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Abstract

With the advance of acquisition techniques, plentiful higher-
order tensor data sets are built up in a great variety of
fields such as computer vision, neuroscience, remote sens-
ing and recommender systems. The real-world tensors of-
ten contain missing values, which makes tensor comple-
tion become a prerequisite to utilize them. Previous stud-
ies have shown that imposing a low-rank constraint on ten-
sor completion produces impressive performances. In this
paper, we argue that low-rank constraint, albeit useful, is
not effective enough to exploit the local smooth and piece-
wise priors of visual data. We propose integrating total vari-
ation into low-rank tensor completion (LRTC) to address
the drawback. As LRTC can be formulated by both ten-
sor unfolding and tensor decomposition, we develop cor-
respondingly two methods, namely LRTC-TV-I and LRTC-
TV-II, and their iterative solvers. Extensive experimental re-
sults on color image and medical image inpainting tasks
show the effectiveness and superiority of the two methods
against state-of-the-art competitors. Our codes are available
at https://sites.google.com/site/xutaoli2014

Introduction

As a generalization of matrices and vectors, tensors refer
to multiway arrays, which are powerful to represent mul-
tidimensional data or interactions related to multiple fac-
tors (Kolda and Bader 2009). For example, a color image
(a video sequence) can be represented as a third-order ten-
sor, where the three dimensions are height, width and color
channel (time channel); similarly, magnetic resonance imag-
ing (MRI) data recording pictures of a patient under differ-
ent frequencies can be also denoted as a tensor; E-commerce
data measuring the interactions among users, items and con-
texts is another example.

Due to loss of information or unacceptable cost to ac-
quire complete data, tensors built up in real-world appli-
cations may contain missing values in their entries. Com-
pleting the values for missing entries, known as tensor com-
pletion problem, thus becomes an important research topic,
which can serve plentiful applications, for instance, image
or video inpainting (Liu et al. 2013; Yao and Kwok 2015;
Romera-Paredes and Pontil 2013; Wang, Nie, and Huang

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2014; Li et al. 2015), hyperspectral or MRI data recovery (Li
and Li 2010; Ji et al. 2016; Shang, Liu, and Cheng 2014),
context-aware recommendation (Karatzoglou et al. 2010;
Rettinger et al. 2012), among others.

Matrix completion, namely the second-order tensor com-
pletion problem, has been intensively studied in the past
decades (Candès and Recht 2009; Fazel 2002; Recht 2011;
Candès and Tao 2010). Since the problem is ill-posed with-
out any constraints, i.e., there are infinite solutions, a great
number of studies assume the matrix to complete is low-rank
and try to minimize its rank when filling in missing entries.
However, the rank minimization is unfortunately discrete,
non-convex and NP-hard. To address the challenge, nuclear
norm (trace norm) is often utilized as a surrogate of the rank
function, which is continuous, convex and easy to optimize.
In fact, it has been shown theoretically to be the tightest con-
vex approximation of a matrix’s rank (Fazel 2002). Excel-
lent performances in various domains demonstrate that low-
rank regularization with nuclear norm is very effective for
matrix completion.

Recently, low-rank constraint has also been imposed to
recover higher-order tensors from partial observations. Dif-
ferent from matrix, the rank of a tensor is not well-defined.
Theoretically, it is defined as the minimum number of rank-
1 CANDECOMP/PARAFAC (CP) decomposition compo-
nents. However, the definition is rarely used, as it is hard
to determine, or even estimate, the rank of a tensor when
adopting the definition in practice. Hence, many approaches
extend and leverage the definition of matrix’s rank for low-
rank tensor completion (LRTC). Roughly speaking, they can
be broken down into two directions. One line of methods
utilizes linear combinations of the rank of unfolded matrix
along each mode as low-rank regularization (Gandy, Recht,
and Yamada 2011; Liu et al. 2013; Signoretto et al. 2011;
Tomioka, Hayashi, and Kashima 2010; Signoretto et al.
2014), while the other line performs CP or Tucker de-
composition and try to make the decomposition factors be
low-rank (Chen, Hsu, and Liao 2014; Liu et al. 2014a;
Filipović and Jukić 2015; Zhao, Zhang, and Cichocki 2015;
Liu et al. 2014b). Previous studies have shown that the two
types of methods yield impressive performances.

In this paper, we argue that low-rank constraint, albeit
useful, is not effective enough to exploit some underlying lo-
cal structures of tensors for completion. The point is in par-
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ticular obvious for visual data inpainting. As well-known,
visual data often exhibits smooth and piecewise structures
in spatial dimension, due to objects or edges therein. With-
out special considerations on such kind of local structures,
the inpainting results may be unsatisfactory. Total varia-
tion (TV), a well-known norm to preserve piecewise smooth
prior, has been successfully applied to many image pro-
cessing applications. As complementary information for low
rankness, we propose to incorporate total variation into ten-
sor recovery such that local piecewise smooth structures can
be exploited. Specifically, if we expect a piecewise prior for
one mode, an anisotropic total variation term on that mode
is then introduced. As aforementioned, there are two ways
to formulate the low-rank regularizations. Hence, we com-
bine total variation with low-rank constraints, and examine
the performance in the two cases. The main contributions of
the paper can be summarized as follows:
• We propose to combine total variation and low-rank con-

straints for tensor completion. In particular, two methods
are developed according to different regularization formu-
lations, where one is based on tensor unfolding and the
other is on tensor decomposition.

• Two iterative solvers are derived based on alternating di-
rection method of multipliers (ADMM), which deliver the
completion results of the two methods above.

• Extensive experiments on color image inpainting and
MRI data recovery have been conducted. The results
demonstrate that the two proposed methods indeed im-
prove the recovery accuracy compared to the counterparts
with only low-rank constraints. Moreover, the method
based on tensor decomposition delivers the best perfor-
mance, and outperforms state-of-the-art competitors.

Related Work

In terms of the way to formulate low-rank regularization,
existing LRTC methods can be roughly classified into two
categories, namely tensor unfolding formulation and tensor
decomposition formulation.

Unfolding Formulation. The low-rank completion by
tensor unfolding is first introduced in (Liu et al. 2009). In
the work, they define the trace norm of a tensor as an av-
erage of all its unfolded matrices’ trace norms. Low-rank
completion is thus accomplished by minimizing the trace
norm of the recovered tensor. However, as the unfolded ma-
trix in each mode shares the same entries, their trace norms
are interdependent and the defined tensor trace norm is diffi-
cult to minimize. Hence, an auxiliary matrix is introduced in
each mode to split the interdependent terms for optimization.
In a subsequent work, two enhanced methods, i.e. FaLRTC
and HaLRTC, are developed, which result in state-of-the-
art tensor completion performance (Liu et al. 2013). It has
been shown that FaLRTC is faster than HaLRTC, but HaL-
RTC obtains higher recovery accuracy. With the unfolding
formulation, two LRTC solvers are also developed by us-
ing Douglas-Rachford splitting technique and ADMM, re-
spectively (Gandy, Recht, and Yamada 2011). In addition,
Tomioka et al. develop three relaxations to estimate low-
rank tensors, which are “tensor as a matrix”, “constraint”

and “mixture” models (Tomioka, Hayashi, and Kashima
2010). In (Signoretto et al. 2014), a general transductive
learning framework is put forward under the unfolding for-
mulation, which not only is able to complete missing values
in feature tensors, but also predict their labels.

Decomposition Formulation. There are two ways to
achieve LRTC with tensor decomposition formulation. On
the one hand, standard tensor decomposition models CP and
Tucker can be extended to handle missing data, where low-
rank is obtained by specifying tensor ranks. For example,
weighted CP models are introduced by performing decom-
position with known values only (Tomasi and Bro 2005;
Acar et al. 2011), which can predict values for missing en-
tries with the decomposition result. However, the two algo-
rithms require users to manually specify the tensor rank,
which is a challenge. To address the drawback, a fully
Bayesian tensor factorization model is developed under CP
framework (FBCP) (Zhao, Zhang, and Cichocki 2015). By
imposing a sparsity-inducing hierarchical prior on decom-
position factors, FBCP can automatically estimate the ten-
sor rank and produce state-of-the-art performance for vi-
sual data recovery. Similarly, a weighted Tucker model
(WTuker), is introduced for LRTC (Filipović and Jukić
2015). Though WTucker also needs tensor ranks as input,
numerical results manifest that good performance can be ob-
tained by overestimating the ranks.

On the other hand, trace norm constraints can be imposed
on decomposition factors of CP or Tucker for LRTC. For ex-
ample, Liu et al. introduce trace norm regularization to the
factor matrices of CP (Liu et al. 2014a). In another work,
they propose gHOI method, which puts a tensor trace norm
constraint on core tensor of higher-order orthogonal itera-
tion and develops a rank-increasing scheme for LRTC (Liu
et al. 2014b). Due to the scheme, gHOI is quite efficient.
Chen et al. develop a method called simultaneous tensor de-
composition and completion (STDC), which employs trace
norm minimization for the factors of Tucker decomposi-
tion (Chen, Hsu, and Liao 2014). Moreover, to characterize
the underlying structure between factors, a graph-Laplacian
term is also utilized in STDC. STDC has shown state-of-the-
art performance in visual data inpainting.

Tensors and TV. Although the notion of piecewise priors
has been utilized for visual tensor data in two recent stud-
ies (Shi et al. 2015; Guo and Ma 2015), our focus differs
from theirs. Shi et al. study image super-resolution instead
of inpainting (Shi et al. 2015). Guo and Ma concentrate on
developing a generalized TV-norm, which can model the in-
homogeneity and multi-directionality of visual tensors (Guo
and Ma 2015). However, our paper aims at combining TV
and low-rankness to recover visual tensors, where TV ac-
counts for local piecewise priors and low-rankness exploits
regular global patterns. In (Ji et al. 2016), a tensor recov-
ery method is proposed by considering both TV and low-
rankness. Specifically, the method performs low-rank matrix
factorizations to all-mode matricizations of the tensor, and
then imposes an isotropic TV on the factor matrices. Com-
pared with our models, the method has three drawbacks: (i)
imposing TV on factor matrices is hard to explain; (ii) the
rank of each mode needs to be specified for low-rank factor-
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izations, which is difficult; (iii) isotropic TV used is inflexi-
ble to model piecewise priors on arbitrary modes.

Low-Rank Tensor Completion with TV

In this section, we propose to incorporate total variation con-
straint for LRTC. Since LRTC can be formulated by tensor
unfolding and tensor decomposition, two TV methods will
be developed.
Method 1. Given an incomplete tensor Y ∈ RJ1×J2×···×JN

with Ω indicating the set of indices of observations, we pro-
pose the following objective function to recover it:

min
Z

λ

N∑
n=1

βn

∣∣FnZ(n)

∣∣+ 1

N

N∑
n=1

∥∥Z(n)

∥∥
∗

s.t. [Z]Ω = [Y]Ω (1)

Here tensor Z represents the recovery result; Z(n) denotes
its mode-n unfolding matrix; Fn is a (Jn − 1)-by-Jn ma-
trix, where [Fn]i,i = 1, [Fn]i,i+1 = −1 and the other
entries are zeros; the operator | · |, defined as |A| =∑

i=1

∑
j=1 |[A]i,j |, is utilized to develop our TV regular-

izer, and ‖·‖∗ denotes trace norm of a matrix, which is for
fulfilling the low-rank constraint; λ is a tunable parameter;
β1, · · · , βn is 0 or 1, which indicates whether we have a
smooth and piecewise prior on the n-th mode of recovered
tensor. The settings of β1, β2, · · · , βN are domain depen-
dent. For example, when Y is a tensor of color image, we
set β1 = β2 = 1 and β3 = 0, because only spatial dimen-
sions are expected to have smooth and piecewise priors.

The objective function in Eq. (1) comprises of two terms,
where the second term models the low-rank constraint, and
the first one stands for our TV regularizer. The TV regu-
larizer follows an anisotropic version. We adopt it for two
reasons: it is (i) easier to optimize; and (ii) more flexible to
impose piecewise smooth priors on different modes. Note,
without the TV term, our model degenerates into HaLRTC.

Because the two terms in our model share the same vari-
able Z(n), they are interdependent. Furthermore, the vari-
ables Z(1),Z(2), · · · ,Z(n) are also interdependent in that
these unfolded matrices share the same entries of tensor Z .
The interdependencies make our model difficult to optimize.
Fortunately, ADMM technique provides a splitting scheme
to cope with such type of problems. Hence, we adopt it to
develop our solver. Specifically, by introducing a set of ma-
trices {Qn}Nn=1, {Mn}Nn=1 and {Rn}Nn=1 as auxiliary vari-
ables, we split the interdependencies and rewrite the opti-
mization problem as

min
Z,{Qn,Rn,Mn}N

n=1

λ

N∑
n=1

βn |Qn|+
1

N

N∑
n=1

‖Mn‖∗

s.t. {Qn = FnRn,Mn = Z(n),Rn = Z(n)}Nn=1

[Z]Ω = [Y]Ω (2)

By using the augmented Lagrange formulation (Boyd et al.
2011), the optimization problem is changed into:

L =
N∑

n=1

βn ·
(
λ |Qn|+

ρ1
2

∥∥∥∥Qn − FnRn +
Λn

ρ1

∥∥∥∥
2

F

)

+

N∑
n=1

βn ·
(
ρ2
2

∥∥∥∥Rn − Z(n) +
Φn

ρ2

∥∥∥∥
2

F

)

+
N∑

n=1

(
1

N
‖Mn‖∗ +

ρ3
2

∥∥∥∥Mn − Z(n) +
Γn

ρ3

∥∥∥∥
2

F

)

s.t. [Z]Ω = [Y]Ω (3)

where matrices {Λn}Nn=1, {Φn}Nn=1 and {Γn}Nn=1 are La-
grange multipliers; ‖·‖F stands for Frobenius norm of a
matrix or a tensor. Next, we derive the update formulae
of {Qn}Nn=1, {Mn}Nn=1, {Rn}Nn=1 and Z to develop our
solver.

Updating {Qn}Nn=1: By keeping the other variables
fixed, the optimization problem w.r.t. {Qn}Nn=1 is given by:

min
{Qn}N

n=1

N∑
n=1

βn ·
(
λ |Qn|+

ρ1
2

∥∥∥∥Qn − FnRn +
Λn

ρ1

∥∥∥∥
2

F

)

(4)
As Q1,Q2, · · · ,QN are independent in the optimization
problem, we can easily derive the update formula of Qn as:

Qn = βn · shrinkage λ
ρ1

(
FnRn − 1

ρ1
Λn

)
(5)

where shrinkageα(·) is the elementwise shrinkage-
thresholding operator of a matrix, i.e.,

[shrinkageα(A)]i,j = [A]i,j −min(α, |[A]i,j |) ·
[A]i,j
|[A]i,j |

,

and [A]i,j
|[A]i,j | is defined as zero when [A]i,j = 0.

Updating {Mn}Nn=1: Fixing the other variables, we ob-
tain the following optimization problem w.r.t. {Mn}Nn=1:

min
{Mn}N

n=1

N∑
n=1

1

N
‖Mn‖∗ +

ρ3
2

∥∥∥∥Mn − Z(n) +
Γn

ρ3

∥∥∥∥
2

F

(6)

Optimizing the problem leads to the solution of Mn as:

Mn = D 1
N·ρ3

(
Z(n) −

1

ρ3
Γn

)
(7)

where Dα(A) = U(diag{δ − α})+VT is a singular
value thresholding operator, the SVD of A is denoted by
U(diag({δi}0≤i≤rank(A)))V

T , and t+ = max(0, t).
Updating {Rn}Nn=1: By keeping the other variables

fixed, the optimization problem w.r.t. {Rn}Nn=1 is given by:

min
{Rn}N

n=1

N∑
n=1

βn
ρ1
2

∥∥∥∥Qn − FnRn +
Λn

ρ1

∥∥∥∥
2

F

+

N∑
n=1

βn
ρ2
2

∥∥∥∥Rn − Z(n) +
Φn

ρ2

∥∥∥∥
2

F

(8)

Hence, the following update formula is derived by solving
the minimization problem:

Rn = βn(ρ1F
T
nFn + ρ2I)

−1

(FT
nΛn + ρ1F

T
nQn + ρ2Z(n) −Φn) (9)
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where I stands for the identify matrix.
Updating Z: Similarly, the optimization problem w.r.t. Z

is:

min
Z

N∑
n=1

βn ·
(

ρ2

2

∥∥∥Rn − Z(n) +
Φn

ρ2

∥∥∥2

F

)

+

N∑
n=1

ρ3

2

∥∥∥Mn − Z(n) +
Γn

ρ3

∥∥∥2

F

(10)

s.t. [Z]Ω = [Y]Ω

The update formulae of Z are computed as:

[Z]Ω̄ =

[∑N

n=1
(foldn(Γn + ρ3Mn) + foldn(Φn + ρ2Rn))

(Nρ3 +
∑N

n=1
βnρ2)

]
Ω̄

and

[Z]Ω = [Y]Ω . (11)

Here foldn(·) denotes the opposite operation of mode-n un-
folding of a tensor, i.e., foldn(A(n)) = A.

With these update formulae, we summarize the solver of
method 1, namely LRTC-TV-I, in Algorithm 1. The solver
is an iterative algorithm under ADMM framework. In line
3, the auxiliary matrices {Qn}Nn=1, {Mn}Nn=1, {Rn}Nn=1
and target output variable Z are updated according to our
derivations. In lines 4∼6, we renew the Lagrange multipli-
ers Λn, Φn and Mn as the standard ADMM. {ρi}3i=1 are
adaptively increased in line 7 for a better speed of con-
vergence (Lin, Chen, and Ma 2009). The main computa-
tional costs of LRTC-TV-I lie at updates of {Mn}Nn=1 as
Eq. (7), which needs perform SVD on a matrix of size Jn-
by-ΠN

i�=nJi. Hence, the time complexity of LRTC-TV-I is
O(K(

∑N
n=1(Jn)

2(ΠN
i�=nJi) + (ΠN

i�=nJi)
3)).

Algorithm 1: LRTC-TV-I

input : an incomplete tensor Y , iteration number K,
parameters λ, {ρi}3i=1 and μ ∈ [1.1, 1.5]

output: a recovery tensor Z
1 Set [Z]Ω = [Y]Ω, [Z]Ω̄ = 0, and randomly initialize

{Qn}Nn=1, {Rn}Nn=1 and {Mn}Nn=1;
2 for k = 1 to K do

3 Update {Qn}Nn=1, {Mn}Nn=1, {Rn}Nn=1 and Z as
Eqs. (5), (7), (9), (11);

4 Λn = Λn + ρ1(Qn − FnRn);
(n = 1, 2, · · · , N)5 Φn = Φn + ρ2(Rn − Z(n));
(n = 1, 2, · · · , N)6 Γn = Γn + ρ3(Mn − Z(n));
(n = 1, 2, · · · , N)7 ρ1 = μρ1, ρ2 = μρ2 and
ρ3 = μρ3;

8 return Z .

Method 2. In this method, given an incomplete tensor Y ,
we consider incorporating TV regularization into tensor de-
composition for LRTC. Specifically, the following objective
function is proposed and designed:

min
Z,G,

{U(n)}N
n=1

λ1

N∑
n=1

βn

∣∣FnZ(n)

∣∣+ 1

N

N∑
n=1

∥∥U(n)
∥∥
∗ + λ2 ‖G‖2F

s.t. Z = G ×1 U
(1) ×2 U

(2) · · · ×N U(N)

[Z]Ω = [Y]Ω (12)

In Eq. (12), we perform Tucker decomposition for Z and
Z = G ×1 U(1) ×2 U(2) · · · ×N U(N), where G ∈
RJ1×J2×···×JN is the core tensor, and {U(n)}Nn=1 denote
the decomposition factors whose sizes are Jn-by-Jn (n =
1, 2, · · · , N ). We choose Tucker, instead of CP decomposi-
tion, because Tucker is a more general model and CP can be
regarded as one of its special instantiations.

Our objective function in Eq. (12) comprises of three
terms. Similar to method 1, the first term still denotes TV-
regularization on the recovered tensor Z . Instead of impos-
ing low-rank constraints on the unfolded matrices of tensor
Z , we expect its Tucker decomposition factors to be low-
rank, which is expressed by the second term in Eq. (12).
The last term is utilized to avoid overfitting. If we remove
the TV term, our mode degenerates into STDC, but with the
difference that the reduced model does not have a graph-
Laplacian regularizer on factor matrices. Again, because the
three terms in Eq. (12) are interdependent, we adopt ADMM
for optimization. In particular, we introduce a set of matrices
{Qn}Nn=1, {Rn}Nn=1 and {V(n)}Nn=1 as auxiliary variables,
and change the optimization problem into:

minλ1

N∑
n=1

βn

∣∣Q(n)

∣∣+ 1

N

N∑
n=1

∥∥∥U(n)
∥∥∥
∗
+ λ2 ‖G‖2F

s.t. {Qn = FnRn,Rn = Z(n),V
(n) = U(n)}Nn=1

Z = G ×1 V
(1) ×2 V

(2) · · · ×N V(N)

[Z]Ω = [Y]Ω (13)

By using the augmented Lagrange formulation, the follow-
ing optimization problem is obtained:

L =

N∑
n=1

βn ·
(
λ1 |Qn|+

ρ1
2

∥∥∥∥Qn − FnRn +
Λn

ρ1

∥∥∥∥
2

F

)

+
N∑

n=1

βn ·
(
ρ2
2

∥∥∥∥Rn − Z(n) +
Φn

ρ2

∥∥∥∥
2

F

)

+
1

N

N∑
n=1

∥∥∥U(n)
∥∥∥
∗
+

N∑
n=1

ρ3
2

∥∥∥∥V(n) −U(n) +
Γn

ρ3

∥∥∥∥
2

F

+λ2 ‖G‖2F +
ρ4
2

∥∥∥∥Z − G ×1 V
(1) · · · ×N V(N) +

W
ρ4

∥∥∥∥
2

F

s.t. [Z]Ω = [Y]Ω (14)

Here matrices {Λn}Nn=1, {Φn}Nn=1, {Γn}Nn=1 and tensor W
are Lagrange multipliers. Next, we present some update for-
mulae to finalize the solver of method 2, which are derived
in the same way as in method 1.
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Updating Formulae: It is easy to check that {Qn}Nn=1
and {Rn}Nn=1 are still updated as Eqs. (5) and (9), respec-
tively. The formulae of {U(n)}Nn=1, {V(n)}Nn=1, Z and G
are given by:

U(n) = D 1
Nρ3

(
V(n) +

1

ρ3
Γn

)
(15)

V(n) =
(
−Γn + ρ3U

(n) + (W(n) + ρ4Z(n))V
(−n)GT

(n)

)
(
ρ3I+ ρ4G(n)V

(−n)TV(−n)GT
(n)

)−1

(16)

[Z]Ω̄ =

⎡
⎢⎢⎣

N∑
n=1

βn (−foldn(Φn + ρ2Rn))−W + ρ4T∑N

n=1
βnρ2 + ρ4

⎤
⎥⎥⎦

Ω̄

(17)

vec(G) =
[
V(−n)TV(−n) ⊗ ρ4V

(n)TV(n) + λ2I
]−1

vec
(
V(n)T (W(n) + ρ4Z(n))V

(−n)
)

(18)

where V(−n) = V(1) ⊗V(2) · · · ⊗V(n−1) ⊗V(n+1) · · · ⊗
V(N), ⊗ is the Kronecker product, in Eq. (17) T = G ×1

V(1) ×2 V
(2) · · · ×N V(N), and vec(G) in Eq. (18) denotes

the vectorization of tensor G, which can be reformed into
tensor G after the calculation.

With the update formulae, we can adapt the algorithm
1 to develop the solver of method 2, namely LRTC-TV-
II. Specifically, LRTC-TV-II can be obtained by replac-
ing the update formulae in line 3 with Eqs. (5), (9), (15),
(16), (17) and (18), and the updates of Lagrange multi-
pliers in line 6 with Γn = Γn + ρ3(V

(n) − U(n)) and
W = W + ρ4(Z − G ×1 V(1) · · · ×n V(n)). Moreover,
we add one more equation ρ4 = μρ4 in line 7. The compu-
tational bottlenecks of LRTC-TV-II are updates as Eq. (18),
which needs compute the inverse of a matrix. Hence, its time
complexity is given by O(K(ΠN

i=1Ji)
3). Due to the space

limitation, we do not present the algorithm of LRTC-TV-II.

Experiments
In this section, we present extensive experimental results to
examine the performance of the two proposed methods. Two
inpainting tasks are considered, where one is to complete
RGB-color images from partial observations, and the other
is to recover MRI medical images. The HaLRTC, FBCP,
WTucker, gHOI and STDC are utilized as baseline meth-
ods. The experimental results are evaluated by the relative
squared error (RSE) and peak signal-to-noise ratio (PSNR),
which are widely used in the tensor-completion and visual
data inpainting tasks. The two metrics are defined as:

RSE =
‖Z − Ztrue‖F

‖Ztrue‖F
(19)

PSNR = 10 log10
Ẑ2
true

1
ΠN

n=1Jn
‖Z − Ztrue‖2F

(20)

where Z , Ztrue and Ẑtrue represent the recovered tensor,
ground-truth tensor, and the maximum value in the ground-
truth tensor, respectively. Smaller RSE and larger PSNR in-
dicate better recovery performance.

Figure 1: Ground truth of eight benchmark color images.
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Figure 2: Results on color image inpainting.

Parameter Settings. In both inpainting tasks, tensors of
third order are considered, whose first two modes stand for
spatial dimensions and third mode denotes channel informa-
tion. Hence, we set β1 = β2 = 1 and β3 = 0 for LRTC-TV-I
and LRTC-TV-II in both tasks. In LRTC-TV-I, the parame-
ter λ is set to be 2.0×10−2. In LRTC-TV-II, we utilize λ1 =
5.0 × 10−1 and λ2 = 1.0 × 103. For both methods, we set
K = 300, μ = 1.1 and ρ1 = ρ2 = ρ3(= ρ4) = 1.0× 10−2.
The parameters of baseline approaches are specified opti-
mally by following the papers in which these approaches
were developed and proposed.

Color Image Inpainting

We show in Figure 1 the ground-truth of eight images used
for the experiment. Each image is with the resolution of 256-
by-256 pixels and three color channels, which thus can be
represented as a 256-by-256-by-3 tensor. To test the inpaint-
ing performance, we mask off 60%, 65%, 70%, 75%, 80%,
85%, 90% and 95% of entries in each image randomly, and
regard them as missing values. The remaining points, mak-
ing up the incomplete tensor Y , are leveraged to recover the
original tensor. We record the RSE and PSNR of the eight
images, and compute their averages respectively as final re-
sults.

Figure 2 presents the performance of all the methods. The
following three observations can be made from the figure.
First, the proposed method LRTC-TV-II performs the best
among all the approaches, including LRTC-TV-I. The obser-
vation demonstrates that incorporating TV into tensor com-
pletion is helpful; and a tensor decomposition based non-
convex formulation (LRTC-TV-II) works better than an un-
folding based convex formulation (LRTC-TV-I), especially
for sparse observations, which is in accordance with the
theoretical result that nonconvex recovery formulations of-
ten require fewer observations than convex ones (Oymak et
al. 2015). Second, LRTC-TV-I produces better results than
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Figure 3: Visual effect comparison of different methods on color image inpainting. From top to bottom, each row denotes the
results of different methods on barbara and house with missing rates being 90% and 95%, respectively.
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Figure 4: Results on MRI medial data recovery.

all the other algorithms with only one exception, namely
FBCP. The performance of LRTV-TV-I is first superior to
that of FBCP and then becomes inferior when we increase
the missing rate. This is because LRTV-TV-I fulfills the low-
rank constraints under unfolding formulation, which may
be less effective to characterize the low-rank structure than
decomposition formulation when the observations are ex-
tremely sparse (Chen, Hsu, and Liao 2014). Third, WTucker
and gHOI perform the worst. For WTucker, it overestimates
the tensor ranks and does not really impose low-rank con-
straints. The gHOI utilizes a rank increasing scheme for bet-
ter efficiency, which may hurt the accuracy when observa-
tions are very sparse.

To make a further investigation and comparison, we vi-
sualize the recovered results of some examples in Figure 3.
We can see that the visual effects of WTucker and gHOI
are unsatisfactory when the missing rate is at 90% or 95%.
HaLRTC can roughly recover the images. However, the ob-
jects in the original images are not well-inpainted. More-
over, the recovered images are nonsmooth, which contain
vertical or horizontal noisy lines. This is because HaLRTC
neglects the local smooth and piecewise property of visual
data. LRTC-TV-I, as an enhanced model of HaLRTC with

TV-regularization, obtains more clear objects and smoother
pictures. STDC can basically recover the images, while the
results contain many isolated noisy points, especially when
the missing rate is at 95%. The reason may be that STDC
builds a big graph to model the underlying interactions be-
tween its decomposition factors. However, the graph con-
struction relies on the completion result of HaLRTC, which
can be less qualified as we observe. FBCP delivers good vi-
sual effects but with minor blurring parts. Its good perfor-
mance is in that FBCP automatically estimates the rank of
a tensor. However, as we will see in next section, its perfor-
mance can be pretty bad when applied to MRI data recov-
ery. LRTC-TV-II yields the best visual effects among all the
methods. The inpainting results are smooth and with well-
depicted edges of objects. The excellent performance is at-
tributed to the TV constraints imposed on the recovered ten-
sors.

MRI Medical Data Recovery

In this experiment, we aim to test the performance of dif-
ferent approaches on MRI medical image inpainting task.
The BRAINIX data set1 is utilized, and we build a 288-by-
288-by-22 tensor. Again, we randomly remove 60%, 65%,
70%, 75%, 80%, 85%, 90% and 95% points in the tensor
as missing values. Figure 4 shows the performance of dif-
ferent approaches. We can see that LRTC-TV-II performs
the best, followed by LRTC-TV-I. The result demonstrates
the superiority of TV constraints for LRTC. Though STDC
produces competitive performance against LRTC-TV-I, its
performance becomes much worse when the missing rate is
at 95%. Surprisingly, FBCP, performing quite well for color
image recovery, fails to deliver good results on this task. The
reason may lie at the size difference of tensors in the two
tasks. MRI tensor is much larger than color image tensor,

1http://www.osirix-viewer.com/datasets/
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especially for the third mode. Large tensors may pose FBCP
difficulties in accurately estimating the true ranks. Hence,
the recovery performance degrades significantly.

Concluding Remarks

In this paper, we propose to integrate TV into LRTC for
modeling the local smooth and piecewise priors of visual
data. Because LRTC can be formulated by tensor unfolding
and tensor decomposition, two methods, namely LRTC-TV-
II and LRTC-TV-I, are developed. We derive their solvers
under the ADMM framework. Extensive experimental re-
sults have demonstrated the superiority of the proposed
methods over state-of-the-art techniques.
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