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Abstract

Correlation measures are a key element of statistics and ma-
chine learning, and essential for a wide range of data anal-
ysis tasks. Most existing correlation measures are for pair-
wise relationships, but real-world data can also exhibit com-
plex multivariate correlations, involving three or more vari-
ables. We argue that multivariate correlation measures should
be comparable, interpretable, scalable and unbiased. How-
ever, no existing measures satisfy all these requirements. In
this paper, we propose an unbiased multivariate correlation
measure, called UMC, which satisfies all the above criteria.
UMC is a cumulative entropy based non-parametric multi-
variate correlation measure, which can capture both linear
and non-linear correlations for groups of three or more vari-
ables. It employs a correction for chance using a statistical
model of independence to address the issue of bias. UMC has
high interpretability and we empirically show it outperforms
state-of-the-art multivariate correlation measures in terms of
statistical power, as well as for use in both subspace cluster-
ing and outlier detection tasks.

Introduction

Analysing correlations is a fundamental task in both statis-
tics and machine learning. It has applications in many real-
world learning tasks, e.g., feature selection (Brown et al.
2012), subspace search (Nguyen et al. 2013), causal infer-
ence (Bareinboim, Tian, and Pearl 2014) and subspace clus-
tering (Kriegel, Kröger, and Zimek 2009). For the setting
of continuous variables (as opposed to discrete), most ex-
isting correlation measures focus on pairwise relationships.
For example, Pearson’s correlation coefficient detects bivari-
ate linear correlations, and Maximal Information Coefficient
(MIC) (Reshef et al. 2011) detects both linear and non-linear
bivariate correlations. However, real-world data often con-
tains three or more variables which can exhibit multivari-
ate (higher-order) correlations. If bivariate based measures
are used to identify multivariate correlations, through pair-
wise aggregation, multivariate correlations can potentially
be overlooked. For example, it has been shown that genes
may reveal only a weak correlation with a disease when
considered individually, while the correlation for a group of
genes may be very strong (Zhang et al. 2008).
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Figure 1: Raw scores for existing multivariate correlation
measures. For interpretability and unbiasedness, a measure’s
score should be a horizontal line with value ‘1’ for a func-
tional relationship as the number of variables varies. It
should be a horizontal line with value ‘0’ for sets of indepen-
dent variables of increasing size. None of the four measures
exhibits both behaviours.

Identifying multivariate correlations is therefore an im-
portant activity in data analysis. Measures for multivariate
correlation analysis have three important applications (Ro-
mano et al. 2016), (a) detection; (b) quantification; and (c)
ranking. We argue that these applications require a multi-
variate correlation measure to meet the following criteria:
(1) Comparability — The correlation score for a small set of
variables can be meaningfully compared against the score
for a large set of variables. The score should also lie within
a predetermined range such as [0,1]; (2) Interpretability —
The correlation score should be 0 for a set of independent
variables and 1 for a set of variables having a strong rela-
tionship; (3) Scalability — The score should be efficient to
compute as the number of variables or data size increases;
(4) Unbiasedness — The score should be constant as the
number of variables increases, if maintaining a fixed degree
of relationship among them.
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Recently proposed multivariate correlation measures,
such as Universal Dependency Score (UDS) (Nguyen, Man-
dros, and Vreeken 2016), Multivariate mAximal Correlation
(MAC) (Nguyen et al. 2014), Cumulative Mutual Informa-
tion (CMI) (Nguyen et al. 2013) and HiCS (Keller, Muller,
and Bohm 2012), only partially satisfy the above 4 crite-
ria. For example, given a data set of 1000 data points with
d variables {Xi}di=1, we consider two simple correlations:
a strong functional one (all Xi’s are the same) and a weak
independent one (all Xi’s are random variables, drawn in-
dependently of each other). For good interpretability, we
expect the measure score to be close to 1 for the func-
tional relationship and to be 0 for a set of independent vari-
ables. More importantly, the measure should be stable for
a fixed correlation as dimensionality (the number of vari-
ables) increases, i.e., unbiased. However, Figure 1 shows
that none of the above measures is able to satisfy these basic
requirements. UDS, UDS-r (without regularization), MAC
and CMI do not output a stable score, showing an increasing
trend either for the functional relationship or independent
variables, while HiCS demonstrates a decreasing trend for
the functional relationship. We summarize the behaviour of
these multivariate correlation measures in Table 1 and see
that none of them satisfies all the above 4 criteria.

Table 1: The behaviour of multivariate correlation measures

Measure Compar. Interpret. Scal. Unbias.
UDS

√
��

√ ×
UDS-r

√
��

√ ×
MAC

√
�� × ×

CMI × �
√ ×

HiCS
√

� × ×
UMC

√
� � �

√ √

Motivated by these observations, we propose an Unbiased
Multivariate Correlation measure (UMC) that satisfies the
above 4 criteria. UMC is designed by taking a unified view
of existing correlation measures. It employs cumulative en-
tropy that permits non-parametric computation on (contin-
uous) empirical data (Rao et al. 2004), (Di Crescenzo and
Longobardi 2009a). To address the interpretability and bias
issues, we extend the framework proposed in (Romano et
al. 2016) to multivariate correlation measures, and analyti-
cally derive the expected value of the conditional cumulative
entropy under a statistical model of independence and use
it for bias correction of UMC. Analytical computation (as
opposed to Monte Carlo simulation) of this expected value
ensures UMC can maintain a good degree of computational
efficiency. Overall, UMC is purely non-parametric and suit-
able for capturing both linear and non-linear correlations
amongst multiple variables, while achieving comparability,
interpretability, scalability as well as unbiasedness.

Our contributions in this paper are fourfold: (1) We pro-
vide a unified view of existing multivariate correlation mea-
sures and the connections between them; (2) We theoreti-
cally and empirically analyse bias issues for existing mul-
tivariate correlation measures; (3) We propose an unbiased
measure for multivariate correlation analysis — UMC; and

(4) We empirically demonstrate that UMC achieves the best
performance amongst existing multivariate correlation mea-
sures in terms of power and performance based on experi-
ments with both synthetic and real-world data.

A Unified View of Correlation Measures

In this section, we review existing multivariate correlation
measures in a unified way to highlight their connections.
Consider a data set D with d real-valued variables {Xi}di=1
and n data points. We also refer to d as the dimensionality
of the data set. We regard each Xi as a random variable,
characterized by its Probability Distribution Function (PDF)
p(Xi). A multivariate correlation measure M quantifies how
much the relation of D = {Xi}di=1 deviates from statistical
independence (Te Sun 1980). That is to say, how much their
joint probability distribution differs from the product of their
marginal probability distributions,

M(D) = diff
(
p(X1, . . . , Xd),

d∏
i=1

p(Xi)
)
. (1)

If diff () is instantiated as the KL-divergence (Kullback
and Leibler 1951), Eq. (1) will become the Total Correlation
(TC) measure (Te Sun 1978),

TC (D) = KL
(
p(X1, . . . , Xd) ‖

d∏
i=1

p(Xi)
)

=
[ d∑

i=1

H(Xi)
]
−H(X1, . . . , Xd).

(2)

However, the joint Shannon entropy H(X1, . . . , Xd) re-
quires estimation of the joint probability mass function
p(X1, . . . , Xd), which suffers from the empty space prob-
lem (Aggarwal and Philip 2001) in high dimensional space.
To avoid using the joint probability distribution, according
to the factorization property of the joint probability, the KL
divergence in Eq. (2) can be factorized as:

KL
(
p(X1, . . . , Xd) ‖

d∏
i=1

p(Xi)
)
= KL

(
p(X2|X1) ‖ p(X2)

)

+ · · ·+KL
(
p(Xd|X1, . . . , Xd−1) ‖ p(Xd)

)
.

(3)

This is just one possible factorization of the KL-divergence.
In general, different variable orderings will lead to different
factorization formulas. More importantly, this factorization
inspires an approximation of Eq. (1) as:

M(D) ∼
d∑

i=2

diff
(
p(Xi), p(Xi|X1, . . . , Xi−1)

)
, (4)

where the conditional distributions are computed progres-
sively with i − 1 variables, partially mitigating the high di-
mensional empty space problem. Furthermore, this kind of
progressive aggregation mechanism from small variable sets
to large helps the measure scale well to high dimensionality.

Despite the advantages of Eq. (4), it is sensitive to the
ordering of the variables {X1, . . . , Xd}. The maximal cor-
relation analysis approach (Breiman and Friedman 1985),
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(Rao et al. 2011) suggests an order-free technique as follows.
Let Fd be the set of bijective functions σ: {1, . . . , d} →
{1, . . . , d}, we have:

M(D)∼maxσ∈Fd

∑d
i=2 diff

(
p(Xσ(i)),p(Xσ(i)|Xσ(1),...,Xσ(i−1))

)
.

(5)
Existing multivariate correlation measures can

now be interpreted within this framework. HiCS is
based on a specific marginalized form of Eq. (1), i.e.,
diff (p(Xi), p(Xi|{X1, . . . , Xd}\{Xi})), and computed
as an average across multiple iterations where Xi is ran-
domly picked; MAC is based on Eq. (2) using Shannon
entropy estimated through data discretization; CMI and
UDS are based on Eq. (5), each instantiating diff () with
the cumulative entropy h(Xi) (defined below), CMI =

maxσ∈Fd

∑d
i=2[h(Xσ(i))− h(Xσ(i)|Xσ(1), . . . , Xσ(i−1))],

and UDS = CMI /
∑d

i=2 h(Xσ(i)), which is a normalized
version of CMI. Our proposed measure, UMC, is also based
on Eq. (5) using cumulative entropy to instantiate diff ().
However, different from UDS, we adopt a tight upper bound
as the normalization factor, and employ a correction for
chance using a statistical model of independence. These
assist in addressing the drawbacks of the existing measures
mentioned in Table 1.

Cumulative Entropy

It is common practice to discretize real-valued data to esti-
mate Shannon entropy, but this can lead to loss of informa-
tion. On the other hand, differential entropy, which works
directly on continuous variables, has been shown to be prob-
lematic for assessing correlations (Rao et al. 2004). In this
paper, we employ cumulative entropy (Di Crescenzo and
Longobardi 2009a), which can be estimated on real-valued
data without data discretization. The CMI and UDS mea-
sures are also based on cumulative entropy.

The cumulative entropy of a continuous random variable
Z, denoted as h(Z), is defined as:

h(Z) = −
∫

P (Z ≤ z) logP (Z ≤ z)dz, (6)

where P (Z ≤ z) is the Cumulative Distribution Func-
tion (CDF) of Z. Similar to Shannon entropy, h(Z) cap-
tures the degree of uncertainty in Z. The only difference is
that the cumulative entropy is defined on the CDF. Since
0 ≤ P (Z ≤ z) ≤ 1, it follows that h(Z) ≥ 0.

The conditional cumulative entropy of any real-valued
random variable Z given a random variable Y is defined as:

h(Z|Y ) =

∫
h(Z|y)p(y)dy, y ∈ domain(Y ), (7)

where

h(Z|y) = −
∫

P (Z ≤ z|y) logP (Z ≤ z|y)dz. (8)

It has two important properties (Rao et al. 2004),
(Di Crescenzo and Longobardi 2009a).
Theorem 1. h(Z|Y ) ≥ 0 with equality iff Z is a function of
Y .
Theorem 2. h(Z|Y ) ≤ h(Z) with equality iff Z is statisti-
cally independent of Y .

Dimensionality Bias Analysis

The presence of bias is harmful for a multivariate correlation
measure, since it can make it hard to interpret and unreliable
in real-world learning tasks, especially for quantification and
ranking related applications. In this section, we identify and
analyse the issue of dimensionality bias empirically and the-
oretically.

Empirically, to illustrate the dimensionality bias issue, we
generate 5 data sets with d = [5, 10, 15, 20, 25] variables and
n = 1000 data points for two correlations: i) identity rela-
tionship (all variables are identical) and ii) independent set
of variables (all variables are randomly and independently
drawn). For each existing correlation measure, we select the
data set which achieves the highest correlation score, and
then repeat this process 10,000 times. The probability of se-
lecting a data set according to each possible dimensionality
is shown in Figure 2.

5 10 15 20 25
Dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b
ili

ty
 o

f 
S

e
le

c
ti
o
n

UDS for identity relationship

UDS for independent variables

(a) UDS

5 10 15 20 25
Dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f 
S

e
le

c
ti
o
n

MAC for identity relationship

MAC for independent variables

(b) MAC

5 10 15 20 25
Dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
 o

f 
S

e
le

c
ti
o

n

CMI for identity relationship

CMI for independent variables

(c) CMI

5 10 15 20 25
Dimension

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty
 o

f 
S

e
le

c
ti
o

n

HiCS for identity relationship

HiCS for independent variables

(d) HiCS

Figure 2: Dimensionality bias of correlation measures for
identity relationship and independent variables. The ideal
case would be an equal 20% probability for each possible
dimensionality. The figure is best viewed in color.

Given that the correlation scores should be the same for
every data set of all dimensionalities, they should each have
an equal chance of being selected (i.e., 20%). However, Fig-
ure 2 clearly demonstrates that all these measures are biased
to data sets with high dimensionalities for the independent
variables. On the other hand, for the identity relationship,
except MAC which almost shows no bias, all the other mea-
sures suffer from different biases, i.e., UDS and CMI are
biased to high dimensionalities, while HiCS is biased to low
dimensionalities.

Theoretically, CMI has been proved to be biased to high
dimensionality in (Nguyen, Mandros, and Vreeken 2016).
Here, we prove that UDS is also biased to high dimension-
ality in some cases (proof in the Supplementary Material A
1).

1https://sites.google.com/site/umcsupplementary/home
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Theorem 3. UDS(X1, . . . , Xd+1) ≥ UDS(X1, . . . , Xd)
whenever Xd+1 = Xi, i ∈ {1, 2, . . . , d}. That is to say,
UDS scores a set of variables higher when there are re-
peated (redundant) variables.

Unbiased Multivariate Correlation Measure

In this section, we propose UMC, an Unbiased Multivari-
ate Correlation measure, which satisfies comparability, in-
terpretability, scalability and unbiasedness. Specifically, a
statistical model of independence is employed to address the
dimensionality bias issue, providing a constant baseline and
good interpretability. The factorization property from Eq.
(5) is adopted to guarantee good scalability to high dimen-
sionality, and a tight upper bound is used for normalization
to achieve good comparability. Furthermore, an analytical
computation formula for the expected value of the condi-
tional cumulative entropy under the statistical independence
model is derived.

Statistical Model of Independence

The technique of correcting bias using a statistical model of
independence has already been successfully used in several
pairwise dependency measures, e.g, Adjusted Mutual Infor-
mation (AMI) (Vinh, Epps, and Bailey 2009) and Adjusted
Rand Index (ARI) (Hubert and Arabie 1985) in the context
of comparing two clusterings. The common statistical model
of independence they use is the permutation model (Hubert
and Arabie 1985). Herein, we adopt the same permutation
model of independence, extending it to multivariate correla-
tion measures.

Definition 1 (The permutation model of independence).
Samples are generated by permuting the n data points
{Xi(k)}nk=1 of each variable Xi in the data set D =
{Xi}di=1 independently. Let τi denote an independent ran-
dom permutation of n indices for each Xi, then Dperm =
{(X1(τ1(k)), . . . , Xd(τd(k))

)}nk=1. In other words, if D is
in a n× d dimensional matrix format and we independently
permute the elements of each column, then the distributions
of the columns (the marginal distribution of each Xi) remain
the same, but columns become independent of each other.

The expected value E0 of a correlation measure under this
model can be regarded as its “correlation-by-chance” value,
i.e., the bias, so it can be used for adjusting the measure to
achieve a constant baseline. This is the strategy we adopt for
UMC, explained below.

Definition of UMC

Based on Eq. (5), using the cumulative entropy, the tight
upper bound and the expected value under the permutation
model of independence, we obtain:

Definition 2 (Unbiased Multivariate Correlation, UMC).

UMC (D)

= max
σ∈Fd

∑d
i=2[h(Xσ(i))− h(Xσ(i)|Xσ(1), . . . , Xσ(i−1))− E0]∑d

i=2[A− E0]
(9)

where σ is an ordering of variables, A de-
notes a tight upper bound A = h(Xσ(i)) −
min({h(Xσ(i)|Xσ(1), . . . , Xσ(i−1))}di=2) and E0 rep-
resents the expected value under the permutation model
E0[h(Xσ(i))− h(Xσ(i)|Xσ(1), . . . , Xσ(i−1))].

UMC belongs to the class of maximal correlation anal-
ysis. By considering the maximum value, we aim at un-
covering the best correlation score of the variables in-
volved, and making UMC variable-order invariant. In addi-
tion, UMC possesses several important properties required
from a good multivariate correlation measure (proofs in Sup-
plementary Material B): 1) UMC (X1, . . . , Xd) is greater
than or equal to 0 on average, and attains 1 as maxi-
mum value; 2) UMC (X1, . . . , Xd) is equal to 0 on av-
erage when {X1, . . . , Xd} are statistically independent; 3)
UMC (X1, . . . , Xd) = 1 if there exists Xi such that each in
{X1, . . . , Xd}\{Xi} is a function of Xi.

According to UMC’s definition, a search is performed
over all variable orderings, i.e., d! possible ones, for the max-
imal value. However, such a search is impractical. There-
fore, we adopt the same heuristics as the UDS measure
(Nguyen, Mandros, and Vreeken 2016) by specifying an
approximation of the optimal ordering, avoiding the ex-
haustive search. More specifically, the approximate opti-
mal ordering σ∗ ∈ Fd is h(Xσ∗(1)) ≥ · · · ≥ h(Xσ∗(d)),
i.e., orders variables in descending order of cumulative
entropy value. In the following, to simplify, we will as-
sume the optimal ordering of D is {X1, . . . , Xd} satisfying
h(X1) ≥ · · · ≥ h(Xd). Since h(Xi)’s are in decreasing
order and h(Xi|X1, . . . , Xi−1) ≤ h(Xi), we can conclude
that min({h(Xi|X1, . . . , Xi−1)}di=2) is the last conditional
cumulative entropy h(Xd|X1, . . . , Xd−1). Therefore we do
not need to search for the minimum. These techniques make
UMC more computationally efficient.

Computing the Cumulative Entropy

The unconditional cumulative entropy can be calculated
in closed-form (Di Crescenzo and Longobardi 2009b). Let
Xi(1) ≤ · · · ≤ Xi(n) be the ordered data points of Xi, we
have

h(Xi) = −
n−1∑
j=1

(Xi(j + 1)−Xi(j))
j

n
log

j

n
. (10)

For computing conditional cumulative entropy, an opti-
mal correlation-aware discretization method has been pro-
posed, which does not break the correlation structures in
the data (Reshef et al. 2011), (Nguyen, Mandros, and
Vreeken 2016). The idea is as follows: since the order-
ing of variables has been fixed, firstly, we search for the
discretization of X1 that maximizes h(X2) − h(X2|X1).
Then, we fix the previous discretization of X1, and only
search for the optimal discretization of X2 that maximizes
h(X3)−h(X3|X1, X2). We follow this rationale till we ob-
tain h(Xd)−h(Xd|X1, . . . , Xd−1). Without re-discretizing
any previous variables, a substantial amount of computa-
tion time can be saved. The optimal discretization at each
step can be efficiently found by dynamic programming (see
(Reshef et al. 2011; Nguyen et al. 2014; Nguyen, Mandros,
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and Vreeken 2016) for proofs). In addition, to avoid over-
fitting, we set the minimum number of data points falling
into each bin cell to nε, with 0 < ε < 1. This guarantees
a sufficient number of points for computing the conditional
cumulative entropy, similar to the technique in (Wang et al.
2016).

Analytical Derivation of the Expected Value E0

In this section, we derive an analytical formula for
the expected value E0 under the permutation model of
independence. As shown in Eq. (9), E0 consists of
two parts: E0[h(Xi)] and E0[h(Xi|X1, . . . , Xi−1)]. Un-
der the permutation model, h(Xi) is invariant, so only
E0[h(Xi|X1, . . . , Xi−1)] needs to be computed. To sim-
plify, let X = Xi and V = {X1, . . . , Xi−1}. h(X|V ) is
computed using the m bin cells {v1, . . . , vm} obtained with
dynamic programming. Therefore,

h(X|V ) =

m∑
λ=1

h(X|vλ) |vλ|
n

, (11)

where |vλ| is the number of points in the bin cell vλ. The
expected value under the permutation model is equal to:

E0[h(X|V )] = E0

[∑m
λ=1 h(X|vλ) |vλ|

n

]
= 1

n

∑m
λ=1 |vλ|E0[h(X|vλ)],

(12)
where the conditional cumulative entropy E0[h(X|vλ)] for
each bin cell vλ is computed according to Eq. (10):

E0[h(X|vλ)] = E0

[
−

|vλ|−1∑
j=1

(X(j + 1)−X(j))
j

|vλ| log
j

|vλ|
]
.

(13)
The key task is to compute E0[X(j + 1) − X(j)]. In the
absence of any information about the distribution of X , and
considering that |vλ| is small because of the dynamic pro-
gramming optimization, it is natural to assume that X|vλ
follows a maximum entropy distribution, i.e., the uniform
distribution. Thus, if max = max(X) and min = min(X),
we get E0[X(j + 1) − X(j)] = max−min

|vλ|+1 . We estimate
the range max − min using the interquartile range IQR:
Q3 − Q1. Based on it, we propose the following approxi-
mation: E0[X(j + 1) −X(j)] ≈ 1.5(Q3−Q1)

|vλ|+1 . This approx-
imation makes the estimate more accurate when X is not
uniform. Indeed Q3−Q1

max−min = 1
2 for the uniform distribution,

and Q3−Q1
max−min ≈ 1

1 for an extremely skewed distribution.
Finally, following Eq. (13), we get

E0[h(X|vλ)] = −1.5(Q3−Q1)

|vλ|+ 1

|vλ|−1∑
j=1

j

|vλ| log
j

|vλ| =

1.5(Q3−Q1)

|vλ|+ 1

(
ζ′(−1)− ζ′(−1, |vλ|)

|vλ| +
(|vλ| − 1) log |vλ|

2

)

(14)

where ζ ′(s) is the derivative of the Riemann zeta function,
and ζ ′(s, a) is the partial derivative (Elizalde 1986) of the
generalized Riemann zeta function with respect to the first
argument (Di Crescenzo and Longobardi 2009a).

By plugging Eq. (14) into Eq. (12), we derive the expecta-
tion value E0[h(X|V )]. Eventually, we obtain the analytical
formula E0:

E0[h(X)− h(X|V )] = h(X)− 1

n

m∑
λ=1

|vλ|×

1.5(Q3−Q1)

|vλ|+ 1

(
ζ′(−1)− ζ′(−1, |vλ|)

|vλ| +
(|vλ| − 1) log |vλ|

2

)

(15)

Experiments

In this section, we empirically assess UMC. Firstly, we study
UMC’s performance on synthetic data. Secondly, we incor-
porate UMC into a state-of-the-art subspace beam search al-
gorithm (Keller, Muller, and Bohm 2012) to mine correlated
subspaces for subspace clustering and outlier detection on
real data. Our baselines are the existing multivariate correla-
tion measures: UDS (Nguyen, Mandros, and Vreeken 2016),
MAC (Nguyen et al. 2014), CMI (Nguyen et al. 2013) and
HiCS (Keller, Muller, and Bohm 2012). For each baseline,
the parameters are optimized following its respective origi-
nal paper. For UMC, we set ε = 0.3. Note that all the results
are the average of 100 trials.

Performance on Synthetic Data

Raw Score. We craft different correlations among the d
variables of each data set D = {Xi}di=1, including: (1) Rel.
A: independent variables. Each Xi is randomly and inde-
pendently sampled from [0, 1]. (2) Rel. B: identity relation-
ship. X1 is uniformly sampled from [0, 1] and Xi = X1

for all i = 2, 3, ..., d. (3) Rel. C: power law relationship.
X1 is uniformly sampled from [0, 1] and Xi = (X1)

i for
all i = 2, 3, ..., d. (4) Rel. D: sin relationship. X1 is uni-
formly sampled from [0, 1] and Xi = sin(Xi−1) for all
i = 2, 3, ..., d. We vary d ∈ [2, 20], and set n = 1000.

The results are shown in Figure 3. We did not include
CMI here, as CMI is not normalized. Figure 3 shows that
UMC has excellent interpretability, outputting 0 for inde-
pendent variables as dimensionality increases. Furthermore,
UMC outputs 1 for functional relationships as dimension-
ality varies. This is in contrast to the other measures, none
of which behaves correctly across all four cases. From this
perspective, UMC successfully addresses the dimensionality
bias issue compared to the existing measures.

Dimensionality Bias. UMC is almost unbiased, showing
almost equal probability of selecting a data set regardless of
dimensionality (more details are in the Supplementary Ma-
terial C).

Statistical Power. We test the power of the measures with
similar methodology to (Reshef et al. 2011) by adding Gaus-
sian noise within the range [0.1, 1.0]. Figure 4 reports the
results for Rel. B and Rel. C on the data set with 1000 data
points and 25 variables. The power for HiCS degenerates
very quickly because it cannot work in high dimensional
spaces (see Figure 1). UMC, UDS and CMI all make use of
the factorization property in Eq. (5), so they can cope well
with high dimensionality. UMC outperforms UDS and CMI
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Figure 3: Raw measure scores on synthetic data with differ-
ent relationships. UMC shows a flat line at 0 for (a) and flat
line at 1 for each of (b-d), which is the desired behavior. The
figure is best viewed in color.

on noisier data sets. MAC does not work well because it out-
puts a high score for independent variables, which makes it
hard to identify when there exists a real relationship.
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Figure 4: Power of the measures with regards to noise. The
higher the better. The figure is best viewed in color.

Scalability. We examine the scalability of the measures
with regards to dimensionality and data size on a PC plat-
form with Intel Core i7-3770 CPU and 32GB RAM. To
measure the running time versus the data dimensionality, we
generate data sets with 4000 data points and varying dimen-
sionality. To quantify the efficiency with regards to the data
size, we generate data sets with 20 variables and varying data
size. Figure 5 demonstrates that UMC is very computation-
ally efficient. In particular, it is even faster than UDS.

Performance on Real-World Data

We evaluate the performance of UMC on real-world data
sets involving more complex correlations, considering two
typical applications: subspace clustering and outlier detec-
tion. Due to space limitations, detailed results for the latter
task are presented in the Supplementary Material D.
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Figure 5: Runtime with varying dimensionality and data size
(Time axis is in log scale).

Subspace Clustering. (Müller et al. 2009) showed that
mining clusters from the subspaces with high correlation
usually produces more meaningful results. Thus, measuring
the correlation of a subspace is a critical aspect for subspace
clustering performance.

Following the existing literature (Müller et al. 2009), we
plug the correlation measures into a state-of-the-art sub-
space search method (Keller, Muller, and Bohm 2012) to
find highly correlated subspaces, and then evaluate the qual-
ity of these subspaces through DBSCAN (Ester et al. 1996)
clustering on the top 50 subspaces with highest measure
score. The F1 score (Müller et al. 2009) is adopted as the
performance metric to compare clustering results against the
ground truth.

We test 11 real UCI data sets2 widely used for bench-
marking in the clustering community and previous work
on correlation measures, using their class labels as ground
truth. Table 2 shows that UMC achieves the highest sub-
space quality compared to all other measures. We believe
the reason lies in the unbiasedness of UMC, which enables it
to correctly find the truly correlated subspaces, compared to
other measures that may assign inflated correlation scores.
Specifically, UDS and CMI are biased to subspaces with
higher dimensionality regardless of whether they possess
true correlations. MAC and HiCS output very close scores
for subspaces with correlations or without correlations. By
applying a Friedman test (Demšar 2006) at the 0.05 signifi-
cance level, we find that the observed differences in F1 value
are significant. Under a Wilcoxon signed rank test (Demšar
2006) with 0.05 significance level, the difference between
UMC and UDS is statistically significant.

Outlier Detection. UMC also outperforms other measures
significantly at the 0.05 significance level (see Supplemen-
tary Material D).

Conclusions

In this paper, we proposed an unbiased multivariate correla-
tion measure (UMC) fulfilling comparability, interpretabil-
ity, scalability and unbiasedness. We argued that existing
multivariate correlation measures only partially satisfy these
criteria, and we theoretically and empirically identified di-
mensionality bias issues for them. In our proposed UMC
measure, we employed a statistical model of independence,

2http://archive.ics.uci.edu/ml/index.html
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Table 2: Clustering results (F1 score) on real data

Data (n× d) UMC UDS MAC CMI HiCS
WBC (198× 33) 0.89 0.82 0.81 0.79 0.75
Shape (160× 17) 0.89 0.89 0.85 0.82 0.77
Glass (214× 9) 0.63 0.60 0.60 0.59 0.37
WBCD (569× 30) 0.82 0.77 0.74 0.58 0.60
Diabetes (768× 8) 0.84 0.79 0.52 0.71 0.53
Leaves (1600× 64) 0.81 0.70 0.61 0.52 0.45
Pendigits (7494× 16) 0.87 0.83 0.81 0.73 0.55
Waveform (5000× 40) 0.64 0.58 0.46 0.32 0.21
Optical (5620× 64) 0.67 0.61 0.48 0.40 0.36
Musk (6598× 166) 0.95 0.92 0.88 0.61 0.58
Letter (20000× 16) 0.84 0.82 0.82 0.64 0.49

i.e., the permutation model, under which an analytical for-
mula of the expected value was derived, helping UMC im-
prove interpretability and avoid dimensionality bias. Experi-
mental evaluation convincingly demonstrated that UMC out-
performs existing measures for a range of tasks.
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