applied face analogy to transform a face
image from one modality to another. (Wang and Tang 2009)
resorted to multiscale Markov random fields to synthesize
pseudo-sketch to face photo. Then, (Gao et al. 2008) fur-
ther used hidden Markov model to learn the nonlinear re-
lationship between face photo and sketch. (Lei et al. 2008)
reconstructed a 3D face model from a single 2D face im-
age using canonical correlation analysis (CCA). (Wang et
al. 2012), (Huang and Wang 2013) and (Juefei-Xu, Pal, and
Savvides 2015) used coupled or joint dictionary learning to
reconstruct face images and then performed face recogni-
tion.

Subspace learning methods learn mappings to project
homogenous data into a common space. CCA and partial
least squares (PLS) are two representative methods. (Lin
and Tang 2006) proposed a common discriminant feature
extraction to incorporate both discriminative and locality in-
formation. (Lei et al. 2012) developed a coupled discrim-
inant analysis based on the locality information in kernel
space. (Huang et al. 2013) proposed a regularized discrim-
inative spectral regression method to map heterogeneous
data into a common spectral space. Recently, (Wang et al.
2013) took feature selection into consideration during com-
mon subspace learning. State-of-the-art NIR-VIS results are
often obtained by removing some principal subspace com-
ponents (Yi et al. 2015).

Invariant feature extraction methods try to explore
modality-invariant features that are robust to lighting con-
ditions. The current methods are almost based on hand-
crafted local features, such as local binary patterns (LBP),
histograms of oriented gradients (HOG), Difference-of-
Gaussian (DoG) and SIFT (Liao et al. 2009)(Klare and Jain
2010)(Goswami et al. 2011). In addition, (Huang, Lu, and
Tan 2012) applied sparse representation to learn modality-
invariant features. (Zhu et al. 2014) combined Log-DoG fil-
tering, local encoding and uniform feature normalization to-
gether to find better feature representation.

Although many efforts have been made, NIR-VIS recog-
nition performance is still quite low compared to VIS recog-
nition performance. For example, the rank-1 accuracy on the
challenging CASIA NIR-VIS 2.0 face database is smaller
than 90% whereas that on the Labeled Faces in the Wild
(LFW) VIS database (Huang et al. 2007) has been more
than 99%. The significant improvement in VIS recognition
is mainly due to the application of deep learning methods.
However, to the best of our knowledge, there are few deep
learning works for NIR-VIS face recognition. Hence, it is
the time to explore modality invariant deep representation.

3 Invariant Deep Representation
Benefiting from the development of convolutional neu-
ral network (CNN), VIS face recognition has made great
progress in recent years. This section introduces the idea
of subspace decomposition and invariant feature extraction
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into CNN to learn modality invariant deep representation for
NIR-VIS face recognition.

3.1 Problem Formulation

Let IV and IN be the VIS and NIR images respectively.
The CNN feature extraction process is denoted as Xi =
Conv(Ii,Θi) (i ∈ {N,V }), where Conv() is the feature
extraction function defined by the ConvNet, Xi is the ex-
tracted feature vector, and φI denotes ConvNet parameters
for modality I to be learned. In heterogeneous recognition,
one basic assumption is the fact that there is some con-
cept common between heterogeneous samples. Hence, we
assume that NIR and VIS face images share some com-
mon low-level features. That is, ΘN = ΘV = Θ and
Xi = Conv(Ii,Θ). As shown in Fig. 1, the output of the
last max-pooling layer represents Xi ∈ Rm, corresponding
to the NIR and VIS channel, respectively. These two chan-
nels share the same parameter Θ.

Inspired by the observation that removing spectrum in-
formation is helpful for NIR-VIS performance, we further
introduce three mapping matrices (i.e., W,Pi ∈ Rd×m) to
model identity invariant information and variant spectrum
information. Therefore, the feature representation can be de-
fined as

Fi =

[
Fshared

Funique

]
=

[
WXi

PiXi

]
(i ∈ {N,V }) (1)

where WXi and PiXi denote the shared feature and the
unique feature respectively. Considering the subspace de-
composition properties of the matrices W and Pi, we fur-
ther impose an orthogonal constraint on them to make them
be unrelated by each other, i.e.,

PT
i W = 0 (i ∈ {N,V }) (2)

The commonly used softmax loss is used to train the
whole network, taking the following form,

L(F, c,Θ,W, P ) =
∑

i∈{N,V }
softmax(Fi, c,Θ,W, Pi)

= −
∑

i∈{N,V }
(

N∑
j=1

1{yij = c}logp̂ij)

s.t. PT
i W = 0 (i ∈ {N,V })

(3)
where c is the class label for each sample and p̂ij is the
predicted probability. Moreover, we denote 1{·} as the
indicator function so that 1{a true statement} = 1 and
1{a false statement} = 0.

3.2 Optimization Method

Since (3) contains several variables and is non-convex, we
develop an alternating minimization method to minimize
(3). First, according to the lagrange multipliers, (3) can be
reformulated as an unconstrained problem,

L(F, c,Θ,W, P ) =
∑

i∈{N,V }
softmax(Fi, c,Θ,W, Pi)

+
∑

i∈{N,V }
λi‖PT

i W‖2F
(4)

Algorithm 1: Training the IDR network.
Require: Training set Ii, learning rate γ and lagrange

multipliers λi.
Ensure: The CNN parameters Θ and the mapping matrix W .
1: Initialize parameters Θ by pre-trained model and the

mapping matrices W,Pi by (10);
2: for t = 1, . . . , T do
3: Fix W,Pi;
4: Update Θ according to back-propagation method;
5: Fix Θ
6: Update W according to (5);
7: Update Pi according to (6);
8: end for;
9: Return Θ and W ;

where λi is the lagrange multipliers and ‖ · ‖2F denotes the
Frobenius norm.

If gradient descent method is used to minimize (4), we
should update the parameters W,PI and Θ. For the CNN
parameters Θ, we follow the conventional back-propagation
method to update it. The gradients of W and PI contain two
components that can be expressed as

∂L
∂W

=
∑

i∈{N,V }

∂softmax(Fi, c,Θi,W, Pi)

∂W

+
∑

i∈{N,V }
λiPiP

T
i W

(5)

∂L
∂Pi

=
∂softmax(Fi, c,Θi,W, Pi)

∂Pi

+ λiWWTPi

(6)

Then we update these parameters with a learning rate γ via

Θ(t+1) = Θ(t) − γ
∂L

∂Θ(t)
(7)

W (t+1) = W (t) − γ
∂L

∂W (t)
(8)

P
(t+1)
i = P

(t)
i − γ

∂L
∂P

(t)
i

(9)

Here, we employ the alternating optimization to update
all the parameters. As in (Xavier and Bengio 2010), the pa-
rameters Θ of CNN is initialized by the pre-trained model
and the mapping matrices W,PI is initialized by

W,Pi ∼ U

[
− 1√

m
,

1√
m

]
(10)

where U [−a, a] is the uniform distribution in the interval
(−a, a) and m is the dimension of original features. The
optimization detail is summarized in Algorithm 1.

3.3 Network Architecture

The basic VIS network architecture (the part of share con-
volution parameters in Fig. 1) and initial values of Θ are
trained on a large-scale VIS dataset (Guo et al. 2016). We
employ the lightened CNN B network (Wu et al. 2015) as
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Method-Dim 100% - EER Rank-1 accuracy VF@FAR=1% VF@FAR=0.1%

DR-64 97.37%±0.21% 90.66%±0.43% 95.77%±0.52% 89.51%±0.47%

IDRm-64 97.98%±0.32% 93.65%±0.85% 97.24%±0.57% 92.56%±1.01%

IDR-64 98.79%±0.11% 95.82%±0.76% 98.58%±0.25% 94.03%±1.06%

DR-128 98.00%±0.20% 93.78%±0.54% 95.05%±0.38% 91.82%±0.79%

IDRm-128 98.30%±0.17% 94.77%±0.33% 97.74%±0.22% 93.45%±0.51%

IDR-128 98.93%±0.17% 97.33%±0.43% 98.89%±0.29% 95.73%±0.76%

Table 1: Equal error rate (EER) (± standard variation), rank-1 accuracy (± standard variation) and verification rate(VF)@false
accept rate(FAR) (± standard variation) of the proposed deep learning approach with different settings.

the basic network1. The network includes nine convolution
layers with four max-pooling layers, followed by the fully
connected layer. Softmax is used as the loss function. The
training VIS face images are normalized and cropped to
144×144 according to five facial points. To enrich the input
data, we randomly cropped the input images into 128×128.
The MS-Celeb-1M dataset (Guo et al. 2016), which contains
totally 8.5M images for about 100K identities, is employed
to train the basic network. Dropout ratio is set to 0.7 for fully
connected layer and the learning rate is set to 1e−3 initially
and reduced to 1e−5 for 4, 000, 000 iterations. The trained
single model for the basic network obtained 98.90% on the
LFW dataset.

Based on the basic VIS network, we develop a modal-
ity invariant convolution neural network for NIR-VIS face
recognition. The low-level convolution layers are initialized
by the pre-trained basic network. We implement two CNN
channels with shared parameters to input NIR and VIS im-
ages respectively. Then we define the feature layer (as in
Fig. 1) that aims to project the low-level features into two
orthogonal feature subspaces. In this way, we can leverage
the correlated properties of NIR and VIS identities and en-
force the domain-specific properties of both modalities. Fi-
nally, the softmax loss functions are separately used for NIR
and VIS representation as the supervisory signals. Note that
since there is a maxout operator in the feature layer, the fi-
nal feature dimension is d/2 when W ∈ Rd×m. As in VIS
training, all NIR and VIS images are cropped and resized
to 144 × 144 pixels and a randomly selected 128 × 128 re-
gions are fed into the IDR network for NIR-VIS training.
The learning rate of the IDR network is set to 1e−4 initially
and reduced to 1e−6 gradually for around 100, 000 itera-
tions.

4 Experiments

In this section, we perform experiments on the most chal-
lenging CASIA NIR-VIS 2.0 face database (Li et al. 2013).
We first introduce the database and testing protocols, then
present algorithmic analysis and detailed evaluation, as well
as comparison with state-of-the-art NIR-VIS methods.

1https://github.com/AlfredXiangWu/face verification
experiment

4.1 Dataset and Protocols

The CASIA NIR-VIS 2.0 Face Database is widely used in
NIR-VIS heterogeneous face evaluations because it is the
largest public and most challenging NIR-VIS database. Its
challenge is due to large variations of the same identity,
including lighting, expression, pose, and distance. Wearing
glasses or not is also considered to generate Variations. The
database is composed of 725 subjects, each with 1-22 VIS
and 5-50 NIR images. Each image is randomly gathered so
that there are not one-to-one correlations between NIR and
VIS images. The database contains two views of evaluation
protocols. View 1 is used for super-parameters adjustment,
and View 2 is used for training and testing.

For a fair comparison with other results, we follow the
standard protocol in View 2. There are 10-fold experiments
in View 2. Each fold contains a collection of training and
testing lists. Nearly equal numbers of identities are included
in the training and testing sets, and are kept disjoint from
each other. Training on each fold is many-to-many (i.e., im-
ages from NIR and VIS are randomly combined). For each
training fold, there are around 2,500 VIS images and around
6,100 NIR images from around 360 subjects. These subjects
are mutually exclusive from the 358 subjects in the testing
set. That is, the subjects in the training set and testing set
are entirely different. The training set in each fold is used
for IDR training. For each testing fold, the gallery set al-
ways contains a total of 358 subjects, and each subject only
has one VIS image. The probe set has over 6,000 NIR im-
ages from the same 358 subjects. All the probe set is to be
matched against the gallery set, resulting in a similarity ma-
trix of size 358 by around 6, 000.

4.2 Algorithmic Analysis

In this subsection, we give a detailed evaluation of each
part of our proposed invariant deep representation (IDR)
method. We implement two simpler version of IDR. The no-
tation DR indicates the IDR without the NIR feature and
VIS feature in Fig. 1. That is, we only train one convolu-
tional network without subspace decomposition. Note that
there are a large number of parameters in the fully connected
layer and the feature layer (i.e., NIR, shared and VIS fea-
tures in Fig. 1), which result in overfitting on a small-scale
NIR-VIS dataset. The maxout operator in the feature layer is
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also helpful to alleviate the overfitting problem. Hence, the
notation IDRm indicates the IDR without maxout operator
in the feature layer.

In Table 1, three performance measures are reported for
comparison, including equal error rates, rank-1 accuracy
and verification rates. We observe that the rank-1 accuracy
and VF@FAR=0.1 of DR-128 have been better than the
state-of-the-art rank-1 accuracy 86.16% (Yi et al. 2015) and
VF@FAR=0.1 85.80% (Juefei-Xu, Pal, and Savvides 2015).
DR-128 is trained on a large-scale VIS dataset and fine-
tuned on a small-scale NIR-VIS dataset. These improve-
ments indicate that our basic strategy to train a network is
efficient for NIR-VIS face recognition problem. In addition,
different implementations lead to different recognition re-
sults.

We also observe that IDR almost obtains the lowest per-
formance among the three implementations. Particularly,
there is a large performance improvement of IDR against
DR. Comparing the rank-1 accuracy of IDR and DR, we find
that there is nearly 4% rank-1 accuracy difference on the di-
mensions 64 and 128. These results suggest that the usage of
two orthogonal subspaces to learn invariant representation is
effective. These orthogonal subspaces can potentially sepa-
rate light information from identification information so that
some hard NIR-VIS pairs are correctly classified.

Comparing IDR with IDRm, we observe that the max-
out operator in the last convolutional layer can further re-
duce equal error rate (EER) and improve verification rates.
When feature dimension is 64, EER can be reduced by 40%
(100%∗ (2.02−1.21)/2.02). IDR-128 obtains better results
than IDR-64 and achieves the best performance in terms of
EER, rank-1 accuracy and verification rate. This indicates
that when the number of features is increased, the perfor-
mance is also increased accordingly. All of these verify the
benefit of our IDR and suggest the usage of maxout operator.

4.3 Comparison with State-of-the-art Methods

To verify the performance of IDR, we compare our method
with state-of-the-art NIR-VIS recognition methods, includ-
ing PCA+Sym+HCA (Li et al. 2013), learning coupled fea-
ture spaces (LCFS) method (Wang et al. 2013; Jin, Lu, and
Ruan 2015), coupled discriminant face descriptor (C-DFD)
(Lei, Pietikainen, and Li 2014; Jin, Lu, and Ruan 2015),
DSIFT+PCA+LDA (Dhamecha et al. 2014), coupled dis-
criminant feature learning (CDFL) (Jin, Lu, and Ruan 2015),
Gabor+RBM+Remove 11PCs (Yi et al. 2015), VIS+NIR re-
construction+UDP (Juefei-Xu, Pal, and Savvides 2015). The
results of LCFS, C-DFD and CDFL are from (Jin, Lu, and
Ruan 2015), and those of the remaining compared meth-
ods are from their own papers. The results of three VIS
CNN methods are also discussed, including VGG (Parkhi,
Vedaldi, and Zisserman 2015), SeetaFace (Liu et al. 2016)
and CenterLoss (Wen et al. 2016).

Fig. 2 plots the receiver operating characteristic (ROC)
curves of the proposed method and its three top competi-
tors. For a better illustration, we do not report some ROC
curves of other methods if these curves are low. We ob-
serve that the methods can be nearly ordered in ascending
ROC curves as Gabor+Remove 20PCS (Yi et al. 2015), Ga-
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Figure 2: ROC curves of different NIR-VIS face recognition
methods.

bor+RBM+Remove 11PCs (Yi et al. 2015), VIS+NIR re-
construction+UDP, IDR-64 and IDR-128. Our IDR methods
consistently outperform its three competitors when FAR is
smaller than 1%. They can significantly improve verification
rates especially when FAR is low. This indicates that IDR
can correctly classify some difficult NIR-VIS sample pairs.
In addition, IDR-128 performs better than IDR-64. This in-
dicates that ROC curves can be further improved if more
features are used.

Table 2 shows the rank-1 accuracy and VR@FAR=0.1%
of different NIR-VIS methods. The methods can be or-
dered in ascending rank-1 accuracy as PCA+Sym+HCA,
LCFS, C-DFD, CDFL, DSIFT+PCA+LDA, VIS+NIR re-
construction+UDP, Gabor+RBM+Remove 11PCs, IDR. Ex-
cept IDR, the best three methods apply several different
techniques separately to improve rank-1 accuracy. In con-
trast, IDR naturally fuses these techniques into a unified
neural network framework, which makes IDR achieve the
highest accuracy. Our IDR method improves the best rank-1
accuracy from 86.16% to 95.82%. It reduces the error rate
by 70% only with a compact 64-D feature representation.
There is also a significant improvement on VR@FAR=0.1%.
The improvement is nearly 10% verification rate. As ex-
pected, the three CNN methods trained on VIS face data do
not work on the NIR-VIS matching problem. They can not
further improve verification rates. This is because the large
appearance between VIS and NIR domain. All of these re-
sults suggest that deep learning is effective for the NIR-VIS
recognition problem, and a compact and modality invariant
feature representation can be learned from a unique CNN.

5 Conclusion and Future Work

By naturally combining subspace learning and invariant fea-
ture extraction into CNNs, this paper has developed an in-
variant deep representation approach that uses only one net-
work to map both NIR and VIS images to a compact Eu-
clidean space. The low-level layers of this representation are
trained on large-scale VIS data. The high-level layer is di-
vided into two orthogonal subspaces that contain modality-
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Methods Rank-1 accuracy VF@FAR=0.1% Dimension

PCA+Sym+HCA (2013) 23.70%±1.89% 19.27% -

LCFS (2013)(2015) 35.4%±2.8% 16.7% -

C-DFD (2014)(2015) 65.8%±1.6% 46.2 -

DSIFT+PCA+LDA (2014) 73.28%±1.10% - -

CDFL (2015) 71.5%±1.4% 55.1% 1000

Gabor+RBM+Remove 11PCs (2015) 86.16%±0.98% 81.29±1.82% 80× 176 = 14080

VIS+NIR reconstruction+UDP (2015) 78.46%±1.67% 85.80% 32× 32 = 1024

VGG (2015) 62.09%±1.88% 39.72%±2.85% 4096

SeetaFace (2016) 68.03%±1.66% 58.75%±2.26% 2048

CenterLoss (2016) 87.69%±1.45% 69.72%±2.07% 1024

IDR 95.82%±0.76% 94.03%± 1.06% 64

Table 2: Rank-1 accuracy (± standard variation) and verification rate (± standard variation) at FAR=0.1% on the CASIA 2.0
NIR-VIS face database.

invariant identity information and modality-variant light
spectrum information respectively. We have proposed an al-
ternating minimization approach to minimize and the joint
formulation of IDR. Experimental results on the challenging
CASIA NIR-VIS 2.0 face recognition dataset show that our
IDR method significantly outperforms state-of-the-art NIR-
VIS face recognition methods.

An intriguing question for future work is whether this
IDR framework can be useful for other heterogeneous or
cross-modal problems, e.g., cross-sensor iris recognition and
sketch-VIS face recognition. We believe that the full po-
tential of IDR is yet to be uncovered in many heteroge-
neous problems. Another direction is to establish a large-
scale NIR-VIS dataset for both training and testing.
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