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Abstract

Partial label learning aims to induce a multi-class classifier
from training examples where each of them is associated
with a set of candidate labels, among which only one la-
bel is valid. The common discriminative solution to learn
from partial label examples assumes one parametric model
for each class label, whose predictions are aggregated to op-
timize specific objectives such as likelihood or margin over
the training examples. Nonetheless, existing discriminative
approaches treat the predictions from all parametric models
in an equal manner, where the confidence of each candidate
label being the ground-truth label is not differentiated. In this
paper, a boosting-style partial label learning approach is pro-
posed to enabling confidence-rated discriminative modeling.
Specifically, the ground-truth confidence of each candidate
label is maintained in each boosting round and utilized to
train the base classifier. Extensive experiments on artificial
as well as real-world partial label data sets validate the effec-
tiveness of the confidence-rated discriminative modeling.

Introduction

Partial label learning deals with the problem where each
training example is associated with a set of candidate labels,
among which only one label corresponds to the ground-truth
one (Cour, Sapp, and Taskar 2011; Zhang 2014). Formally,
let X = R? denote the d-dimensional instance space and
Y ={y1,y2,...,yq} denote the label space consisting of ¢
class labels. The task of partial label learning is to induce a
multi-class classifier f : X — ) from the partial label train-
ingset D = {(x;,S;) | 1 <i < m}. Here, x; € X isa
d-dimensional feature vector and S; C ) is the set of candi-
date labels associated with ;. Particularly, the ground-truth
label y; for x; is confined within S; but not directly accessi-
ble to the learning algorithm.

The need of partial label learning arises in a number of
real-world scenarios where only weak labeling information
can be acquired during training data collection, such as auto-
matic face naming (Cour et al. 2009; Zeng et al. 2013), web
mining (Jie and Orabona 2010), ecoinformatics (Liu and Di-
etterich 2012), etc. In some literature, partial label learning
is also termed as ambiguous label learning (Hiillermeier and
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Beringer 2006; Chen et al. 2014) or superset label learning
(Liu and Dietterich 2014).

To learn from partial label examples, the common dis-
criminative solution is to assume one parametric model
g(y; | x;0) for each class label y;, whose modeling out-
puts are aggregated to optimize specific objectives such as
likelihood or margin over the training examples (Jin and
Ghahramani 2003; Nguyen and Caruana 2008; Cour, Sapp,
and Taskar 2011; Liu and Dietterich 2012; Chen et al. 2014,
Yu and Zhang 2016). Existing discriminative approaches
conduct aggregation by treating the modeling outputs from
all parametric models in an equal manner, where the confi-
dence of each candidate label being the ground-truth label is
not differentiated. This strategy might be suboptimal as each
candidate label should contribute differently to the learning
process, especially the contribution from the ground-truth
label (i.e. y;) against those from the false positive labels (i.e.
Si \ {v:}) (Zhang, Zhou, and Liu 2016).

To overcome the potential drawback of existing strategy,
a novel partial label learning approach named CORD, i.e.
COnfidence-Rated Discriminative partial label learning, is
proposed in this paper. CORD learns from partial label exam-
ples by adapting the popular boosting techniques, where the
weights over training examples and the ground-truth con-
fidences of candidate labels are maintained in each boost-
ing round. Accordingly, the discriminative base classifier
is trained by utilizing the currently-available weight and
ground-truth confidence information. Empirical studies on a
broad range of controlled UCI data sets and real-world par-
tial label data sets clearly verify the effectiveness of the pro-
posed confidence-rated discriminative learning approach.

We start the rest of this paper by briefly reviewing related
work on partial label learning. Then, we present technical
details of the proposed CORD approach and report experi-
mental results of the comparative studies. Finally, we con-
clude the paper and indicate future research issues.

Related Work

In partial label learning, the labeling information conveyed
by the training examples is weak as the ground-truth la-
bel is not accessible to the learning algorithm. It is worth
noting that partial label learning is related to other well-
studied weakly-supervised learning frameworks including
semi-supervised learning (Zhu and Goldberg 2009), multi-



instance learning (Amores 2013) and multi-label learning
(Zhang and Zhou 2014), while the weak supervision scenar-
ios to be dealt with are different.

Semi-supervised learning aims to induce a classifier f :
X +— ) from a few labeled examples along with abundant
unlabeled examples, where the ground-truth label assumes
the whole label space for unlabeled example while the candi-
date label set for partial label example. Multi-instance learn-
ing aims to induce a classifier f : 2% +» Y from train-
ing examples each represented by a bag of instances, where
the label is assigned at the bag level for multi-instance ex-
ample while at the instance level for partial label example.
Multi-label learning aims to induce a classifier f : X+ 2Y
from examples each associated with multiple labels, where
the associated labels are all valid ones for multi-label exam-
ple while only candidate ones for partial label example.

Discriminative modeling is the most common solution
to learn from partial label examples, where one paramet-
ric model g(y; | @;0) is assumed for each class label
y; (1 < j < q). Correspondingly, model parameters are
trained by optimizing specific objectives J(D;0) over the
training examples. One popular instantiation of the objective
function is to aggregate the modeling output of each para-
metric model via the maximum likelihood criterion (Jin and
Ghahramani 2003; Liu and Dietterich 2012):

q
Zlog Z (y; €8i)-9g(y; | x;0) | (1)
Jj=1

Here, I(-) corresponds to the indicator function. It is obvi-
ous that maximizing J(D, @) is equivalent to maximizing
the following objective function:

J(D,6) Zlog Z|S| g(y; | x:;6)

Y; €S

(@)

As shown in Eq.(2), modeling outputs of the parametric
models contribute equally to the objective function, i.e. with
uniform weight ﬁ over each candidate label.

Another popular instantiation of the objective function is
to aggregate the modeling output of each parametric model
via the maximum margin criterion, such as (Cour, Sapp, and
Taskar 2011; Zhang, Zhou, and Liu 2016):

):Z Z|z| yj|wlv)

i=1 \y,;E€S;

J(D,0

—_

>

k€S

or (Nguyen and Caruana 2008; Yu and Zhang 2016):

9(yr | 4 6) (3)
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J(D,0) = Zl (max |S | 9(y; | x:;0)—
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Here, S; corresponds to the complementary set of .S; in ).
As shown in Eq.(3) and Eq.(4), modeling outputs of the
parametric models also contribute equally to the objective
function, i.e. with uniform weight ‘S—ll over each candidate

label.

In other words, for either maximum likelihood or maxi-
mum margin instantiation, the confidence of each candidate
label being the ground-truth label is not differentiated. In
the next section, a novel partial label learning approach will
be introduced. Different from existing discriminative par-
tial label learning approaches, the ground-truth confidence
of each candidate label is estimated and utilized to facilitate
the learning procedure.

The CORD Approach

Boosting is one of the widely-used machine learning tech-
niques, which builds learning system with strong generaliza-
tion ability by iteratively combining multiple weak learners.
CORD learns from partial label examples by adapting the
general boosting procedure, where in each boosting round
the weights over training examples as well as ground-truth
confidences of candidate labels are maintained simultane-
ously.

Given the partial label training set D {(x,S:) |
1 < i < m}, in the t-th boosting round, let w®) =
[ ) ) (t)}

Wy Wy yenny

be the weight vector over training ex-
[p ]qu be the confidence matrix over
candidate labels respectively. Specifically, w® and P®) sat-
> 0 and pl(-;) >0,

as Well as the normalization constraints: y ;- wgt) = 1land

t
j= 1p57) L

To train the base classifier g(y|x;0)) in the t-th
boosting round, CORD chooses to maximize the following
confidence-rated objective function:

amples, and P(*

isfy the non-negativity constraints: wgt

J(D,0Y) =
Z wlog [ > p - gy; [2:67) ] )
Y €Si
As shown in Eq.(5), the modeling output g(y; | x;;0®") of

each candidate label is weighted by pl(-t-), i.e. the confidence
of y; being the ground-truth label of x;. In this way, the
ground-truth confidence of each candidate label is utilized
to train the base classifier, reflecting the fact that different
candidate labels should contribute differently to the learning
process.

As per canonical boosting procedure, the empirical per-
formance of the trained base classifier is evaluated as the
classification accuracy over the (weighted) training exam-
ples. Nonetheless, for partial label learning, the performance
of base classifier cannot be evaluated in this way as the
ground-truth label of each training example is not directly
accessible. In this paper, CORD makes use of the predictive
difference between the maximum output of candidate and



Table 1: The pseudo-code of CORD.

Inputs:
D:  the partial label training set {(x;, S;) | 1 < i < m}
(@i € X,5, CYV,X=RLY ={y1,92,...,Yq})
B: the confidence updating parameter
T:  the maximum number of boosting rounds
x*: the unseen instance (x* € X))
Outputs:
y*:  the predicted label for x*
Process:
1: Initialize the weight vector w®) as: wgl) = L (Vi €
{1,...,m});
2: Initialize the confidence matrix P(*) as: pl(.;.) =7 ;‘ I(y; €

S;) (Vie{l,...,m}, je{1,...
3: fort =1to T do

4:  Train the base classifier g(y | «; 0(t>) by maximizing the
confidence-rated objective function in Eq.(5);

5:  Evaluate the performance of current base classifier
g(y | ; 8Y) according to Eq.(6);

1 q})s

Set o according to Eq.(8);
Update wY and PUHY according to Eq.(7) and Eq.(9)
respectively;

8: end for

9: return y* = argmaxyey Y., o'V - g(y | z*;0M).

non-candidate labels for performance evaluation (Nguyen
and Caruana 2008; Yu and Zhang 2016):

r® = Z wgt) : %—(t) where
i=1

(®)

o — max g(yx | z;;0%)  (6)

= max g(y; | z;;0")
S YLES;

Y; €S

Accordingly, the weight vector w(**1) for the next boost-
ing round is updated as:

w® - exp (704@)%(0)
Z(+1)

)

Vie{l,...,m}: wgtﬂ) =

Here, o) corresponds to the coefficient of the ¢-th boosting
round to be used for classifier combination:'

1 1 14+r®
2 i) 1—r®
and Z+1 corresponds to the normalization constant ensur-

ing that "7, w{"™ = 1.
In addition, the confidence matrix P(*1 for the next

a®) =

®)

!'Similar to canonical boosting procedure, the boosting rounds
of CORD terminate if o¥ < 0.
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boosting round is updated as:
Vie{l,...,m}, je{1,...

P - exp (ﬁ -1 (yj
REH_D

N

)

arggg}gfg(y | z:;0')

2y where

9

Here, 6 > 0 is the confidence updating parameter and ygt) is
the candidate label of x; which has the largest modeling out-

put at the ¢-th boosting round. Similarly, RZ(HD corresponds

to the normalization constant ensuring that 23:1 pg,“) =

1. In this way, the ground-truth confidence for the candidate

label which coincides with y@

;7 will be increased.

Table 1 summarizes the boosting procedure of CORD.?
Given the partial label training set, CORD initializes uniform
weight over each training example and identical ground-

truth confidence (i.e. ﬁ) for each candidate label of the

training example (Steps 1-2). Then, in each boosting round
the base classifier is trained w.r.t confidence-rated objective
function (Step 4), the performance and coefficient for the
base classifier are evaluated (Steps 5-6), and the weight vec-
tor and confidence matrix are updated accordingly (Step 7).
Finally, the prediction on unseen instance is made by con-
sulting the combined outputs of all base classifiers.

y"

Experiments
Comparing Algorithms
In this paper, the effectiveness of CORD is evaluated against

several state-of-the-art partial label learning algorithms,
each configured with suggested parameters in the literature:

e CLPL (Cour, Sapp, and Taskar 2011): A convex optimiza-
tion approach which learns from partial label examples by
degenerating to binary classification problem [suggested
configuration: SVM with squared hinge loss];

e PL-KNN (Hiillermeier and Beringer 2006): A k-nearest
neighbor approach which learns from partial label exam-
ples by reasoning with the labeling information of neigh-
boring examples [suggested configuration: & = 10];

e PL-SVM (Nguyen and Caruana 2008): A maximum-
margin approach which learns from partial label examples
by regularizing margin-based objective function [sug-
gested configuration: regularization parameter pool with
{1073,...,10%}];

e LsB-CcMM (Liu and Dietterich 2012): A maximum-
likelihood approach which learns from partial label ex-
amples by maximizing mixture-based likelihood function
[suggested configuration: ¢ mixture components].

As shown in Table 1, the proposed CORD approach em-
ploys two parameters § and T for iterative training. In this
paper, the confidence updating parameter /3 is set to be 0.5

2Code package for CORD is publicly-available at: http://cse.seu.
edu.cn/PersonalPage/zhangml/Resources.htm#aaail7

3Preliminary experiments show that CORD performs stably
with § taking values within [0.1, 1].
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Figure 1: Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples) increases

(with one false positive candidate label [r = 1]).

Table 2: Characteristics of the controlled UCI data sets.

Data Set | #Examples | #Features | #Class Labels
Deter 358 23 6
Vehicle 846 18 4
Segment 2,310 18 7
Usps 9,298 256 10
Pendigits 10,992 16 10
Letter 20,000 16 26
Configurations
O r=1,pe€{0.1,0.2,...,0.7}
@m r=2,pe{0.1,0.2,...,0.7}

(I r = 3,p € {0.1,0.2,...,0.7}
MV)p=1,r=1,e€{0.1,0.2,...,0.7}

and the maximum boosting rounds 7' is set to be 10. Further-
more, maximum entropy model (Jin and Ghahramani 2003;
Della Pietra, Della Pietra, and Lafferty 1997) is employed
to serve as the base classifier which is trained with gradient-
based optimization (Table 1, Step 4).

Two series of comparative studies are conducted among
the comparing algorithms, with one series on controlled UCI
data sets (Bache and Lichman 2013) and another series on
real-world partial label data sets. Ten-fold cross-validation
is performed on each data set, and the mean predictive accu-
racies (as well as the standard deviations) of all comparing
algorithms are reported in the rest of this section.
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Table 3: Win/tie/loss counts (pairwise ¢-test at 0.05 signif-
icance level) on the classification performance of CORD
against each comparing algorithm.

CORD against

CLPL PL-KNN  PL-SVM  LSB-CMM
varying p [r=1] 38/4/0  10/11/21 28/717 18/20/4
varying p [r=2] 32/10/0  12/9/21 28/717 18/21/3
varying p [r=3] 33/9/0 14/7/21 28/717 23/15/4
varying € [p,r=1]  32/10/0  17/7/18 30/5/7 29/12/1

In Total 135/33/0 53/34/81 114/26/28 88/68/12

Controlled UCI Data Sets

Table 2 summarizes the characteristics of controlled UCI
data sets. Specifically, an artificial partial label data set is
generated from one multi-class UCI data set under speci-
fied configuration of three controlling parameters p, r and
€ (Cour, Sapp, and Taskar 2011; Chen et al. 2014; Liu and
Dietterich 2012; Zhang, Zhou, and Liu 2016). Here, p con-
trols the proportion of examples being partially labeled (i.e.
|Si| > 1), r controls the number of false positive candidate
labels (i.e. |S;| = r + 1), and € controls the co-occurring
probability between the ground-truth label and one coupling
candidate label. As shown in Table 2, a total of 28 (4x7)
controlling parameter configurations are specified here.
Figure 1 illustrates the classification accuracy of each
comparing algorithm as p increases from 0.1 to 0.7 with
step-size 0.1 (r = 1). Along with the ground-truth label, one
class label in ) will be randomly chosen to constitute the



1.10 T 0. 1.0°
—=— C'orD —=&— (C'orD —=— Corb
<4 CLpL < CLPL <4 CLpL
104 PL-KNN 0.87 PL-KNN PL-KNN
g —— PL-svat g —— PL-sval ——PL-svi
H -3 Lsp-CaM g --%-= LSB-CMM -3 LsB-CAMM
< 0.8 £ 079 e
© @ W AR . ————a
2 8 P S R s g % o y’*
5 E > T =
£ 092 Lom et
< g .
0.86 0.63 ’ *
PR
< e
0.80 0.5 0.7 ¢ ]
0.1 0.2 03 0.4 05 0.6 0.7 0.1 0.2 0.3 0.4 05 0.6 0.7 0.1 0.2 03 0.4 05 0.6 0.7
¢ (co-occurring probability of the coupling label) ¢ (co-occurring probability of the coupling label) ¢ (co-occurring probability of the coupling label)
(a) Deter (b) Vehicle (c) Segment
1.04 - 1. 1.
—=&— C'orD —=— ('ORI —8— CoRD
e O, 4 CLpt g CLPL
_ 100 PL-KNN _ 110 PL-KNN PL-KNN
g —¥—PL-svM g —o—Pr-sva —¥—PL-sv
z --3= Lsi-CMM z =% Lsp-cun -3 Lsp-calM
£ 096 < 100
g g
E S E
Z09 g E
< S < =
0.88) « « - B
g
0.84 0. 0.
0.1 0.2 03 0.4 05 0.6 0.7 0.1 0.2 0.3 0.4 05 0.6 0.7 0.1 0.2 03 0.4 05 0.6 0.7
¢ (co-oceurring probability of the coupling label) ¢ (co-occurring probability of the coupling label) ¢ (co-occurring probability of the coupling label)
(d) Usps (e) Pendigits (f) Letter

Figure 2: Classification accuracy of each comparing algorithm changes as e (co-occurring probability of the coupling label)

increases from 0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one false positive candidate label [r = 1]).

Table 4: Characteristic of the real-world partial label data sets.

Data Set #Examples | #Features | #Class Labels | avg. #CLs Task Domain
Lost 1,122 108 16 2.23 automatic face naming (Cour, Sapp, and Taskar 2011)
MSRCv2 1,758 48 23 3.16 object classification (Liu and Dietterich 2012)
BirdSong 4,998 38 13 2.18 bird song classification (Briggs, Fern, and Raich 2012)
Soccer Player 17,472 279 171 2.09 automatic face naming (Zeng et al. 2013)
Yahoo! News 22,991 163 219 191 automatic face naming (Guillaumin, Verbeek, and Schmid 2010)

candidate label set of each partially labeled example. Due
to page limit, figures for the cases of r = 2 and r = 3 are
not illustrated here, while similar results to Figure 1 can be
observed as well. Figure 2 illustrates the classification ac-
curacy of each comparing algorithm as € increases from 0.1
to 0.7 with step-size 0.1 (p = 1,7 = 1). Given the ground-
truth label y € ), another label ' € ) designated as the
coupling label will co-occur with y in the candidate label set
with probability e.

As shown in Figures 1 to 2, CORD performs favorably
against the comparing algorithms in most cases. Further-
more, Table 3 reports the win/tie/loss counts between CORD
and each comparing algorithm based on pairwise t-test at
0.05 significance level.

Out of the 168 statistical tests (28 configurations x 6 UCI
data sets), it is shown that: 1) CORD achieves superior or
at least comparable performance against CLPL in all cases;
2) CORD achieves superior performance against PL-KNN
in 31.5% cases while has been outperformed by PL-KNN
in 49.7% cases; 3) CORD achieves superior performance
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against PL-SVM and LSB-CMM in 67.8% and 52.3% cases
and has been outperformed by them in only 16.7% and 7.1%
cases. Generally, CORD is highly competitive to the com-
paring algorithms w.r.t. controlled UCI data sets, especially
performs favorably against the discriminative partial label
learning counterparts CLPL, PL-SVM and LSB-CMM.

Real-world Data Sets

Table 4 summarizes the characteristics of real-world par-
tial label data sets, which have been collected from several
task domains.* For Lost (Cour, Sapp, and Taskar 2011),
Soccer Player (Zengetal. 2013) and Yahoo! News
(Guillaumin, Verbeek, and Schmid 2010) from the task of
automatic face naming, faces cropped from an image or a
video frame are represented as instances while names ex-
tracted from the associated image captions or video subti-
tles are regarded as candidate labels. For MSRCv2 (Liu and

“These data sets are publicly-available at: http://cse.seu.edu.cn/
PersonalPage/zhangml/Resources.htm#partial_data



Table 5: Classification accuracy (mean=std) of each comparing algorithm on the real-world partial label data sets. In addition,
e /o indicates whether CORD is statistically superior/inferior to the comparing algorithm on each data set (pairwise ¢-test at 0.05

significance level).

Lost MSRCv2 BirdSong Soccer Player ~ Yahoo! News
CORD 0.806+0.026  0.474+0.040  0.712+0.008  0.457+0.013  0.624+0.010
CLPL 0.7424+0.038¢  0.4134+0.039e¢  0.6324+0.017¢  0.368+0.010e  0.462+0.009e
PL-KNN 0.424£0.041e¢  0.448+0.037e¢ 0.614+0.024e 0.497+0.0140 0.45740.010e
PL-sVM 0.7294+0.040e  0.4824+0.043  0.673+0.018¢  0.4434+0.014e¢  0.636+0.010
LsB-cMmM 0.707+0.055e¢  0.456£0.031  0.717+0.024  0.525+0.0150  0.648+0.0070

Table 6: Transductive accuracy (mean=std) of each comparing algorithm on the real-world partial label data sets. In addition,
¢ /o indicates whether CORD is statistically superior/inferior to the comparing algorithm on each data set (pairwise ¢-test at 0.05

significance level).

Lost MSRCv2 BirdSong Soccer Player ~ Yahoo! News
CORD 0.925+0.006  0.667+0.007  0.8434+0.002  0.7644+0.002  0.87340.001
CorpD' 0.925+£0.006  0.667+0.007  0.843+0.002  0.763£0.002  0.873+0.001
CLPL 0.894+£0.005¢  0.656+0.010  0.822+0.004e  0.680+£0.010e  0.8344-0.002e
PL-KNN 0.6154+0.036e  0.6164+0.0060 0.7724+0.021e  0.4924+0.015¢  0.692+0.010e
PL-sVM 0.887£0.012¢  0.653+0.024  0.825+0.012¢  0.688+0.014e  0.87140.002
LsB-cMM 0.721£0.010e  0.5244+0.007¢ 0.716+0.014e  0.704+0.002¢ 0.872+0.001

Dietterich 2012) from the task of object classification, im-
age segmentations are represented as instances while ob-
jects appearing within the image are regarded as candidate
labels. For BirdSong (Briggs, Fern, and Raich 2012) from
the task of bird song classification, singing syllables of the
birds are represented as instances while bird species jointly
singing during the same period are regarded as candidate
labels. In addition, the average number of candidate labels
(avg. #CLs) for each data set is also recorded in Table 4.

Table 5 reports the mean predictive accuracy as well as
standard deviation of each comparing algorithm. Pairwise
t-test at 0.05 significance level is conducted based on the
ten-fold cross-validation, where the test outcomes between
CORD and the comparing algorithms are also recorded.

As shown in Table 5, it is impressive to observe that: 1)
On all data sets, CORD significantly outperforms CLPL and
achieves superior or at least comparable performance to PL-
SVM; 2) CORD achieves superior performance to PL-KNN
on the Lost, MSRCv2, BirdSong and Yahoo! News
data sets, and is only inferior to PL-KNN on the Soccer
Player data set; 3) CORD is outperformed by LSB-CMM
on the Soccer Player and Yahoo! News data sets,
and achieves superior or comparable performance to LSB-
CMM on the rest real-world partial label data sets.

In addition to the inductive performance reported in Table
5, it is also interesting to investigate the transductive perfor-
mance of each comparing algorithm on classifying training
examples (Cour, Sapp, and Taskar 2011; Zhang, Zhou, and
Liu 2016). For each partial label training example (x;, S;),
its ground-truth label is predicted by confining within the
candidate label set, i.e. y; = argmaxyes, 9(y | x:;0).
Conceptually, transductive performance of each comparing
algorithm reflects its disambiguation ability in recovering
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the ground-truth label from candidate label set. Accordingly,
Table 6 reports the transductive performance of each com-
paring algorithm along with the outcomes of pairwise ¢-tests
at 0.05 significance level.

As shown in Table 6, on the Lost, BirdSong and
Soccer Player data sets, CORD significantly outper-
forms all the comparing algorithms in terms of transduc-
tive accuracy. Furthermore, on the MSRCv2 and Yahoo!
News data sets, the performance of CORD is superior or
at least comparable to all the comparing algorithms. As
the boosting procedure of CORD terminates, the ground-
truth label of each training example can also be pre-
dicted from the resulting confidence matrix P je. Y =
arg maxy, s, pl(.jT). For reference purpose, the correspond-
ing transductive performance is also reported in Table 6 (de-
noted as CORD'). As shown in Table 6, CORD' and CORD
perform almost identically across all data sets, which shows
that the confidence matrix serves as a good indicator in dis-
ambiguating the ground-truth label.

Conclusion

In this paper, a new solution to partial label learning named
CORD is proposed which employs the ground-truth con-
fidence of each candidate label in discriminative model-
ing. Specifically, boosting techniques are adapted to learn
from partial label examples which maintain the weights over
training examples as well as the ground-truth confidences
over candidate labels in each boosting round. Effectiveness
of the proposed approach is clearly verified via extensive ex-
periments on artificial and real-world partial label data sets.

One interesting future work is to explore other ways
in instantiating confidence-rated discriminative partial la-



bel learning, such as trying alternative implementations of
CORD (e.g. Step 5 in Table 1), adapting other discrimi-
native learning techniques, etc. Furthermore, investigating
whether confidence-rated modeling is helpful to improve
non-discriminative partial label learning (Hiillermeier and
Beringer 2006) is also worth further study.
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