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Abstract

While much research effort has been dedicated to scaling
up sparse Gaussian process (GP) models based on inducing
variables for big data, little attention is afforded to the other
less explored class of low-rank GP approximations that ex-
ploit the sparse spectral representation of a GP kernel. This
paper presents such an effort to advance the state of the art
of sparse spectrum GP models to achieve competitive pre-
dictive performance for massive datasets. Our generalized
framework of stochastic variational Bayesian sparse spec-
trum GP (sVBSSGP) models addresses their shortcomings
by adopting a Bayesian treatment of the spectral frequencies
to avoid overfitting, modeling these frequencies jointly in its
variational distribution to enable their interaction a posteriori,
and exploiting local data for boosting the predictive perfor-
mance. However, such structural improvements result in a
variational lower bound that is intractable to be optimized. To
resolve this, we exploit a variational parameterization trick to
make it amenable to stochastic optimization. Interestingly, the
resulting stochastic gradient has a linearly decomposable struc-
ture that can be exploited to refine our stochastic optimization
method to incur constant time per iteration while preserving
its property of being an unbiased estimator of the exact gra-
dient of the variational lower bound. Empirical evaluation on
real-world datasets shows that sVBSSGP outperforms state-
of-the-art stochastic implementations of sparse GP models.

1 Introduction

The machine learning community has recently witnessed the
Gaussian process (GP) models gaining considerable trac-
tion in the research on kernel methods due to its expressive
power and capability of performing probabilistic non-linear
regression. However, a full-rank GP regression model incurs
cubic time in the size of the data to compute its predictive
distribution, hence limiting its use to small datasets. To lift
this computational curse, a vast literature of sparse GP re-
gression models (Quiñonero-Candela and Rasmussen 2005;
Titsias 2009) have exploited a structural assumption of con-
ditional independence based on the notion of inducing vari-
ables for achieving linear time in the data size. To scale
up these sparse GP regression models further for perform-
ing real-time predictions necessary in many time-critical ap-
plications and decision support systems (e.g., environmen-
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tal sensing (Cao, Low, and Dolan 2013; Dolan et al. 2009;
Ling, Low, and Jaillet 2016; Low, Dolan, and Khosla 2008;
2009; 2011; Low et al. 2012; Podnar et al. 2010; Zhang
et al. 2016), traffic monitoring (Chen et al. 2012; Chen,
Low, and Tan 2013; Chen et al. 2015; Hoang et al. 2014a;
2014b; Low et al. 2014a; 2014b; Ouyang et al. 2014;
Xu et al. 2014; Yu et al. 2012)), (a) distributed (Chen et
al. 2013; Hoang, Hoang, and Low 2016b; Low et al. 2015)
and (b) stochastic (Hensman, Fusi, and Lawrence 2013;
Hoang, Hoang, and Low 2015) implementations of such
models have been developed to, respectively, (a) reduce their
time to train with all the data by a factor close to the number
of machines and (b) train with a small, randomly sampled
subset of data in constant time per iteration of stochastic gra-
dient ascent update and achieve asymptotic convergence to
their predictive distributions.

On the other hand, there is a less well-explored, alternative
class of low-rank GP approximations that exploit sparsity in
the spectral representation of a GP kernel (Gal and Turner
2015; Lázaro-Gredilla et al. 2010) for gaining time efficiency
and have empirically demonstrated competitive predictive
performance for datasets of up to tens of thousands in size but,
surprisingly, not received as much attention and research ef-
fort. In contrast to the above literature, such sparse spectrum
GP regression models do not need to introduce an additional
set of inducing inputs which is computationally challeng-
ing to be jointly optimized, especially with a large number
of them that is necessary for accurate predictions. Unfortu-
nately, the sparse spectrum GP (SSGP) model of Lázaro-
Gredilla et al. (2010) does not scale well to massive datasets
due to its linear time in the data size and also finds a point
estimate of the spectral frequencies of its kernel that risks
overfitting. The recent variational SSGP (VSSGP) model of
Gal and Turner (2015) has attempted to address both short-
comings of SSGP with a stochastic implementation and a
Bayesian treatment of the spectral frequencies, respectively.
However, VSSGP has imposed the following highly restric-
tive structural assumptions to facilitate analytical derivations
but potentially compromise its predictive performance: (a)
The spectral frequencies are assumed to be fully independent
a posteriori in its variational distribution, and (b) every test
output assumes a deterministic relationship with the spectral
frequencies in its test conditional and is thus conditionally in-
dependent of the training data, including the local data “close”
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to it (in the correlation sense). As such, open questions re-
main whether VSSGP can still perform competitively well
with these highly restrictive structural assumptions for mas-
sive, million-sized datasets and, more importantly, whether
these assumptions can be relaxed to improve the predictive
performance while preserving scalability to big data.

To tackle these questions, this paper presents a novel gen-
eralized framework of stochastic variational Bayesian sparse
spectrum GP (sVBSSGP) regression models which (a) en-
ables the spectral frequencies to interact a posteriori by
modeling them jointly in its variational distribution, and (b)
spans a spectrum of test conditionals that can trade off be-
tween the contributions of the degenerate test conditional
of VSSGP vs. the local SSGP model trained with local data
(Section 2). However, such proposed structural improvements
over VSSGP and SSGP to boost the predictive performance
result in a variational lower bound that is intractable to be opti-
mized. To overcome this computational difficulty, we exploit
a variational parameterization trick to make the variational
lower bound amenable to stochastic optimization, which still
incurs linear time in the data size per iteration of stochastic
gradient ascent update (Section 3). Interestingly, we can ex-
ploit the linearly decomposable structure of this stochastic
gradient to refine our stochastic optimization method to incur
only constant time per iteration while preserving its property
of being an unbiased estimator of the exact gradient of the
variational lower bound (Section 4). We empirically evaluate
the predictive performance and time efficiency of sVBSSGP
on three real-world datasets, one of which is millions in size
(Section 5).

2 A Generalized Bayesian Sparse Spectrum

Gaussian Process Regression Framework

Let X be a d-dimensional input space such that each input
vector x ∈ X is associated with a latent output fx and a noisy
output yx � fx + ε generated by perturbing fx with a ran-
dom noise ε ∼ N (0, σ2

n) where σ2
n is the noise variance. Let

{fx}x∈X denote a Gaussian process (GP), that is, every finite
subset of {fx}x∈X follows a multivariate Gaussian distribu-
tion. Then, the GP is fully specified by its prior mean E[fx]
(i.e., assumed to be 0 for notational simplicity) and covariance
k(x,x′) � cov[fx, fx′ ] for all x,x′ ∈ X , the latter of which
can be defined by the commonly-used squared exponen-
tial kernel k(x,x′) � σ2

sexp(−0.5(x− x′)�Δ−1(x− x′))
where Δ � diag[�21, �

2
2, . . . , �

2
d] and σ2

s are its squared length-
scale and signal variance hyperparameters, respectively. Such
a kernel can be expressed as the Fourier transform of a den-
sity function p(r) over the domain of frequency vector r
whose coefficients form a set of trigonometric basis functions
(Lázaro-Gredilla et al. 2010):

k(x,x′) = Er∼p(r)[ σ
2
scos(2πr

�(x− x′)) ] (1)

where p(r) � N(
0, (4π2Δ)−1

)
. In the same spirit as that

of Lázaro-Gredilla et al. (2010), we approximate the kernel
in (1) by its unbiased estimator constructed from m i.i.d.

sampled spectral frequencies ri for i = 1, . . . ,m:

k(x,x′)� σ2
s

m

m∑
i=1

cos(2πr�i (x−x′))=φ�
θ (x)Λφθ(x

′)

(2)
where φθ(x) � [φ1

θ(x), φ
2
θ(x), . . . , φ

2m
θ (x)]� denotes a

vector of basis functions φ2i−1
θ (x) � cos(2πr�i x) and

φ2i
θ (x) � sin(2πr�i x) for i = 1, . . . ,m, Λ � (σ2

s/m)I,
and θ � vec(r1, r2, . . . , rm). Learning the length-scales
in Δ of the original kernel is thus cast as optimizing θ in
this alternative representation (2) of the kernel. Then, the in-
duced covariance matrix K(X,X) for any finite subset X �
{xi}ni=1 of training inputs can be written as K(X,X) �
Φ�

θ (X)ΛΦθ(X) where Φθ(X) � [φθ(x1) . . .φθ(xn)].
To learn the optimal parameters of the distribution over

θ (i.e., not known in advance) given by N (0, (4π2Δθ)
−1)

(i.e., derived from p(r) below (1)) where Δθ � I⊗Δ, we
adopt the standard Bayesian treatment for θ by first imposing
a prior distribution θ ∼ N (0,Θ) for some covariance Θ
designed a priori to reflect our knowledge about θ and then
using training data to infer its posterior which is expected to
closely approximate the optimal distribution. This signifies a
key difference between our generalized framework and the
sparse spectrum GP (SSGP) model of Lázaro-Gredilla et
al. (2010), the latter of which finds a point estimate of θ via
maximum likelihood estimation that risks overfitting.

As shall be elucidated later in this paper, the finite trigono-
metric representation of the kernel (2) can be used to effi-
ciently and scalably compute the predictive distribution of our
framework by exploiting some mild structural assumptions.
Specifically, we assume that for any finite subset X ⊂ X ,
a vector s of nuisance variables exists for which the joint
distribution of f � [fx]

�
x∈X and s conditioned on θ is[

s
f

]
∼ N

([
0
0

]
,

[
Λ ΛΦθ(X)

Φ�
θ (X)Λ Φ�

θ (X)ΛΦθ(X)

])
. (3)

Intuitively, s can be interpreted as the latent outputs of some
imaginary inputs U � {uj}2mj=1 such that φi

θ(uj) � I(i =
j). Using (2), it follows immediately that K(U,U) = Λ,
K(U,X) = ΛΦθ(X), and K(X,U) = Φ�

θ (X)Λ which
reproduce the covariance matrix in (3). Secondly, we assume
that given α � vec(θ, s), any latent test output depends
on only a small subset of local training data of fixed size:
Supposing the input space is partitioned into p disjoint sub-
spaces (i.e., X =

⋃p
i=1 Xi) which directly induce a partition

on the training inputs X =
⋃p

i=1 Xi such that Xi ⊂ Xi,
p(fx∗ |y,α) = p(fx∗ |yk,α) for any test input x∗ ∈ Xk and
k = 1, . . . , p where y � [yx]

�
x∈X and yk � [yx]

�
x∈Xk

. Then,
the predictive distribution can be computed using

p(fx∗ |y) = Eα∼p(α|y)[ p(fx∗ |yk,α) ] (4)

which reveals that it can be evaluated by deriving posterior
distribution p(α|y) described later in Section 3, and the test
conditional p(fx∗ |yk,α) consistent with the above struc-
tural assumption of s: Marginalizing out nuisance variables
s from such a test conditional should yield p(fx∗ |yk,θ),
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i.e., p(fx∗ |yk,θ) =
∫
s
p(fx∗ |yk,α) p(s|yk,θ) ds where

both p(fx∗ |yk,θ) and p(s|yk,θ) can be derived from (3), as
shown in (Hoang, Hoang, and Low 2016a).

Our first result below derives a spectrum of consistent
test conditionals in our generalized framework that trade
off between the use of global information α vs. local data
(Xk,yk), albeit to varying degrees controlled by γ:
Proposition 1 For all x∗ ∈ Xk and |γ| ≤ 1, define the test
conditional p(fx∗ |yk,α) � N (μx∗(α), σ2

x∗(α)) where

μx∗(α) � γφ�
θ (x∗)s+ (1− γ)φ�

θ (x∗)Γ−1
k Φθ(Xk)yk ,

σ2
x∗(α) � (1− γ2)σ2

nφ
�
θ (x∗)Γ−1

k φθ(x∗) ,

and Γk � Φθ(Xk)Φ
�
θ (Xk) + σ2

nΛ
−1. Then, p(fx∗ |yk,α)

is consistent with the structural assumption of s in (3).
Its proof is in (Hoang, Hoang, and Low 2016a).
Remark 1 The special case of γ = 1 recovers the degenerate
test conditional p(fx∗ |α) = N (φ�

θ (x∗)s, 0) induced by the
variational SSGP (VSSGP) model of Gal and Turner (2015)
(see equation 4 and Section 3 therein) which reveals that it im-
poses a highly restrictive deterministic relationship between
fx∗ and α and also fails to exploit the local data (Xk,yk)
(i.e., due to conditional independence between fx∗ and yk

given α) that can potentially improve the predictive perfor-
mance. Unfortunately, VSSGP cannot be trivially extended
to span the entire spectrum since it relies on the induced
deterministic relationship between fx∗ and α to analytically
derive its predictive distribution, which does not hold for
γ �= 1. On the other hand, when γ = 0, the test conditional in
Proposition 1 becomes independent of the nuisance variables
s and reduces to the predictive distribution p(fx∗ |yk,θ) of
the SSGP model of Lázaro-Gredilla et al. (2010) (see equa-
tion 7 therein) given its point estimate of the spectral frequen-
cies θ but restricted to the local data (Xk,yk) corresponding
to input subspace Xk. Hence, γ can also be perceived as a
controlling parameter that trades off between the contribu-
tions of the degenerate test conditional of VSSGP vs. the
local SSGP model to constructing a test conditional in our
generalized framework. To investigate this trade-off, our ex-
periments in Section 5 show that given the learned θ, the
predictive performance is maximized at γ = 0 when the test
conditional p(fx∗ |yk,α) depends on local data (Xk,yk) but
not s, which justifies viewing s as a “nuisance” to prediction
despite its crucial role in scalable learning of θ via stochastic
optimization (Section 4).

In the sections to follow, we will propose a novel stochastic
optimization method for deriving a variationally optimal ap-
proximation to the posterior distribution p(α|y) that is used
to marginalize out the global information α from any test
conditional p(fx∗ |yk,α) in Proposition 1 to yield an asymp-
totic approximation to the predictive distribution p(fx∗ |y) (4)
regardless of the value of γ ∈ [−1, 1].

3 Variational Inference for Bayesian Sparse

Spectrum Gaussian Process Regression

This section presents a variational approximation q(α) of
the posterior distribution p(α|y) achieved by using varia-
tional inference which involves choosing a parameterization

for q(α) (Section 3.1) and optimizing its defining param-
eters (Section 3.2) to minimize its Kullback-Leibler (KL)
distance DKL(q) � KL(q(α)‖p(α|y)) to p(α|y). The op-
timized q(α) can then be used as a tractably cheap surro-
gate of p(α|y) for marginalizing out α from test conditional
p(fx∗ |yk,α) in Proposition 1 to derive an approximation to
predictive distribution p(fx∗ |y) (4) efficiently (Section 4).

3.1 Variational Parameterization

Specifically, we parameterize α = vec(θ, s) � Mz+ b

where the variational parameters η � vec(M,b) are indepen-
dent of (θ, s), and z is distributed by an analytically tractable
user-specified distribution ψ(z) � p(z|y) that is straightfor-
ward to draw samples from (i.e., z ∼ ψ(z)). We assume that
ψ(z) is analytically differentiable with respect to z and the
affine matrix M is invertible such that z = M−1(α − b)
exists. Then, q(θ, s) can be expressed in terms of M, b, and
ψ(z):

Lemma 1 The variational distribution q(θ, s) can be in-
directly parameterized via ψ(z) by q(θ, s) = q(α) =
ψ(M−1(α− b))/|M| = ψ(z)/|M| where |M| denotes the
absolute value of det(M).

Lemma 1 follows directly from the change of variables the-
orem. Using the above parameterization of α, we can also
express the prior p(θ, s) in terms of variational parameters M
and b. To see this, recall that p(θ) = N (0,Θ) and p(s) =
N (0,Λ) (see Section 2 and (3)). This implies p(α) =
p(vec(θ, s)) = p(θ) p(s) = N (α|0, blkdiag[Θ,Λ]). Plug-
ging in the expression of α yields p(α) = N (Mz +
b|0, blkdiag[Θ,Λ])1. At this time, the need to parameter-
ize q(α) in Lemma 1 may not be obvious to a reader be-
cause it is motivated by a technical necessity to guarantee
the asymptotic convergence of our stochastic optimization
method (Remark 4) rather than a conceptual intuition.
Remark 2 Our generalized framework enables both the spec-
tral frequencies θ and the nuisance variables s to interact a
posteriori by modeling them jointly in the variational distri-
bution q(θ, s), as detailed in Lemma 1, and still preserves
scalability (Section 4). In contrast, the VSSGP model of Gal
and Turner (2015) assumes r1, . . . , rm, and s to be statisti-
cally independent a posteriori in its variational distribution
(see section 4 therein). Relaxing this assumption will cause
VSSGP to lose its scalability as its induced variational lower
bound will inevitably become intractable.
Remark 3 Though the model of Titsias and Lázaro-
Gredilla (2014) has adopted a similar parameterization but
only for the original GP hyperparameters, it incurs cubic time
in the data size per iteration of gradient ascent update, as
shown in its supplementary materials and experiments. A fac-
torized marginal likelihood has to be further assumed for this
parameterization to achieve scalability. Our framework does
not require such a strong assumption and still scales well to
million-sized datasets (Section 5). This is, perhaps surpris-
ingly, achieved through introducing the nuisance variables s

1Note that ψ(z) is meant to approximate the posterior distribu-
tion of z given y instead of its prior distribution. So, it cannot be
used to derive p(α) by applying the affine transformation on z.
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(Section 2), which interestingly embeds a linearly decompos-
able structure within the log-likelihood of data log p(y|α)
instead of log p(y|θ). As shown later in Theorem 1, such a
structure is the key ingredient for developing our stochastic
optimization method (Section 4).

3.2 Variational Optimization

To optimize q(α) (i.e., by minimizing DKL(q)), we first
show that the log-marginal likelihood log p(y) can be de-
composed into a sum of a lower-bound functional L(q)

and DKL(q): log p(y) = L(q) + DKL(q) where L(q) �
Eα∼q(α)[log p(y|α) − log(q(α)/p(α))], as detailed in
(Hoang, Hoang, and Low 2016a). So, minimizing DKL(q)
is equivalent to maximizing L(q) with respect to the varia-
tional parameter η = vec(M,b) of q(α) (Lemma 1) since
log p(y) is a constant (i.e., independent of η). In practice,
this is usually achieved by setting the derivative ∂L/∂η = 0
and solving for η, which is unfortunately intractable since its
exact analytic expression is not known.

To sidestep this intractability issue, we instead adopt a
stochastic optimization method that is capable of maximizing
L(q) via iterative stochastic gradient ascent updates. How-
ever, this also requires the stochastic gradient ∂L̂/∂η (6)
to be an analytically tractable and unbiased estimator of
the exact gradient ∂L/∂η. To derive this, we first exploit
Lemma 1 to re-express L(q) as an expectation with respect to
z ∼ ψ(z): L(q) = Ez∼ψ(z)[log p(y|α) − log(q(α)/p(α))]
where α = Mz+ b, as shown in (Hoang, Hoang, and Low
2016a). Then, taking the derivatives with respect to η on both
sides of the above equation yields

∂L/∂η = Ez∼ψ(z)[ ∂(log p(y|α)− log(q(α)/p(α)))/∂η ]
(5)

which reveals a simple, analytically tractable (proven in
(Hoang, Hoang, and Low 2016a) using Lemma 1) choice
for our stochastic gradient

∂L̂/∂η � ∂(log p(y|α)− log(q(α)/p(α)))/∂η . (6)

Thus, Ez∼ψ(z)[∂L̂/∂η] = ∂L/∂η guarantees that ∂L̂/∂η is
indeed an unbiased estimator of ∂L/∂η.
Remark 4 (5) reveals that parameterizing q(α) indirectly
through ψ(z) in Lemma 1 is essential to enabling stochastic
optimization in our generalized framework: Since ψ(z) does
not depend on the variational parameters η = vec(M,b),
the derivative operator in (5) can be moved inside the expec-
tation, which trivially reveals an unbiased stochastic estimate
(6) of the exact gradient via sampling z. Otherwise, suppose
that we attempt to derive a stochastic gradient for L(q) us-
ing the original expression L(q) = Eα∼q(α)[log p(y|α) −
log(q(α)/p(α))] instead of (5) in the same manner with a
direct parameterization of q(α) not exploiting ψ(z). Then,
after differentiating both sides of the above expression with
respect to η, the derivative operator on the RHS cannot be
moved inside the expectation over α ∼ q(α) since it depends
on η, which suggests that deriving an unbiased estimator for
∂L/∂η has become non-trivial without using the parameteri-
zation of q(α) in Lemma 1.

To understand why ∂L̂/∂η (6) is analytically tractable, it
suffices to show that both its derivatives ∂ log p(y|α)/∂η
and ∂ log(q(α)/p(α))/∂η in (6) are analytically tractable,
the latter of which is detailed in (Hoang, Hoang, and Low
2016a). For the former, since the trigonometric basis func-
tions {φi

θ(x)}2mi=1 (Section 2) are differentiable, it can be
shown that ∂ log p(y|α)/∂η is analytically tractable by ex-
ploiting the following result giving a closed-form expression
of log p(y|α) in terms of θ and s:

Lemma 2 log p(y|α) = −0.5σ−2
n v�v − 0.5n log(2πσ2

n)

where v � y −Φ�
θ (X)s.

Its proof is in (Hoang, Hoang, and Low 2016a). The above
choice of ∂L̂/∂η (6) and Lemma 2 show that it is not only
an unbiased estimator of the exact gradient but is also ana-
lytically tractable, which satisfies all the required conditions
to guarantee the asymptotic convergence of our proposed
stochastic optimization method. However, a critical issue
remains that makes it scale poorly in practice: It can be de-
rived from Lemma 2 that naively evaluating its derivative
∂ log p(y|α)/∂η in (6) in a straightforward manner incurs
linear time in data size n per iteration of stochastic gradient
ascent update, which is expensive for massive datasets.

4 Stochastic Optimization

To overcome the issue of scalability in evaluating the stochas-
tic gradient ∂L̂/∂η (6) (Section 3.2), we will show in The-
orem 1 below that ∂ log p(y|α)/∂η is decomposable into
a linear sum of analytically tractable terms, each of which
depends on only a small subset of local data. Interestingly,
since only the derivative ∂ log p(y|α)/∂η in (6) involves
the training data (X,y), Theorem 1 implies a similar de-
composition of ∂L̂/∂η. As a result, we can derive a new
stochastic estimate of the exact gradient ∂L/∂η that can be
computed efficiently and scalably using only one or a few
randomly sampled subset(s) of local data of fixed size and
still preserves the property of being its unbiased estimator
(Section 4.1). Computing this new stochastic gradient incurs
only constant time in the data size n per iteration of stochastic
gradient ascent update, which, together with Proposition 1
in Section 2, constitute the foundation of our generalized
framework of stochastic variational Bayesian SSGP regres-
sion models for big data (Section 4.2).

4.1 Stochastic Gradient Revisited

To derive a computationally scalable and unbiased stochastic
gradient, we rely on our main result below showing the de-
composability of ∂ log p(y|α)/∂η in (6) into a linear sum of
analytically tractable terms, each of which depends on only a
small subset of local training data of fixed size:

Theorem 1 Let vi � yi −Φ�
θ (Xi)s for i = 1, . . . , p. Then,

∂ log p(y|α)/∂η =
∑p

i=1 Fi(η,α) where Fi(η,α) �
−0.5σ−2

n ∇η(v
�
i vi) is analytically tractable.

Its proof in (Hoang, Hoang, and Low 2016a) utilizes
Lemma 2. Using Theorem 1 , the following linearly decom-
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posable structure of ∂L̂/∂η (6) results:

∂L̂/∂η = Ei∼U(1,p)[ pFi(η,α)− ∂ log(q(α)/p(α))/∂η ]
(7)

where i is treated as a discrete random variable uniformly
distributed over the set of partition indices {1, 2, . . . , p}. This
interestingly reveals an unbiased estimator for the stochastic
gradient ∂L̂/∂η which can be constructed stochastically by
sampling i:

∂L̃/∂η � pFi(η,α)− ∂ log(q(α)/p(α))/∂η

such that substituting it into (7) yields Ei∼U(1,p)[∂L̃/∂η] =

∂L̂/∂η. Then, taking the expectation over z ∼ ψ(z) on both
sides of this equality gives Ez∼ψ(z)[Ei∼U(1,p)[∂L̃/∂η]] =

Ez∼ψ(z)[∂L̂/∂η] = ∂L/∂η, which proves that ∂L̃/∂η is
also an unbiased estimator of ∂L/∂η that can be constructed
by sampling both i ∼ U(1, p) and z ∼ ψ(z) (Section 3.1)
independently. Replacing ∂L̂/∂η with ∂L̃/∂η produces a
highly efficient stochastic gradient ascent update that incurs
constant time in the data size n per iteration since ∂L̃/∂η can
be computed using only a single randomly sampled subset of
local data (Xi,yi) of fixed size.

Instead of utilizing just a single pair (i, z) of samples, the
above stochastic gradient ∂L̃/∂η can be generalized to si-
multaneously process multiple pairs of independent samples
and their corresponding sampled subsets of local data in one
stochastic gradient ascent update (detailed in (Hoang, Hoang,
and Low 2016a)), thereby improving the rate of convergence
while preserving its property of an unbiased estimator of the
exact gradient ∂L/∂η. Asymptotic convergence of the esti-
mate of η (and hence the estimate of q(α)) is guaranteed if
the step sizes are scheduled appropriately.

4.2 Approximate Predictive Inference

In iteration t of stochastic gradient ascent update, an esti-
mate qt(α) of the variationally optimal approximation q(α)
can be induced from the current estimate ηt = vec(Mt,bt)
of its variational parameters η using the parameterization
in Lemma 1. As a result, using the law of iterated ex-
pectations, the predictive mean can be approximated by
μ̂x∗ = Eα∼qt(α)[E[fx∗ |yk,α]] = Eα∼qt(α)[μx∗(α)] =∫
α
qt(α)μx∗(α)dα where α = vec(θ, s) and μx∗(α) is

previously defined in Proposition 1. However, since the
integration over α is not always analytically tractable,
we approximate it by drawing i.i.d. samples α1, . . . ,αr

from qt(α) to estimate μ̂x∗ � r−1
∑r

i=1 μx∗(αi). Simi-
larly, using the variance decomposition formula and defi-
nition of variance, the predictive variance can be approxi-
mated by σ̂2

x∗ = Eα∼qt(α)[σ
2
x∗(α)] + Vα∼qt(α)[μx∗(α)] =

Eα∼qt(α)[σ
2
x∗(α) + μ2

x∗(α)]− μ̂2
x∗ � r−1

∑r
i=1(σ

2
x∗(αi) +

μ2
x∗(αi))− μ̂2

x∗ where σ2
x∗(α) is previously defined in Propo-

sition 1 and the Vα∼qt(α)[μx∗(α)] term arises due to the un-
certainty of α. The samples α1, . . . ,αr are in turn obtained
by sampling z1, . . . , zr from ψ(z) and applying the paramet-
ric transformation in Lemma 1 with respect to the current
estimates Mt and bt, that is, vec(θi, si) = αi = Mtzi+bt

for i = 1, . . . , r. Computing the predictive mean μ̂x∗ and

variance σ̂2
x∗ thus incurs constant time in the data size n,

hence achieving efficient approximate predictive inference.

5 Empirical Studies

This section empirically evaluates the predictive performance
and time efficiency of our sVBSSGP model on three real-
world datasets: (a) The AIMPEAK dataset (Chen et al. 2013)
consists of 41800 traffic speed observations (km/h) along
775 urban road segments during the morning peak hours on
April 20, 2011. Each observation features a 5-dimensional
input vector of a road segment’s length, number of lanes,
speed limit, direction, and its recording time (i.e., discretized
into 54 five-minute time slots), and a corresponding out-
put measuring the traffic speed (km/h); (b) the benchmark
AIRLINE dataset (Hensman, Fusi, and Lawrence 2013;
Hoang, Hoang, and Low 2015) contains 2000000 informa-
tion records of US commercial flights in 2008. Each record
features a 8-dimensional input vector of the aircraft’s age
(year), travel distance (km), the flight’s total airtime, depar-
ture time, arrival time (min), and the date given by day of
week, day of month, and month, and a corresponding output
of the flight’s delay time (min); and (c) the BLOG feed-
back dataset (Buza 2014) contains 60000 instances of blog
posts. Each blog post features a fairly large 60-dimensional
input vector associated with its first 60 attributes described
at https://archive.ics.uci.edu/ml/datasets/BlogFeedback, and
a corresponding output measuring the number of comments
in the next 24 hours. The BLOG dataset is used to evaluate
the robustness of sVBSSGP to overfitting which usually oc-
curs in training with datasets of high input dimensions. All
datasets are modeled using GPs with prior covariance defined
in Section 2 and split into 95% training data and 5% test data.
All experimental results are averaged over 5 random splits.
For the AIMPEAK, AIRLINE, and BLOG datasets, we use,
respectively, 2m = 40, 40, and 10 trigonometric basis func-
tions to approximate the GP kernel (2) and sample z from
N (0, I) (Section 3.1). All experiments are run on a Linux
system with Intel� Xeon� E5-2670 at 2.6GHz with 96 GB
memory.

The performance of sVBSSGP is compared against the
state-of-the-art VSSGP (Gal and Turner 2015) and stochas-
tic implementations of sparse GP models based on induc-
ing variables such as DTC+ and PIC+ (Hensman, Fusi,
and Lawrence 2013; Hoang, Hoang, and Low 2015) (i.e.,
run with their GitHub codes) using the following metrics:
(a) Root mean square error (RMSE) {|X|−1

∑
x∗∈X(yx∗ −

μ̂x∗)
2}1/2 over the set X of test inputs, (b) mean negative log

probability (MNLP) 0.5|X|−1
∑

x∗∈X{(yx∗ − μ̂x∗)
2/σ̂2

x∗ +

log(2πσ̂2
x∗)}, and (c) training time.

AIMPEAK Dataset. This dataset is evenly partitioned into
p = 200 disjoint subsets using k-means (k = p). Fig. 1 shows
results of RMSEs of sVBSSGP for γ = 0, 0.1, 0.2, 0.3 that
rapidly decrease by 4- to 5-fold over 30 iterations. It can
also be observed that increasing γ from 0 results in higher
converged RMSEs. To further investigate this, Fig. 2a reveals
that sVBSSGP indeed achieves the lowest converged RMSE
at γ = 0 among all tested values of γ. This confirms our
hypothesis stated earlier in Remark 1 that given the learned
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Figure 1: Graphs of RMSEs (with standard deviations)
achieved by sVBSSGP vs. number t of iterations with vary-
ing values of γ for the AIMPEAK dataset.

Dataset sVBSSGP DTC+ PIC+ SSGP VSSGP

AIMPEAK 4.73 12.46 6.15 11.30 9.46
AIRLINE 22.18 39.60 33.40 n/a 39.49

Table 1: RMSEs achieved by sVBSSGP, DTC+, PIC+,
SSGP (Lázaro-Gredilla et al. 2010), and VSSGP after final
convergence for AIMPEAK and AIRLINE datasets.

spectral frequencies θ, the information carried by s becomes
a “nuisance” to prediction despite its interaction with θ in
q(θ, s) = q(α) during stochastic optimization. That is, when
the influence of s on the test output is completely removed
from the test conditional by setting γ = 0 in Proposition 1,
the predictions are no longer interfered by the nuisance infor-
mation of s, hence explaining the lowest RMSE achieved by
sVBSSGP at γ = 0.

Fig. 2b and Table 1 show that sVBSSGP (γ = 0 and
r = 20) significantly outperforms VSSGP, DTC+, and PIC+
(250 inducing variables) in terms of RMSE after 30 iterations.
To explain this, DTC+ and PIC+ find point estimates of the
kernel hyperparameters, which may have resulted in their
poorer performance. Though VSSGP also adopts a Bayesian
treatment of the spectral frequencies, it uses a degenerate
test conditional corresponding to the case of γ = 1 in Propo-
sition 1. As a result, VSSGP imposes a highly restrictive
deterministic relationship between the test output and spec-
tral frequencies and also fails to exploit the local data for
prediction (see Remark 1). The results of the MNLP metric
are similar and reported in (Hoang, Hoang, and Low 2016a).
AIRLINE Dataset. This dataset is partitioned into p = 2000
disjoint subsets using k-means. Fig. 2c and Table 1 show that
sVBSSGP (γ = 0 and r = 5) significantly outperforms
VSSGP, DTC+, and PIC+ (512 inducing variables) in terms
of RMSE after 45 iterations, as explained previously. Fig. 2d
shows that the total training time of sVBSSGP increases
linearly with the number t of iterations, which highlights
a principled trade-off between its predictive performance
and time efficiency. The training time of sVBSSGP, though
longer than DTC+ and PIC+, is only 43 sec. per iteration;
the training time of VSSGP is not included since its GitHub
code runs on GPU instead of CPU. The results of MNLP
metric are similar to that for the AIMPEAK dataset.
BLOG Dataset. This dataset is evenly partitioned into p =
200 disjoint subsets using k-means. Fig. 3 shows that with
more samples drawn from qt(α) to compute predictive mean
μ̂x∗ (Section 4.2), sVBSSGP tends to converge faster and
to a lower RMSE, which suggests a greater robustness to

overfitting by exploiting a higher degree of Bayesian model
averaging. More interestingly, the effect of overfitting appears
to be more pronounced for the BLOG dataset with a much
larger input dimension of 60: When r = 1, sVBSSGP effec-
tively reduces to a local SSGP model utilizing the sampled
spectral frequencies as its point estimate (see Proposition 1,
Remark 1, and Section 4.2) and converges to the poorest per-
formance that stops improving after 10 iterations. It can also
be observed that the performance gap between sVBSSGP’s
with different number r of samples is much wider at early
iterations, thus highlighting the practicality of our Bayesian
treatment in the case of limited data.

6 Conclusion

This paper describes a novel generalized framework of
sVBSSGP regression models that addresses the shortcomings
of existing sparse spectrum GP models like SSGP (Lázaro-
Gredilla et al. 2010) and VSSGP (Gal and Turner 2015)
by adopting a Bayesian treatment of the spectral frequen-
cies to avoid overfitting, modeling the spectral frequencies
jointly in its variational distribution to enable their interac-
tion a posteriori, and exploiting local data for improving
the predictive performance while still being able to preserve
its scalability to big data through stochastic optimization.
As a result, empirical evaluation on real-world datasets (i.e.,
including the million-sized benchmark AIRLINE dataset)
shows that our proposed sVBSSGP regression model can sig-
nificantly outperform the existing sparse spectrum GP models
like SSGP and VSSGP as well as the stochastic implemen-
tations of the sparse GP models based on inducing variables
like DTC+ and PIC+ (Hensman, Fusi, and Lawrence 2013;
Hoang, Hoang, and Low 2015).
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